Academic literature on the topic 'Composite material'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Composite material.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Composite material"
Seng, De Wen. "Visualization of Composite Materials’ Microstructure with OpenGL." Applied Mechanics and Materials 189 (July 2012): 478–81. http://dx.doi.org/10.4028/www.scientific.net/amm.189.478.
Full textKala, Shiva Kumar, and Chennakesava Reddy Alavala. "Enhancement of Mechanical and Wear Behavior of ABS/Teflon Composites." Trends in Sciences 19, no. 9 (April 8, 2022): 3670. http://dx.doi.org/10.48048/tis.2022.3670.
Full textBolf, Davor, Albert Zamarin, and Robert Basan. "Composite Material Damage Processes." Journal of Maritime & Transportation Science 3, no. 3 (June 2020): 307–23. http://dx.doi.org/10.18048/2020.00.23.
Full textThakkar, Radhika, Anuj P. Maini, Sahil Mogla, Syed Shah Hussain Qadri, Praveen K. Varma, and Alok Dubey. "Effect of Staining Beverages on Color Stability of Composite: A Spectrophotometric Study." Journal of Pharmacy and Bioallied Sciences 16, Suppl 1 (February 2024): S389—S392. http://dx.doi.org/10.4103/jpbs.jpbs_611_23.
Full textIshii, Chika, Kimitaka Asatani, and Ichiro Sakata. "Detecting possible pairs of materials for composites using a material word co-occurrence network." PLOS ONE 19, no. 1 (January 26, 2024): e0297361. http://dx.doi.org/10.1371/journal.pone.0297361.
Full textUtami, Mala, Jonathan Ernest Sirait, Beny Budhi Septyanto, Aries Sudiarso, and I. Nengah Putra Apriyanto. "Laminar Composite Materials for Unmanned Aircraft Wings." Defense and Security Studies 3 (December 21, 2022): 106–12. http://dx.doi.org/10.37868/dss.v3.id211.
Full textZhao, Fei, Bo Zhou, Xiuxing Zhu, and Haijing Wang. "Constitutive model of piezoelectric/shape memory polymer composite." Journal of Physics: Conference Series 2713, no. 1 (February 1, 2024): 012037. http://dx.doi.org/10.1088/1742-6596/2713/1/012037.
Full textQian, Bosen, Fei Ren, Yao Zhao, Fan Wu, and Tiantian Wang. "Enhanced Thermoelectric Cooling through Introduction of Material Anisotropy in Transverse Thermoelectric Composites." Materials 12, no. 13 (June 26, 2019): 2049. http://dx.doi.org/10.3390/ma12132049.
Full textYamatogi, Toshio, Hideaki Murayama, Kiyoshi Uzawa, Takahiro Mishima, and Yasuaki Ishihara. "Study on Composite Material Marine Propellers." Journal of The Japan Institute of Marine Engineering 46, no. 3 (2011): 330–40. http://dx.doi.org/10.5988/jime.46.330.
Full textSaikishore, G. J., K. Giridhar Saikiran, V. Chakri, Anshuman K, D. S. Naga Malleswara Rao, G. Saravanan, and L. S. P. Subbu. "Investigation of mechanical properties and thermal properties on sugarcane fiber composite material reinforced with polyethylene terephthalate matrix material for sustainable applications." E3S Web of Conferences 552 (2024): 01004. http://dx.doi.org/10.1051/e3sconf/202455201004.
Full textDissertations / Theses on the topic "Composite material"
Freitas, Ricardo Luiz Barros de [UNESP]. "Fabricação, caracterização e aplicações do compósito PZT/PVDF." Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/100281.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Um material compósito é constituído pela combinação de dois ou mais materiais, onde se procura sintetizar um novo material multifásico, e que abrigue as melhores características individuais de cada um de seus constituintes. Compósitos de polímeros (matriz) e ferroelétricos (inclusões) podem manifestar piezoeletricidade, ou seja, a produção de uma resposta elétrica devido a uma excitação mecânica, e vice-versa. Nesta tese o material polimérico usado para preparar os filmes ou lâminas de nanocompósitos é o PVDF, e, o material cerâmico é formado por nanopartículas de PZT. Ambos os materiais são dielétricos, porém, com características muito distintas (por exemplo, o PVDF tem aproximadamente 1/4 da densidade e 1/250 da constante dielétrica do PZT). O PZT é muito utilizado em transdutores, principalmente devido aos seus elevados coeficientes piezoelétricos, contudo, é quebradiço e sofre desgaste quando empregado na forma de filmes ou lâminas. Por outro lado, o PVDF é um polímero piezoelétrico que apresenta grande flexibilidade e excelentes resistências mecânica e química, porém, seus coeficientes piezoelétricos são apenas moderados. A fim de se aumentar a flexibilidade do PZT, mistura-se o pó cerâmico, na forma de nanopartículas, com o PVDF, também pulverizado. Na tese, evidencia-se que o compósito constituído por esta combinação cerâmica-polímero proporciona uma nova classe de materiais funcionais com grande potencial de aplicação, por terem combinadas a resistência e rigidez das cerâmicas, e, a elasticidade, flexibilidade, baixa densidade e elevada resistência a ruptura mecânica dos polímeros. O novo material tem grande resistência a choques mecânicos, flexibilidade, maleabilidade, e, principalmente, coeficientes piezoelétricos relativamente elevados. Amostras do compósito...
A composite material is constituted by the combination of two or more materials, which synthesizes a new multiphase material, and has the best individual characteristics of each of its constituents. Polymer composites (matrix) and ferroelectric (inclusions) can express piezoelectricity, i.e. the production of an electrical response due to a mechanical excitation, and vice versa. In this thesis the polymeric material used to prepare the films or slides of nanocomposites is the PVDF, and, ceramic material is formed by PZT nanoparticles. Both materials are dielectrics, however, with very different characteristics (for example, the PVDF is approximately 1/4 density and 1/250 relative permittivity from PZT). The PZT is widely used in transducers, mainly due to their high piezoelectric coefficients, however, is brittle and suffers wear and tear when employed in the form of films or slides. On the other hand, the PVDF is a piezoelectric polymer that offers great flexibility and excellent mechanical and chemical resistances, however, its piezoelectric coefficients are only moderate. In order to increase the flexibility of PZT, ceramic powder is mix, in the form of nanoparticles, with PVDF, also sprayed. In theory, it becomes evident that composite consisting of this ceramic- polymer combination delivers a new class of functional materials with great potential for application, because they combine the strength and rigidity of ceramics, and elasticity, flexibility, low density and high resistance to mechanical disruption of polymers. The new material has great resistance to mechanical shock, flexibility, suppleness, and, primarily, relatively high piezoelectric coefficients. PZT/PVDF composite samples were fabricated and characterized aiming to applications such as: piezoelectric actuators, acoustic emission detectors, and energy... (Complete abstract click electronic access below)
Karlsson, Johan. "Composite material in car hood : Investigation of possible sandwich materials." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-45633.
Full textMaman, Shmuel. "Composite material repair and reliability." Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/25759.
Full textGhaemi, Hamid. "The effective properties of composite material." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0020/MQ58036.pdf.
Full textGoel, Anjali 1978. "Economics of composite material manufacturing equipment." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/31096.
Full textIncludes bibliographical references (p. 43).
Composite materials are used for products needing high strength-to-weight ratios and good corrosion resistance. For these materials, various composite manufacturing processes have been developed such as Automated Tow Placement, Braiding, Diaphragm Forming, Resin Transfer Molding, Pultrusion, Autoclave Curing and Hand Lay Up. The aim of this paper is to examine the equipment used for these seven processes and to produce a cost analysis for each of the processes equipment. Since many of these processes are relatively new or are fairly costly and specified to the customers need, much of the equipment is custom made to meet the requirements of the part being produced. Current pricing information for individual custom-built machines, as well as standard machinery has been provided here.
by Anjali Goel.
S.B.
Lloyd, Rachel Louise. "Recycling of carbon fibre composite material." Thesis, Cranfield University, 2002. http://dspace.lib.cranfield.ac.uk/handle/1826/11356.
Full textCounts, William Arthur. "Mechanical behavior of bolted composite joints at elevated temperature." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/17315.
Full textTeh, Kuen Tat. "Impact damage resistance and tolerance of advanced composite material systems." Diss., This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-06062008-170512/.
Full textSinclair, Chad. "Co-deformation of a two-phase FCC/BCC material /." *McMaster only, 2001.
Find full textPacheco, João Felipe Mota. "Influencia do tratamento superficial na resistencia a tração da união polimero de vidro-cimento resinoso." [s.n.], 1997. http://repositorio.unicamp.br/jspui/handle/REPOSIP/288172.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba
Made available in DSpace on 2018-07-23T01:41:39Z (GMT). No. of bitstreams: 1 Pacheco_JoaoFelipeMota_D.pdf: 4282811 bytes, checksum: 41703a5d88ddb80855223eb94057a90b (MD5) Previous issue date: 1997
Resumo: O objetivo deste estudo foi avaliar a influência de diferentes tratamentos na superfície do polímero de vidro Artglass (HERAEUS, Kulzer - Germany). Foi verificado também o efeito do agente de silanização (Porcelain Primer - BISCO, lnc. ltasca IL), do ativador superficial de compósitos (Composite Activator BISCO, lnc. ltasca IL) e do líquido para reparos do sistema Artglass na resistência à tração com o sistema adesivo All Bond 2 (BISCO, lnc. ltasca IL) associado ao cimento Choice Porcelain Venner System (BISCO, lnc. ltasca IL). Foram confeccionadas duzentos e quarenta amostras e divididas em 12 grupos com 20 amostras cada. Cada grupo foi submetido aos seguintes tratamentos: grupo 1 - jateamento com óxido de alumínio; grupo 2 - jateamento com óxido de alumínio e aplicação do Porcelain Primer; grupo 3 jateamento com óxido de alumínio e aplicação do Composite Activator; grupo 4 - jateamento com óxido de alumínio e aplicação do Artglass Liquid; grupo 5 - condicionamento com ácido fosfórico; grupo 6 - condicionamento com ácido fosfórico e aplicação do Porcelain Primer; grupo 7 - condicionamento com ácido fosfórico e aplicação do Composite Activator; grupo 8 condicionamento com ácido fosfórico e aplicação do Artglass Liquid; grupo 9 - condicionamento com ácido fluorídrico; grupo 10 - condicionamento COIIJ ácido fluorídrico e aplicação do Porcelain Primer; grupo 11 - condicionamento com ácido fluorídrico e aplicação do Composite Activator; grupo 12 - condicionamento com ácido fluorídrico e aplicação do Artglass Liquid. Após o tratamento, as amostras foram unidas em pares com auxílio do sistema adesivo e do cimento resinoso manipulados de acordo com as instruções do fabricante. Em seguida, os corpos-de-prova foram armazenados a 37 'GRAUS'C com umidade relativa do ar em 100%, durante 24 horas e, logo após, foram submetidos a 500 ciclos térmicos ajustados às temperaturas de 5'GRAUS'C, 37°C e 60°C, com duração de 30 segundos cada. Decorrido o período de 48 horas, os corpos-de-prova foram submetidos ao ensaio de tração em uma máquina de ensaio universal (Otto Wolpert Werke, Germany), a uma velocidade de 6 mm/minuto. As médias dos resultados obtidos foram: grupo 1 - 11,46 MPa; grupo 2 - 12,28 MPa; grupo 3 - 9,45 MPa, grupo 4 - 11,53 MPa; grupo 5 - 3,83 MPa; grupo 6 - 4,84 MPa; grupo 7 - 3,94 MPa; grupo 8 - 5,67 MPa; grupo 9 - 6,51 MPa; grupo 10 - 6,36 MPa; grupo 11 - 7,86 MPa; grupo 12 - 8,34 MPa. A seguir os resultados foram submetidos análise de variância e ao Teste de Tukey. Após os testes de resistência à tração as amostras foram examinadas em lupa estereoscópica com aumento de 16 vezes, onde foi verificado predomínio de fraturas coesivas do polímero de vidro para os grupos tratados com jateamento com óxido de alumínio. O efeito dos tratamentos de superfície foi analisado com auxílio de um microscópio eletrônico de varredura (Zeiss DSM 960, Germany). Os resultados indicaram que o maior valor de resistência de união foi obtido através do jateamento com óxido de alumínio associado ao agente de silanização. Nos demais grupos onde também foi realizado o jateamento com óxido de alumínio os valores de resistência de união foram superiores e diferentes estatisticamente, quando comparados aos outros grupos, com exceção da associação do ácido fluorídrico com o Composite Activator, que não diferiu do grupo 3. A análise através de M.E.V. das superfícies tratadas demonstrou um padrão morfológico mais favorável ao imbricamento micromecânico produzido com o jateamento com óxido de alumínio
Abstract: The purpose of this study was to evaluate the influence of different superficial treatment of glass polymeric material Artglass (Heraeus, Kulzer). The effect of the silane agent application (Porcelain Primer - Bisco, lnc., ltasca, IL), a superficial Composite activator mixture (Composite Activator - Disco, Inc., ltasca, lL) and also the Artglass Liquid was verified in the tensile strength with adhesive system AllBond 2 (Bisco, lnc., !tasca, lL) associated with the resin cement Choice Porcelain Venner System (Bisco, lnc., !tasca, IL). Two hundred and torty samples were made and divided into 12 groups. Each group contained 20 samples submitted to treatments: Group 1 sandblasting with aluminum oxide; Group 2 - sandblasting with aluminum oxide and Porcelain Primer application; Group 3 - sandblasting with aluminum oxide and Composite Activator application; Group 4 - sandblasting with aluminum oxide and Artglass liquid application; Group 5 - acid etching with phosphoric acid; Group 6 - acid etching with phosphoric acid and Porcelain Primer application; Group 7 - acid etching with phosphoric acid and Composite Activator application; Group 8 acid etching with phosphoric acid and Artglass Liquid application; Group 9 acid etching with hydrofluoridric acid; Group 10 - acid etching with hydrofluoridric acid and Porcelain Primer application; Group 11 - acid etching with hydrotluoridric acid and Composite Activator application; Group 12 - acid etching with. hydrofluoridric acid and Artglass Liquid application. Following the treatment, the samples were bonded into pairs with the adhesive system and the resin cement, applied according with the manufacturer's instructions. Then, the samples were stored in 37° with a relative humidity of 100% during 24 hours. Submitted into 500 thermal circles, adjusted to 5 'DEGREE'C, 37 'DEGREE'C and 60'DEGREE'C, lasting 30 second each. After 48 hours, the samples were submitted to a tensile strength test in a Universal test machine (Otto Wolpert Werke, Germany) with a crosshead speed 6 mm / minute. The average results were : Group 1 - 11,46 MPa; Group 2 - 12,28 MPa; Group 3 - 9,45 MPa; Group 4 - 11,53 MPa; Group 5 - 3,83 MPa; Group 6 - 4,84 MPa; Group 7 - 3.94 MPa; Group 8 - 5,67 MPA; Group 9 - 6,51 MPA; Group 10 6,36 MPa; Group 11 - 7,86 MPa; Group 12 - 8,34 MPa. ThereFore, the results were submitted to Anova and Tukey Test. Then the samples were examined in a stereoscopic magnifying glass (x16), where it was verified the prevailing of cohesive rupture of the Glass Polymer in the groups treated with aluminum oxide sandblasting. The efFect of the superficial treatments was analyzed by a Scanning Electron Microscopy. The results indicated that sandblasting with aluminum oxide associated with the silane agent attained the biggest value of the bond strength. ln groups where the aluminum oxide sandblasting was performed the values presented were higher and statistically significant comparing with the others groups, except the association between hydrotluoridric acid and Composite Activator, which did not differ from group 3. The analysis of the treated surface was made using the Scanning Electron Microscopy and showed a more suitable morphologic pattem to the micromechanic retention produced with aluminum oxide sandblasting
Doutorado
Doutor em Materiais Dentários
Books on the topic "Composite material"
Institute of Materials (London, England), ed. Engineering composite materials. 2nd ed. London: IOM, 1999.
Find full textG, Wouters Tobias, ed. Leading-edge composite material research. New York: Nova Science Publishers, 2008.
Find full textYosomiya, Ryūtoku. Adhesion and bonding in composites. New York: M. Dekker, 1990.
Find full text1946-, Nethercot D. A., ed. Composite construction. London: Spon Press, 2003.
Find full textKipp, Dale O. Composite material data sheets. [Blacksburg, Va.?]: MatWeb, Division of Automation Creation, Inc., 2010.
Find full textM, Marchello J., Johnston N. J, and Langley Research Center, eds. Composite material impregnation unit. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Find full textauthor, Gupta A. C., ed. Polymer composites. London: New Academic Science, 2019.
Find full textM, Gammon Luther, ed. Optical microscopy of fiber reinforced composites. Materials Park, Ohio: ASM International, 2010.
Find full text1942-, Osamura Kōzō, ed. Composite superconductors. New York: M. Dekker, 1994.
Find full textH, Marshall I., Scottish Development Agency, and International Conference on Composite Structures. (4th : 1987 : Paisley College of Technology, Scotland, UK), eds. Composite structures 4. London: Elsevier Applied Science, 1987.
Find full textBook chapters on the topic "Composite material"
Vinson, J. R., and R. L. Sierakowski. "Composite Material Shells." In The behavior of structures composed of composite materials, 149–72. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-5187-7_5.
Full textMoglestue, C. "Composite Material Devices." In Monte Carlo Simulation of Semiconductor Devices, 216–42. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8133-2_10.
Full textYang, Zhaochun. "Composite Materials." In Material Modeling in Finite Element Analysis, 149–61. 2nd ed. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003436317-23.
Full textBreuer, Ulf Paul. "Material Technology." In Commercial Aircraft Composite Technology, 45–72. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31918-6_3.
Full textSirotkin, O. S., and V. B. Litvinov. "Composite-material part joining." In Composite Manufacturing Technology, 219–83. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-1268-0_6.
Full textKannan, K. Gopi, R. Kamatchi, and D. Dsilva Winfred Rufuss. "Potential Applications of Nano-Enhanced Phase Change Material Composites." In Composite and Composite Coatings, 233–42. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003109723-13.
Full textReifsnider, Kenneth L. "Life Prediction Methodology for Composite Material Systems." In Composite Structures, 154–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-11345-5_7.
Full textBrahmadathan, V. B., and C. Lakshmana Rao. "Experimental Investigation of Dynamic Behaviour of Ceramic Material and the Effectiveness of Pulse Shapers." In Composite Materials, 159–67. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003352358-14.
Full textVerma, Shivani, M. D. Goel, and N. N. Sirdesai. "A Novel Pulse-Shaping Technique to Forecast the Behavior of Brittle Material Using Split Hopkinson Pressure Bar." In Composite Materials, 146–58. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003352358-13.
Full textVinson, J. R., and R. L. Sierakowski. "Joining of Composite Material Structures." In The behavior of structures composed of composite materials, 239–83. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-5187-7_8.
Full textConference papers on the topic "Composite material"
Brown, Alexander L., Amanda B. Dodd, and Brent M. Pickett. "Intermediate Scale Composite Material Fire Testing." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63725.
Full textSafin, R., and R. Fahrutdinov. "WOOD-POLYMER COMPOSITE MATERIAL." In Ecological and resource-saving technologies in science and technology. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2022. http://dx.doi.org/10.34220/erstst2021_197-201.
Full textNandi, Soumitra, and Zahed Siddique. "Components for Composite Material Customization System." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87341.
Full textShue, Bruce, Alfonso Moreira, and George Flowers. "Review of Recent Developments in Composite Material for Aerospace Applications." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87847.
Full textMartin, Rod. "Composite Materials: An Enabling Material for Offshore Piping Systems." In Offshore Technology Conference. Offshore Technology Conference, 2013. http://dx.doi.org/10.4043/23925-ms.
Full textYosibash, Zohar, and Barna A. Szabó. "Failure Analysis of Composite Materials and Multi Material Interfaces." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0145.
Full textFattahi, S. J., and D. Necsulescu. "Health Monitoring of Composite Material Using Fiber Bragg Grating." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-85248.
Full textReifsnider, Ken, and S. W. Case. "Life Prediction Based on Material State Changes in Ceramic Matrix Composite Materials." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-28167.
Full textBRANDS, D. "In-plane deformation measurements for validation of composite forming simulations." In Material Forming. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902479-32.
Full textBelardi, Walter, Pier Sazio, Francesco De Lucia, and Francesco Poletti. "Composite material Hollow Antiresonant Fibers." In Frontiers in Optics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/fio.2016.ftu2i.3.
Full textReports on the topic "Composite material"
Hashin, Z. Composite Material Interface Mechanics. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada244787.
Full textMajidzadeh, Kamran, Behzad Vedaie, and George J. Ilves. Composite Material Tester. Phase 1. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/adb127562.
Full textHanson, Alexander. Revisiting Multi-Material Composite Structures with Homogenized Composite Properties. Office of Scientific and Technical Information (OSTI), January 2022. http://dx.doi.org/10.2172/1842578.
Full textMorgan, Robert, Brandon McReynolds, Katheryn Husmann, John McCoy, Ryan Maki, Ryan Holguin, John Bernardin, and Antranik Siranosian. Markforged Continuous Fiber Composite Material Testing. Office of Scientific and Technical Information (OSTI), July 2020. http://dx.doi.org/10.2172/1641543.
Full textOstachowicz, W. M., M. Krawczuk, and A. Zak. Dynamics of Cracked Composite Material Structures. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada303895.
Full textMandell, J. F., and D. D. Samborsky. DOE/MSU composite material fatigue database: Test methods, materials, and analysis. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/578635.
Full textFrame, B., F. Paulauskas, J. Miller, and W. Parzych. Composite material fabricate techniques. CRADA final report. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/10115135.
Full textFrame, B., F. Paulauskas, J. Miller, and W. Parzych. Composite material fabrication techniques. CRADA final report. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/10115159.
Full textEdwards, Christopher W., Timothy W. Batten, and Jon E. Black. Composite Material Hazard Assessment at Crash Sites. Fort Belvoir, VA: Defense Technical Information Center, January 2015. http://dx.doi.org/10.21236/ada617988.
Full textBarnes, Eftihia, Jennifer Jefcoat, Erik Alberts, Hannah Peel, L. Mimum, J, Buchanan, Xin Guan, et al. Synthesis and characterization of biological nanomaterial/poly(vinylidene fluoride) composites. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42132.
Full text