Academic literature on the topic 'Composite and sandwich plate'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Composite and sandwich plate.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Composite and sandwich plate"

1

Liu, Xiaoyan, Jiacheng Wu, Jiaojiao Xi, and Zhiqiang Yu. "Bonded Repair Optimization of Cracked Aluminum Alloy Plate by Microwave Cured Carbon-Aramid Fiber/Epoxy Sandwich Composite Patch." Materials 12, no. 10 (May 21, 2019): 1655. http://dx.doi.org/10.3390/ma12101655.

Full text
Abstract:
Fiber-reinforced epoxy sandwich composites, which were designed as the bonded repair patches to better recover the mechanical performance of a central cracked aluminum alloy plate, were layered by carbon and aramid fiber layers jointly and cured by microwave method in this study. The static tensile and bending properties of both carbon-aramid fiber/epoxy sandwich composite patches and the cracked aluminum alloy plates after bonded repair were systematically investigated. By comparing the mechanical performance with traditional single carbon-fiber-reinforced composite patches, it can be found that the bending performance of carbon-aramid fiber sandwich composite patches was effectively improved after incorporation of flexible aramid fiber layers into the carbon fiber layers, but the tensile strength of sandwich composite patches was weakened to some extent. Especially, the sandwich patches with 3 fiber layers exhibited better tensile and bending performance in comparison to patches of 5 and 7 fiber layers. The optimized 3-layer carbon-aramid fiber sandwich patch repaired plate recovered 86% and 190% of the tensile and bending performance in comparison to the uncracked ones, respectively, showing a considerable repair majorization effect for the cracked aluminum alloy plate.
APA, Harvard, Vancouver, ISO, and other styles
2

Satour, A., F. Boubenider, Ali Badidi Bouda, and Rachid Halimi. "Use of Guided Waves for Inspection of Composite Skin-Honeycomb Core." Materials Science Forum 636-637 (January 2010): 1533–40. http://dx.doi.org/10.4028/www.scientific.net/msf.636-637.1533.

Full text
Abstract:
Sandwich plates, made of two aluminum layers and a metal honey comb core are used in the aircraft industry. The purpose of this study is to show the ultrasonic guided waves sensibility to discover delamination in skin-honeycomb sandwich structures used in aeronautics. Separation between the skin and the core can appear during the manufacture or after use. In this work, Lamb's waves are used to control this kind of plane structure. Indeed, these waves have the advantage to put in vibration the totality of the plate that we want to control and they propagate on long distances without too much attenuation. The revealing, by the guided waves, of the unsticking which can meet on such sandwiches, between the plate and the honeycomb core is studied and commented.
APA, Harvard, Vancouver, ISO, and other styles
3

Al-Waily, Muhannad, Hussam Raad, and Emad Kadum Njim. "Free Vibration Analysis of Sandwich Plate-Reinforced Foam Core Adopting Micro Aluminum Powder." Physics and Chemistry of Solid State 23, no. 4 (November 30, 2022): 659–68. http://dx.doi.org/10.15330/pcss.23.4.659-668.

Full text
Abstract:
Analytical study of free vibration behavior of foam core sandwich plates strengthened with Aluminum micro spherical powder were presented in this paper. Sandwich plate with polyurethane foam core sandwiched between two Aluminum faces. To calculate the natural frequencies, use Kirchhoff theory to drive the equation of sandwich plate vibration. The stiffness characteristics of a foam-Aluminum core were evaluated by micro particle composite equations. The findings reveal that the impact of filling foam is effective, according to the free vibration analysis, the sandwich plate's free vibration and static behavior can be improved by using micro spherical powder foam in the vacant spherical gaps of the foam core. In comparison to other cores, the core foam-aluminum sandwich plate deflects less.
APA, Harvard, Vancouver, ISO, and other styles
4

Huang, Yizhe, Lin Li, Zhichao Xu, Chaopeng Li, and Kuanmin Mao. "Free Vibration Analysis of Functionally Gradient Sandwich Composite Plate Embedded SMA Wires in Surface Layer." Applied Sciences 10, no. 11 (June 5, 2020): 3921. http://dx.doi.org/10.3390/app10113921.

Full text
Abstract:
In this paper, a new type of composite gradient sandwich plate structure is proposed, which embeds the pre-strained shape memory alloy (SMA) into the surface layer and the core layer composed of epoxy resin and graphite-reinforced materials. In the core layer, graphite-reinforced material has a continuous gradient distribution along the thickness direction of the sandwich plate. Dynamic behavior of composite gradient sandwich plate in thermal environment is investigated. The equations of motion and frequency equation are derived based on the Reddy shear deformation theory and the constitutive equation for a composite sandwich plate, via the Hamilton principle. Some analytical study is depicted to provide an insight into the effects of volume fraction of material composition, gradient distribution of graphite in the core layer, and pre-strain of SMA in the surface layer on the dynamic behavior of a sandwich composite plate. This study investigates the modal performance of a sandwich composite plate with two aspects, a gradient core layer of graphite-reinforced material and surface layer-embedded SMA wires, which provide a new design idea for dynamic behavior of sandwich plates.
APA, Harvard, Vancouver, ISO, and other styles
5

Basa, B., and Saroj K. Sarangi. "Vibration Control of Sandwich Plates." Applied Mechanics and Materials 612 (August 2014): 1–7. http://dx.doi.org/10.4028/www.scientific.net/amm.612.1.

Full text
Abstract:
This paper presents the active control of vibrations of sandwich plates using piezoelectric composites (PZC). The top surface of the plate is integrated with the patches of active constrained layer damping treatment. Active fiber composite, one of the commercially available PZCs, is used as the material of the constraining layer of the patches and the constrained layer of the patch is composed of a viscoelastic material. Considering the first order shear deformation theory individually for each layer of the sandwich plate, a three-dimensional finite element model has been developed. The performance of active fiber composite for the smart vibration control of the sandwich plates has been studied and numerical results are presented. Emphasis has also been placed on investigating the effect of variation of piezoelectric fiber orientation angle in the constraining layer on the control authority of the patches.
APA, Harvard, Vancouver, ISO, and other styles
6

Basa, B., S. Das, and Saroj K. Sarangi. "Geometrically Nonlinear Analysis of Smart Sandwich Plates." Applied Mechanics and Materials 813-814 (November 2015): 1085–89. http://dx.doi.org/10.4028/www.scientific.net/amm.813-814.1085.

Full text
Abstract:
This paper presents the geometrically nonlinear analysis of smart sandwich plates. The top surface of the plate is integrated with a layer of commercially available active fiber composite. Considering the First order shear deformation theory individually for each layer of the sandwich plate, a three-dimensional finite element model has been developed. The performance of active fiber composite for the smart control of geometrically nonlinear deflection of the sandwich plates has been studied and numerical results are presented.
APA, Harvard, Vancouver, ISO, and other styles
7

Vemuluri, Ramesh Babu, Vasudevan Rajamohan, and Ananda Babu Arumugam. "Dynamic characterization of tapered laminated composite sandwich plates partially treated with magnetorheological elastomer." Journal of Sandwich Structures & Materials 20, no. 3 (June 3, 2016): 308–50. http://dx.doi.org/10.1177/1099636216652573.

Full text
Abstract:
This study investigates the dynamic performance of the partially treated magnetorheological elastomer tapered composite sandwich plates. Various partially treated tapered magnetorheological elastomer laminated composite sandwich plate models are formulated by dropping-off the plies longitudinally in top and bottom composite face layers to yield tapered plates as the face layers. The uniform rubber and magnetorheological elastomer materials are considered as the core layer. The governing differential equations of motion of the various partially treated magnetorheological elastomer tapered composite sandwich plate configurations are derived using classical laminated plate theory and solved numerically. Further, silicon-based magnetorheological elastomer and natural rubber are being fabricated and tested to identify the various mechanical properties. The effectiveness of the developed finite element formulation is demonstrated by comparing the results obtained with experimental tests and available literature. Also, various partially treated magnetorheological elastomer tapered laminated composite sandwich plates are considered to the study the effect of location and size of magnetorheological elastomer segment on various dynamic properties under various boundary conditions. The effects of magnetic field on the variation of natural frequencies and loss factors of the various partially treated magnetorheological elastomer tapered laminated composite sandwich plate configurations are analysed at different boundary conditions. Also, the effect of taper angle of top and bottom layers, aspect ratio, ply orientations on the natural frequencies of different configurations are analysed. Further, the transverse vibration responses of three different partially treated magnetorheological elastomer tapered laminated composite sandwich plate configurations under harmonic excitation are analysed at various magnetic fields. This analysis suggests that the location and size of the magnetorheological elastomer segments strongly influence the natural frequency, loss factor and transverse displacements of the partially treated magnetorheological elastomer tapered laminated composite sandwich plates apart from the intensities of the applied magnetic field. This shows the applicability of partial treatment to critical components of a large structure to achieve a more efficient and compact vibration control mechanism with variable damping.
APA, Harvard, Vancouver, ISO, and other styles
8

Praveen A, Paul, Vasudevan Rajamohan, Ananda Babu Arumugam, and Arun Tom Mathew. "Vibration analysis of a multifunctional hybrid composite honeycomb sandwich plate." Journal of Sandwich Structures & Materials 22, no. 8 (December 26, 2018): 2818–60. http://dx.doi.org/10.1177/1099636218820764.

Full text
Abstract:
In the present study, the free and forced vibration responses of the composite sandwich plate with carbon nanotube reinforced honeycomb as the core material and laminated composite plates as the top and bottom face sheets are investigated. The governing equations of motion of hybrid composite honeycomb sandwich plates are derived using higher order shear deformation theory and solved numerically using a four-noded rectangular finite element with nine degrees of freedom at each node. Further, various elastic properties of honeycomb core materials with and without reinforcement of carbon nanotube and face materials are evaluated experimentally using the alternative dynamic approach. The effectiveness of the finite element formulation is demonstrated by performing the results evaluated experimentally on a prototype composite sandwich plate with and without carbon nanotube reinforcement in core material. Various parametric studies are performed numerically to study the effects of carbon nanotube wt% in core material, core thickness, ply orientations, and various boundary conditions on the dynamic properties of composite honeycomb sandwich plate. Further, the transverse vibration responses of hybrid composite sandwich plates under harmonic force excitation are analyzed at various wt% of carbon nanotubes and the results are compared with those obtained without addition of carbon nanotubes to demonstrate the effectiveness of carbon nanotube reinforcement in enhancing the stiffness and damping characteristics of the structures. The study provides the guidelines for the designer on enhancing both the stiffness and damping properties of sandwich structures through carbon nanotube reinforcement in core materials.
APA, Harvard, Vancouver, ISO, and other styles
9

Draoui, Aicha, Mohamed Zidour, Abdelouahed Tounsi, and Belkacem Adim. "Static and Dynamic Behavior of Nanotubes-Reinforced Sandwich Plates Using (FSDT)." Journal of Nano Research 57 (April 2019): 117–35. http://dx.doi.org/10.4028/www.scientific.net/jnanor.57.117.

Full text
Abstract:
Based on the first order shear deformation plate theory (FSDT) in the present studie, static and dynamic behavior of carbon nanotube-reinforced composite sandwich plates has been analysed. Two types of sandwich plates, namely, the sandwich with face sheet reinforced and homogeneous core and the sandwich with homogeneous face sheet and reinforced core are considered. The face sheet or core plates are reinforced by single-walled carbon nanotubes with two types of distributions of uniaxially aligned reinforcement material which uniformly (UD-CNT) and functionally graded (FG-CNT). The analytical equations are derived and the exact solutions for bending and vibration analyses of such type’s plates are obtained. The mathematical models provided and the present solutions are numerically validated by comparison with some available results in the literature. Influence of Various parameters of reinforced sandwich plates such as aspect ratios, volume fraction, types of reinforcement and plate thickness on the bending and vibration analyses of carbon nanotube-reinforced composite sandwich plates are studied and discussed. The findings suggest that the (FG-CNT) face sheet reinforced sandwich plate has a high resistance against deflections compared to other types of reinforcement. It is also revealed that the reduction in the dimensionless natural frequency is most pronounced in core reinforced sandwich plate.
APA, Harvard, Vancouver, ISO, and other styles
10

Yartsev, Boris, Viktor Ryabov, and Lyudmila Parshina. "Dissipative properties of composite structures. 1. Statement of problem." Transactions of the Krylov State Research Centre 4, no. 398 (November 15, 2021): 24–34. http://dx.doi.org/10.24937/2542-2324-2021-4-398-24-34.

Full text
Abstract:
Object and purpose of research. The object under study is a sandwich plate with two rigid anisotropic layers and a filler of soft isotropic viscoelastic polymer. Each rigid layer is an anisotropic structure formed by a finite number of orthotropic viscoelastic composite plies of arbitrary orientation. The purpose is to develop a mathematical model of sandwich plate. Materials and methods. The mathematical model of sandwich plate decaying oscillations is based on Hamilton variational principle, Bolotin’s theory of multilayer structures, improved theory of the first order plates (Reissner-Mindlin theory), complex modulus model and principle of elastic-viscoelastic correspondence in the linear theory of viscoelasticity. In description of physical relations for rigid layers the effects of oscillation frequencies and ambient temperature are considered as negligible, while for the soft viscoelastic polymer layer the temperaturefrequency relation of elastic-dissipative characteristics are taken into account based on experimentally obtained generalized curves. Main results. Minimization of the Hamilton functional makes it possible to reduce the problem of decaying oscillations of anisotropic sandwich plate to the algebraic problem of complex eigenvalues. As a specific case of the general problem, the equations of decaying longitudinal and transversal oscillations are obtained for the globally orthotropic sandwich rod by neglecting deformations of middle surfaces of rigid layers in one of the sandwich plate rigid layer axes directions. Conclusions. The paper will be followed by description of a numerical method used to solve the problem of decaying oscillations of anisotropic sandwich plate, estimations of its convergence and reliability are given, as well as the results of numerical experiments are presented.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Composite and sandwich plate"

1

Martin, James David. "Sandwich Plate System Bridge Deck Tests." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/31648.

Full text
Abstract:
Three series of tests were conducted on a sandwich plate bridge deck, which consisted of two steel plates and an elastomer core. The first series of testing was conducted by applying a static load on a full scale sandwich plate bridge deck panel. Local strains and deflections were measured to determine the panelâ s behavior under two loading conditions. Next, fatigue tests were performed on the longitudinal weld between two sandwich plate panels. Two connections were tested to 10 million cycles, one connection was tested to 5 million cycles, and one connection was tested to 100,000 cycles. The fatigue class of the weld was determined and an S-N curve was created for the longitudinal weld group. Finally, a series of experiments was performed on a half scale continuous bridge deck specimen. The maximum positive and negative flexural bending moments were calculated and the torsional properties were examined. Finite element models were created for every load case in a given test series to predict local strains and deflections. All finite element analyses were preformed by Intelligent Engineering, Ltd. A comparison of measured values and analytical values was preformed for each test series. Most measured values were within five to ten percent of the predicted values. Shear lag in the half scale bridge was studied, and an effective width to be used for design purposes was determined. The effective width of the half scale simple span sandwich plate bridge deck was determined to be the physical width. Finally, supplemental research is recommended and conclusions are drawn.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
2

Stephens, Max Taylor. "Numerical and Experimental Analysis of Composite Sandwich Links for the LCF System." PDXScholar, 2011. https://pdxscholar.library.pdx.edu/open_access_etds/579.

Full text
Abstract:
Shear links are used as fuse elements in lateral load resisting systems to provide ductility and dissipate seismic energy. These links have traditionally been employed in eccentrically braced frames, but have more recently been suggested for use in the innovative linked column frame system (LCF). Current design specifications for shear links require intermediate web stiffeners to provide out-of-plane web stability so ductility requirements can be achieved. This research focused on moving from discrete transverse web stiffening to continuously stiffened webs in built up shear links. Built up links were designed to yield in shear when subjected to severe cyclic loading, however the webs of the links were designed using two metal sheets joined by an elastic core. These composite "sandwich" webs allowed for an increase in web thickness (and inherent flexural rigidity) without increasing the shear strength of the links. Numerical and experimental investigations were conducted to assess the performance of composite sandwich links subjected to severe loading. Numerical results showed improved web behavior in sandwich links in which the core material was assigned an elastic modulus greater than 5000psi. Due to fabrication limitations, experimental specimens were fabricated with a core material elastic modulus of 1000psi. These specimens did not perform as well as unstiffened base case links in terms global hysteretic behavior or ductility.
APA, Harvard, Vancouver, ISO, and other styles
3

Glenn, Christopher Edward. "Fabrication and Structural Performance of Random Wetlay Composite Sandwich Panels." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/43208.

Full text
Abstract:
The random wetlay process is used to make fiber-reinforced thermoplastic sheets that can be compression molded into composite panels at little cost. By utilizing these composite panels as the facesheets of honeycomb sandwich structures, it is possible to greatly increase the bending stiffness of the composite without adding significant weight. The random wetlay composite facesheets used in this research consisted of 25% E-glass fibers and 75% PET by weight. The thickness uniformity of the facesheets was difficult to control. The core of the sandwich structure was HexWeb&174; EM. Three low-cost adhesives were examined for secondarily bonding the facesheets to the core: polyurethane glue; epoxy paste; and 3M Scotch-Grip&174; plastic adhesive. The polyurethane glue mixed with Cab-O-Sil filler was easiest to apply and provided the largest flatwise tensile strength. Mathematical models were developed to predict the static behavior of sandwich beams and plates in bending. Three-point bend tests were performed on a sandwich beam in accordance with ASTM C 393. A sandwich plate simply supported along two opposite edges and free along the other two edges was subjected to a line-load using weights and a wiffle tree arrangement. An effective facesheet modulus and Poissonâ s ratio were found by comparing the measured displacements to the sandwich plate theory. The shadow moiré technique was used to visualize the displacement of the line-loaded sandwich plate. The overall shape of the displacement was very similar to the shape predicted by the sandwich plate theory.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
4

Alanbay, Berkan. "Free Vibrations and Static Deformations of Composite Laminates and Sandwich Plates using Ritz Method." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/103087.

Full text
Abstract:
In this study, Ritz method has been employed to analyze the following problems: free vibrations of plates with curvilinear stiffeners, the lowest 100 frequencies of thick isotropic plates, free vibrations of thick quadrilateral laminates and free vibrations and static deformations of rectangular laminates, and sandwich structures. Admissible functions in the Ritz method are chosen as a product of the classical Jacobi orthogonal polynomials and weight functions that exactly satisfy the prescribed essential boundary conditions while maintaining orthogonality of the admissible functions. For free vibrations of plates with curvilinear stiffeners, made possible by additive manufacturing, both plate and stiffeners are modeled using a first-order shear deformation theory. For the thick isotropic plates and laminates, a third-order shear and normal deformation theory is used. The accuracy and computational efficiency of formulations are shown through a range of numerical examples involving different boundary conditions and plate thicknesses. The above formulations assume the whole plate as an equivalent single layer. When the material properties of individual layers are close to each other or thickness of the plate is small compared to other dimensions, the equivalent single layer plate (ESL) theories provide accurate solutions for vibrations and static deformations of multilayered structures. If, however, sufficiently large differences in material properties of individual layers such as those in sandwich structure that consists of stiff outer face sheets (e.g., carbon fiber-reinforced epoxy composite) and soft core (e.g., foam) exist, multilayered structures may exhibit complex kinematic behaviors. Hence, in such case, Cz0 conditions, namely, piecewise continuity of displacements and the interlaminar continuity of transverse stresses must be taken into account. Here, Ritz formulations are extended for ESL and layerwise (LW) Nth-order shear and normal deformation theories to model sandwich structures with various face-to-core stiffness ratios. In the LW theory, the C0 continuity of displacements is satisfied. However, the continuity of transverse stresses is not satisfied in both ESL and LW theories leading to inaccurate transverse stresses. This shortcoming is remedied by using a one-step well-known stress recovery scheme (SRS). Furthermore, analytical solutions of three-dimensional linear elasticity theory for vibrations and static deformations of simply supported sandwich plates are developed and used to investigate the limitations and applicability of ESL and LW plate theories for various face-to-core stiffness ratios. In addition to natural frequency results obtained from ESL and LW theories, the solutions of the corresponding 3-dimensional linearly elastic problems obtained with the commercial finite element method (FEM) software, ABAQUS, are provided. It is found that LW and ESL (even though its higher-order) theories can produce accurate natural frequency results compared to FEM with a considerably lesser number of degrees of freedom.
Doctor of Philosophy
In everyday life, plate-like structures find applications such as boards displaying advertisements, signs on shops and panels on automobiles. These structures are typically nailed, welded, or glued to supports at one or more edges. When subjected to disturbances such as wind gusts, plate-like structures vibrate. The frequency (number of cycles per second) of a structure in the absence of an applied external load is called its natural frequency that depends upon plate's geometric dimensions, its material and how it is supported at the edges. If the frequency of an applied disturbance matches one of the natural frequencies of the plate, then it will vibrate violently. To avoid such situations in structural designs, it is important to know the natural frequencies of a plate under different support conditions. One would also expect the plate to be able to support the designed structural load without breaking; hence knowledge of plate's deformations and stresses developed in it is equally important. These require mathematical models that adequately characterize their static and dynamic behavior. Most mathematical models are based on plate theories. Although plates are three-dimensional (3D) objects, their thickness is small as compared to the in-plane dimensions. Thus, they are analyzed as 2D objects using assumptions on the displacement fields and using quantities averaged over the plate thickness. These provide many plate theories, each with its own computational efficiency and fidelity (the degree to which it reproduces behavior of the 3-D object). Hence, a plate theory can be developed to provide accurately a quantity of interest. Some issues are more challenging for low-fidelity plate theories than others. For example, the greater the plate thickness, the higher the fidelity of plate theories required for obtaining accurate natural frequencies and deformations. Another challenging issue arises when a sandwich structure consists of strong face-sheets (e.g., made of carbon fiber-reinforced epoxy composite) and a soft core (e.g., made of foam) embedded between them. Sandwich structures exhibit more complex behavior than monolithic plates. Thus, many widely used plate theories may not provide accurate results for them. Here, we have used different plate theories to solve problems including those for sandwich structures. The governing equations of the plate theories are solved numerically (i.e., they are approximately satisfied) using the Ritz method named after Walter Ritz and weighted Jacobi polynomials. It is shown that these provide accurate solutions and the corresponding numerical algorithms are computationally more economical than the commonly used finite element method. To evaluate the accuracy of a plate theory, we have analytically solved (i.e., the governing equations are satisfied at every point in the problem domain) equations of the 3D theory of linear elasticity. The results presented in this research should help structural designers.
APA, Harvard, Vancouver, ISO, and other styles
5

Grigg, William Reid. "Post-Injection Welded Joint Fatigue Tests of Sandwich Plate System Panels." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/44900.

Full text
Abstract:
The Sandwich Plate System (SPS) is created by bonding two steel plates together with an elastomer core that is injected into a cavity formed by the steel plates and perimeter bars. The result is a stiffer and lighter panel that can be used for plate-like structures such as bridge decks, stadium risers or ship decks. For more versatility, the effects of welding post-injection to the SPS panels were investigated. Three post-injection welded joints were tested to determine fatigue resistance and the effects of cyclic loading on the localized debonding of the heat affected zone at the post-injection welded joint of a SPS bridge deck. Seven panels containing one of three post-injection weld configurations were investigated. Each panel was fatigue tested to ten million cycles or until failure, by applying remote bending to the post-injection welded joint. Experimental deflections and strains were compared to finite element analyses. Fatigue-life predictions were made using code based S-N curves, and a relatively new mesh-insensitive structural stress method with a master S-N curve approach. The post-injection welded joint demonstrated good fatigue resistance to recommended AASHTO loading when shims were used under the middle support to offset the camber in the SPS panels. It was also found that stresses caused by draw down of the camber had an adverse affect on the post-injection welded joint and greatly reduced its fatigue resistance.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
6

Kataoka, Filho Mário. "Optimization of nonhomogeneous facesheets in composite sandwich plates." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ27974.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hoang, Minh Phuc. "Homogénéisation analytique de structures de nid d'abeille pour des plaques composites sandwich." Thesis, Reims, 2015. http://www.theses.fr/2015REIMS011/document.

Full text
Abstract:
L'objectif de cette thèse est de développer des modèles d'homogénéisation analytiques de panneaux sandwichs en nid d'abeilles. A la différence des méthodes classiques, l'effet des peaux est pris en compte, conduisant à des propriétés mécaniques très différentes. Dans les cas des tractions, flexions, cisaillement dans le plan, cisaillements transversaux et torsion, différentes séries de fonctions analytiques sont proposées pour prendre en compte la redistribution des contraintes entre les parois du nid d'abeilles. Nous avons étudié l'influence de la hauteur du nid d'abeilles sur les propriétés élastiques. Les courbes des modules obtenues avec le modèle proposé sont bien bornées par les valeurs obtenues avec la théorie des poutres. Les contraintes d'interface sont également étudiées afin de comparer avec les modèles existant pour le problème de traction. De nombreux calculs numériques ont été réalisés avec nos H-modèles pour les problèmes de tractions, de flexions, de traction-flexion couplés, de cisaillement dans le plan, de cisaillement transversal et de torsion. De très bon accords ont été obtenus entre les résultats issus des H-modèles et ceux issus des calculs en éléments finis de coques en maillant complètement les panneaux sandwichs. Nos H-modèles ont été appliquées aux calculs de grandes plaques sandwichs industrielles en nid d'abeilles. La comparaison desrésultats entre les H-modèles et les calculs en éléments finis de coques du logiciel Abaqus sont en très bon accord
The aim of this thesis is to develop an analytical homogenization model for the honeycomb core sandwich panels. Unlike conventional methods, the skin effects are taken into account, leading to a very different mechanical properties. In the cases of extensions, bendings, in-plane shear, transverse shears andtorsion, different analytical function series are proposed to consider the stress redistribution between the honeycomb walls. We have studied the influence of the height of the core on its homogenized properties. The moduli curves obtained by the present H-models are well bounded by the moduli values obtained by the beam theory. The interface stresses are also studied to compare with existing models for stretching problem. Many numerical computations with our H-models have been done for the problems of stretching, bending, in-plan and transverse shearing, as well as torsion. Very good agreement has been achieved between the results of the H-models and the results obtained by finite element simulations by completely meshing thesandwich panel with shell elements. Our H-models have been applied to the computations of industrial large sandwich panels with honeycomb core. The comparison of the results between the H-models and the simulations with Abaqus shell elements are in very good agreement
APA, Harvard, Vancouver, ISO, and other styles
8

Elmushyakhi, Abraham. "In-Plane Fatigue Characterization of Core Joints in Sandwich Composite Structures." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1510678155755824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Helmstetter, Dennis J. "Analysis procedures for optimizing the core of composite sandwich panels for blast resistance." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 165 p, 2009. http://proquest.umi.com/pqdweb?did=1885754601&sid=3&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Singh, Sonu Shravan Kumar. "Buckling and Wrinkling Analysis of Composite Sandwich Plates Using Finite Element Methods." Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10752150.

Full text
Abstract:

Composite sandwich plates are widely used in aerospace, automobile and shipbuilding industries. Composite sandwich plates have many different types of failure modes. A comparative study of composite sandwich plates with different finite element modeling approaches for predicting buckling and wrinkling failure response is described in this thesis. The research considers composite sandwich plates with isotropic and anisotropic face-sheets with a thick core. Finite element solutions are obtained using Abaqus/CAE 2016 software by conventional shell element models and conventional shell/solid element models. This study investigates results obtained using finite element methods and compares them to experimental and analytical solutions for overall buckling and face-sheet wrinkling. Results of the study indicate that finite element methods provide an accurate and effective modeling approach for predicting both overall buckling and wrinkling response.

Furthermore, the study also explored buckling response of composite sandwich panels with different core thickness and face-sheet fiber angle orientation. The study found that the shell/solid element model provides an appropriate and effective modeling method to predict both overall buckling and local wrinkling behavior in composite sandwich plates.

APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Composite and sandwich plate"

1

Plate and panel structures of isotropic, composite and piezoelectric materials, including sandwich construction. Dordrecht: Springer, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vinson, Jack R. Plate and Panel Structures of Isotropic, Composite and Piezoelectric Materials, Including Sandwich Construction. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3111-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Filho, Mário Kataoka. Optimization of nonhomogeneous facesheets in composite sandwich plates. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yu, Yi-Yuan. Vibrations of Elastic Plates: Linear and Nonlinear Dynamical Modeling of Sandwiches, Laminated Composites, and Piezoelectric Layers. New York, NY: Springer New York, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

F, Lung S., Gupta K. K, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. A three-node C ̊element for analysis of laminated composite sandwich shells. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

F, Lung S., Gupta K. K, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. A three-node C ̊element for analysis of laminated composite sandwich shells. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vibrations of elastic plates: Linear and nonlinear dynamical modeling of sandwiches, laminated composites, and piezoelectric layers. New York: Springer, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chamis, C. C. Fiber composite sandwich thermostuctural behavior, computationalsimulation. [Washington, DC]: National Aeronautics and Space Administration, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Abrate, Serge. Dynamic Failure of Composite and Sandwich Structures. Dordrecht: Springer Netherlands, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Abrate, Serge, Bruno Castanié, and Yapa D. S. Rajapakse, eds. Dynamic Failure of Composite and Sandwich Structures. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5329-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Composite and sandwich plate"

1

Cao, Tan Ngoc Than, and Van Hai Luong. "Dynamic Responses of Composite Sandwich Plate Under Moving Load." In Lecture Notes in Civil Engineering, 795–804. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3303-5_72.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kumar, Mrityunjay, Madan Lal Chandravanshi, Mayank K. Ghosh, Vishesh Ranjan Kar, and Kamal Kishore Joshi. "Dynamic Analysis of Sandwich Composite Plate Structures with Honeycomb Auxetic Core." In Advanced Composite Materials and Structures, 173–200. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003158813-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bert, C. W. "Shear deformation and sandwich configuration." In Buckling and Postbuckling of Composite Plates, 157–89. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-1228-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vinson, Jack R. "Elastic Instability (Buckling) of Sandwich Plates." In Plate and Panel Structures of Isotropic, Composite and Piezoelectric Materials, Including Sandwich Construction, 305–43. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3111-4_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vinson, Jack R. "Plates and Panels of Composite Materials." In Plate and Panel Structures of Isotropic, Composite and Piezoelectric Materials, Including Sandwich Construction, 205–45. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3111-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vinson, Jack R. "Elastic Instability (Buckling) of Composite Plates." In Plate and Panel Structures of Isotropic, Composite and Piezoelectric Materials, Including Sandwich Construction, 247–55. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3111-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vinson, Jack R. "Anisotropic Elasticity and Composite Laminate Theory." In Plate and Panel Structures of Isotropic, Composite and Piezoelectric Materials, Including Sandwich Construction, 157–203. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3111-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vinson, Jack R. "Energy Methods for Composite Material Structures." In Plate and Panel Structures of Isotropic, Composite and Piezoelectric Materials, Including Sandwich Construction, 271–94. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3111-4_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vinson, Jack R. "Linear and Nonlinear Vibration of Composite Plates." In Plate and Panel Structures of Isotropic, Composite and Piezoelectric Materials, Including Sandwich Construction, 257–69. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3111-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vinson, Jack R. "Structural Optimization to Obtain Minimum Weight Sandwich Panels." In Plate and Panel Structures of Isotropic, Composite and Piezoelectric Materials, Including Sandwich Construction, 345–77. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3111-4_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Composite and sandwich plate"

1

Dvorak, George J., Jian Zhang, and Olcay Canyurt. "Adhesive Joints for Composite Sandwich Structures." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2034.

Full text
Abstract:
Abstract A new approach is explored for joining of thick, woven E-glass/vinyl ester composite laminated plates to steel or composite plates, with applications in naval ship structures. Adhesive is applied along through-the-thickness contoured interfaces, employing tongue-and-groove geometry. Both experimental and finite element modeling results are presented. They show that adhesively bonded tongue-and-groove joints between steel and composite plates loaded in monotonically increasing longitudinal tension, are stronger than conventional strap joints even in relatively thin plates. In particular, a single 0.25 in. wide and 8 or 12 in. long steel tongue, bonded by the Dexter- Hysol 9339 adhesive to a groove in a 0.5 in. thick laminated plate, can support a 20,000 lbs tension force. This force is expected to increase in proportion to plate thickness. Simple design rules indicate that high joint efficiency can be achieved for any thickness of the joined plates.
APA, Harvard, Vancouver, ISO, and other styles
2

Ferrari, Giovanni, Margherita Capriotti, Marco Amabili, and Rinaldo Garziera. "Active Vibration Control of a Composite Sandwich Plate." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37611.

Full text
Abstract:
The active vibration control of a rectangular sandwich plate by Positive Position Feedback is experimentally investigated. The thin walled structure, consisting of carbon-epoxy outer skins and a Nomex paper honeycomb core, has completely free boundary conditions. A detailed linear and nonlinear characterization of the vibrations of the plate was previously performed by our research group [1, 2]. Four couples of unidirectional Macro Fiber Composite (MFC) piezoelectric patches are used as strain sensors and actuators. The positioning of the patches is led by a finite element modal analysis, in the perspective of a modal control strategy aimed at the lowest four natural frequencies of the structure. Numerical and experimental verifications estimate the resulting influence of the control hardware on the modal characteristics of the plate. Experimental values are also extracted for the control authority of the piezoelectric patches in the chosen configuration. Single Input – Single Output (SISO) and MultiSISO Positive Position Feedback algorithms are tested and the transfer function parameters of the controller are tuned according to the previously known values of modal damping. A totally experimental procedure to determine the participation matrices, necessary for the Multiple-Input and Multiple-Output configuration, is developed. The resulting algorithm proves successful in selectively reducing the vibration amplitude of the first four vibration modes in the case of a broadband disturbance. PPF is therefore used profitably on laminated composite plates in conjunction with strain transducers, for the control of the low frequency range up to 100 Hz. The relevant tuning procedure moreover, proves straightforward, despite the relatively high number of transducers. The rigid body motions which arise in case of free boundary conditions do not affect the operation of the active control.
APA, Harvard, Vancouver, ISO, and other styles
3

Samajder, Himadri, Harsh Baid, Fabrizio Ricci, and Ajit Mal. "Lamb waves in a honeycomb composite sandwich plate." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Tribikram Kundu. SPIE, 2013. http://dx.doi.org/10.1117/12.2010087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ringsberg, Jonas W., Niklas Blomgren, and Matej Prevc. "Ultimate Limit State Analysis of FRP Composite Sandwich Plates: Development of a Semi-Analytical Method." In ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-54069.

Full text
Abstract:
The development of Sandwich PULS, a semi-analytical calculation tool for predicting the ultimate limit state (ULS) of FRP composite sandwich plates is presented. This was done by extending DNV GL’s semi-analytical calculation tool Composite PULS, which is used for quick estimation of the ULS for unstiffened composite plates. ULS was evaluated in terms of the first buckling load and the first ply failure (FPF). The Sandwich PULS code was developed by implementing formulations for sandwich plate theory. First-order shear deformation theory (FSDT) was implemented to include the transverse shear deformations that are highly important for sandwich plates with poor shear stiffness of the core. The Sandwich PULS code was evaluated against nonlinear finite element analyses (FEA). It was concluded that Sandwich PULS shows good agreement with FEA-predicted critical buckling loads. For all inspected plates, Sandwich PULS shows improved results compared to Composite PULS. Differences between Sandwich PULS and FEA are caused by the difference in evaluating shear stiffness. It has been shown that neglecting shear stiffness of faces results in good agreement between Sandwich PULS and FEA, while use of conventional shear correction factors proved to be unfavourable for sandwich plates. It was found that Sandwich PULS is limited in terms of slenderness. Sandwich plates with soft core should not have slenderness below 20 to assure an accurate solution.
APA, Harvard, Vancouver, ISO, and other styles
5

Katariya, Pankaj, and Subrata Kumar Panda. "Simulation Study of Transient Responses of Laminated Composite Sandwich Plate." In ASME 2017 Gas Turbine India Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gtindia2017-4846.

Full text
Abstract:
In this article, the transient responses of the laminated composite sandwich plate structure are obtained numerically using the commercial finite element package to reduce the computational cost without hampering the accuracy. The plate structure is discretized using the available shell element (SHELL281) from ANSYS library. In order to compute the responses, an ANSYS parametric design language code has been developed based on the finite element steps and Newmark integration technique. The model accuracy and stability have been checked and few numerical examples have been solved. Finally, the effect of different parameters like side-to-thickness ratios, core-to-face thickness ratios, and lamination schemes are computed to show the necessary influences on the time-dependent deflection of the laminated composite sandwich structure.
APA, Harvard, Vancouver, ISO, and other styles
6

Alam, Shah, and Samhith Shakar. "Ballistic Performance of Sandwich Composite Armor System." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23840.

Full text
Abstract:
Abstract This study focused on the design, modelling and the analysis of the dynamic response of composite armor system, constructed with Kevlar 29 as front skin, Alumina-ceramic filled in x shaped corrugated structure as core and bottom skin Kevlar 29 and T800S, in terms of residual velocity, energy absorption capacity and limiting velocity. The core cell size, height, thickness, skin thickness, etc., will be varied to get their influence on the impact resistance. The design parameter will be investigated for the sandwich composite armor with various configurations and stacking sequence of Alumina Ceramics, Kevlar 29 and T800S. The sandwich typically consists of front plate, core and backing plate, which will be impacted at different velocities starting at 100m/s till significant armor penetration. The ballistic limit velocity (V50) will be determined from the analysis. The non-linear explicit dynamic analysis and simulation results computed using the software ABAQUS will be validated by experiment. From the data obtained it can be suggested which composite armor has improved impact resistance and performance.
APA, Harvard, Vancouver, ISO, and other styles
7

Plagianakos, Theofanis S., and Evangelos G. Papadopoulos. "Low-Velocity Global-Local Impact Response of Smart Composite and Sandwich Composite Plates With Piezoelectric Transducers." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37574.

Full text
Abstract:
Higher-order layerwise piezoelectric laminate mechanics are presented for predicting the low-velocity impact response of pristine composite and sandwich composite plates with piezoelectric transducers. The present formulation enables prediction of the global (temporal variation of impact force, deflection, strain and sensory potential) and local through-thickness (distribution of displacement, stress and strain) impact response of plates with piezoelectric layers or patches. Its enhanced capabilities include efficiency in terms of computational cost, since the system matrices are reduced by means of a Guyan scheme or by using the eigenvectors, thus leading to a plate-impactor system containing a single or two deflection amplitudes per vibration mode, depending on consideration of transverse compressibility. The transfer of the plate-impactor system to state-space enables investigation of the feasibility of real-time active control towards impact force reduction by using output feedback control laws.
APA, Harvard, Vancouver, ISO, and other styles
8

Ruixiang, Bai, Sun Shiyong, and Chen Haoran. "Delamination Growth of Foam Core Composite Sandwich Plate under Harmonic Dynamic Load." In 2008 Second International Symposium on Intelligent Information Technology Application (IITA). IEEE, 2008. http://dx.doi.org/10.1109/iita.2008.173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

WANG, FANG, YING LU, BIANXIAO BING, GUANGYAN HUANG, and SHUN-SHAN FENG. "The Effects of Composite Sandwich Plate on Explosive Charge by Fragment Impact." In 30th International Symposium on Ballistics. Lancaster, PA: DEStech Publications, Inc., 2017. http://dx.doi.org/10.12783/ballistics2017/16915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Konka, Hari Prasad, M. A. Wahab, and Kun Lian. "Sandwich Structures With Smart Composite Face Skin." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62170.

Full text
Abstract:
Sandwich structures are one of the very important classes of composite structures that have been studied quite extensively in the past few years. The concepts of sandwich structures have been widely used in the aerospace, automobile, marine, and civil engineering applications; because it is suitable and amenable to the development of light-weight structures with high in-plane and flexural stiffness. A typical sandwich structure is usually comprised of two stiff face skins, which are separated by a thick, lightweight, and compliant core. The primary function of the face skin sheets in a sandwich structure is to provide required bending and in-plane shear stiffness and to carry edge-wise bending and in-plane loads. The composite face skins are usually made from resin impregnated glass fiber or a laminate of unidirectional fibers (prepregs), graphite prepregs, aluminum alloys or many other refractory metal alloys. In this study, smart composite face skins comprise of the composite layers with embedded Piezoelectric Fiber Composite Sensors (PFCS). The functions of PFCS as an embedded sensor inside the composite sandwich structure are threefold: (i) to detect all loading conditions acting on to the structure, (ii) to detect the damages while in-service under dynamic loads, and finally, (iii) to monitor the pre-existing damages in the structure so that their severity can be ascertained to avoid eventual catastrophic or premature failures. The PFCS are generally an ideal choice for this type of sandwich structures applications, as they are highly flexible, easily embeddable; their high compatibility to the composite manufacturing techniques; and more importantly, they produce significantly less interfacial stresses when embedded inside the composite structures. This research is focused on examining the effects on the structural integrity of the composite sandwich structure (with glass micro-balloons syntactic foam core and resin infused glass fiber face skins) with PFCS embedded inside face skin. In-plane tensile, and tension-tension fatigue tests are performed to evaluate the strengths/behavior of the composites containing embedded PFCS. The tensile tests showed that both the average ultimate strength and the modulus of elasticity of the tested laminate with or without embedded PFCS are within 7%. The Stress-Life (S-N) curves obtained from fatigue tests indicates that the fatigue lives and strengths with and without the PFCS are close to each other as well. Then carefully planned experiments are conducted to investigate the ability of the embedded PFCS to monitor the stress/strain levels and detect damages in composite sandwich structure. Experiments were performed to explore the ability of the embedded PFCS (MFC and PFC) to detect the damages in the structures using modal analysis method. Results from these experiments shows that the PFCS are effective in detecting the initiations of damages like delamination inside these composite sandwich structures through changes in natural frequency modes. Hence a smart composite face skin can be an effective method to monitor the health of the composite sandwich structures’ in-service conditions.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Composite and sandwich plate"

1

Barton, Oscar, Ratcliffe Jr., and Colin P. Fundamental Frequency of a Composite Sandwich Plate Containing Woven Layers. Fort Belvoir, VA: Defense Technical Information Center, August 1997. http://dx.doi.org/10.21236/ada359126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stephens, Max. Numerical and Experimental Analysis of Composite Sandwich Links for the LCF System. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ratcliffe, Colin P. Experimental Modal Analysis of a Sandwich Construction, Glass Reinforced Plastic Composite Deck Panel. Fort Belvoir, VA: Defense Technical Information Center, July 1996. http://dx.doi.org/10.21236/ada359147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Choi, M. A study of heat transfer for two layered composite inclined plate crotch absorbers. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/376367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rumble, S. J. Experimental Aspects of Using Time-Averaged Holographic Interferometry to Detect Barely Visible Impact Damage in a Graphite/Epoxy Composite Plate,. Fort Belvoir, VA: Defense Technical Information Center, August 1987. http://dx.doi.org/10.21236/ada194418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

BUCKLING BEHAVIOUR OF THE STEEL PLATE IN STEEL – CONCRETE – STEEL SANDWICH COMPOSITE TOWER FOR WIND TURBINE. The Hong Kong Institute of Steel Construction, September 2022. http://dx.doi.org/10.18057/ijasc.2022.18.3.7.

Full text
Abstract:
To solve the problem of collapses caused by local buckling of steel plates under compression in traditional steel towers, a novel steel-concrete-steel (SCS) sandwich composite tower for a wind turbine is proposed in this paper. To study the buckling behaviour of steel plates in SCS sandwich composite towers, six specimens were designed and tested under axial compression. The specimens were designed considering the key parameters of curvature radius, thickness of the steel plate, and the spacing-to-thickness ratio (the ratio of stud spacing to the thickness of steel plate). The failure modes, normalised average stress-strain curves and load-strain curves of the specimens were assessed, and the effects of the curvature radius and the spacing-to-thickness ratio of the steel plate were analysed. The experimental results showed that the buckling strength of the steel plate increased with a decrease in the ratio of the curvature radius to the thickness of the steel plate. The finite element (FE) model of the elastic buckling stress of the steel plate of the SCS sandwich composite tower was employed and validated against the test results. In parametric study, the effects of governing parameters including the curvature radius of the steel plate, thickness of the steel plate and spacing of the studs, on the effective length factors of the inner and outer steel plates were analysed. Subsequently, the design rules of the effective length factor of the inner and outer steel plates, and the design methods of spacing of studs to prevent local instability of the inner and outer steel plates before yielding were proposed.
APA, Harvard, Vancouver, ISO, and other styles
7

A REVIEW ON COMPOSITE ACTIONS OF PLATE-REINFORCED COMPOSITE COUPLING BEAMS. The Hong Kong Institute of Steel Construction, June 2020. http://dx.doi.org/10.18057/ijasc.2020.16.2.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

NUMERICAL AND THEORETICAL STUDIES ON DOUBLE STEEL PLATE COMPOSITE WALLS UNDER COMPRESSION AT LOW TEMPERATURES. The Hong Kong Institute of Steel Construction, December 2021. http://dx.doi.org/10.18057/ijasc.2021.17.4.6.

Full text
Abstract:
Double steel plate composite walls (DSCWs) with several unique types of connectors have been implemented to protect offshore oil exploration platforms from concentric forces caused by ice in the Arctic region. This paper investigates the compressive perfor-mance of DSCWs with interlocked J-hooks and overlapped headed studs at low temperatures ranging from 20 ℃ to -80 ℃ with nonlinear finite element models (FEMs). The intricate geometric size of the concrete, multiple interactions of the concrete with the connectors, and material nonlinearities of the concrete have been thoroughly simulated. The reasonable consistency between the results of the monotonic tests and finite element analysis (FEA) on nine DSCWs with interlocked J-hooks and seven DSCWs with overlapped headed studs indicates that the FEMs can effectively predict the compressive performance of the DSCWs at low temper-atures. On the basis of the validated FEMs, the effects of the horizontal and vertical spacing of the connectors on the compressive performance of the DSCWs are studied. Finally, theoretical models of the load-displacement curves are developed to reveal the compressive response of DSCWs at low temperatures with different types of connectors, taking into account the restraining effect of steel plates on the inner concrete and the local buckling of steel plates. Compared with previous tests and FEA, the developed theoretical models have reasonable consistency for the load-displacement curves of DSCWs at low temperatures.
APA, Harvard, Vancouver, ISO, and other styles
9

LOCAL BUCKLING (WRINKLING) OF PROFILED METAL-FACED INSULATING SANDWICH PANELS – A PARAMETRIC STUDY. The Hong Kong Institute of Steel Construction, August 2022. http://dx.doi.org/10.18057/icass2020.p.248.

Full text
Abstract:
This study aims to investigate the effects of various parameters including the height of the profiling region, spacing of profiling ribs, length of the panel, thickness and modulus of the foam core, and thickness of the profiled face sheet, on the local buckling capacity of profiled metal faced insulating sandwich panels. A simplified finite element (FE) modeling approach that models the profiled face sheet as a folded plate structure resting on elastic foundation is adopted. This modeling approach was validated through comparison with tests results and 3D FE modeling of the entire sandwich structure in a previous study conducted by the authors. The two-parameter elastic foundation properties are determined using a modified nonlinear Vlasov foundation model. The results show that all the above-mentioned parameters play important roles in controlling the buckling capacity of the panel. However, the slenderness ratio of the panel is the most dominant parameter among all. Understanding the influence of each of the aforementioned parameters aids in the design process of such panels and provides insight into their local buckling response.
APA, Harvard, Vancouver, ISO, and other styles
10

TENSILE FORCE AND BENDING MOMENT DEMANDS ON HEADED STUD FOR THE DESIGN OF COMPOSITE STEEL PLATE SHEAR WALL. The Hong Kong Institute of Steel Construction, December 2019. http://dx.doi.org/10.18057/ijasc.2019.15.4.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography