Academic literature on the topic 'Complexes de Fe(III)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Complexes de Fe(III).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Complexes de Fe(III)"
Rai, Dhanpat, Mikazu Yui, and Dean A. Moore. "Isosaccharinate Complexes of Fe(III)." Journal of Solution Chemistry 41, no. 11 (November 7, 2012): 1906–21. http://dx.doi.org/10.1007/s10953-012-9911-7.
Full textChen, Shangjun, Lu An, and Shiping Yang. "Low-Molecular-Weight Fe(III) Complexes for MRI Contrast Agents." Molecules 27, no. 14 (July 18, 2022): 4573. http://dx.doi.org/10.3390/molecules27144573.
Full textXue, Xiao Fei, Yan Xiang Liu, Yan Qing Shao, and Nan Sheng Deng. "Rapid Decolorization of Rhodamine B by UV/Fe(III)-Penicillamine Process under Neutral pH: Compared with UV/Fe(III)-Oxalate." Advanced Materials Research 183-185 (January 2011): 130–34. http://dx.doi.org/10.4028/www.scientific.net/amr.183-185.130.
Full textHassen, Jasim, and Jack Silver. "Stability of Fe(III) and Sn(IV) Metalloporphyrins Adsorbed on Cation-Exchanged Montmorillonite." Trends in Sciences 19, no. 8 (March 27, 2022): 3426. http://dx.doi.org/10.48048/tis.2022.3426.
Full textAnsari, Khairul I., Sahba Kasiri, James D. Grant, and Subhrangsu S. Mandal. "Fe(III)-Salen and Salphen Complexes Induce Caspase Activation and Apoptosis in Human Cells." Journal of Biomolecular Screening 16, no. 1 (November 2, 2010): 26–35. http://dx.doi.org/10.1177/1087057110385227.
Full textManimaran, P., and S. Balasubramaniyan. "Synthesis, Characterization and Biological Evaluation of Fe(III) and Cu(II) Complexes with 2,4-Dinitrophenyl hydrazine and Thiocyanate Ions." Asian Journal of Chemistry 31, no. 4 (February 27, 2019): 780–84. http://dx.doi.org/10.14233/ajchem.2019.21719.
Full textK. Dideriksen, J. A. Baker, and S. L. S. Stipp. "Fe isotope fractionation between inorganic aqueous Fe(III) and a Fe siderophore complex." Mineralogical Magazine 72, no. 1 (February 2008): 313–16. http://dx.doi.org/10.1180/minmag.2008.072.1.313.
Full textMelník, Milan, and Marian Koman. "Pyridine-2,6-dicarboxylates in monomeric iron complexes – structural aspects." Reviews in Inorganic Chemistry 40, no. 2 (June 25, 2020): 75–89. http://dx.doi.org/10.1515/revic-2019-0017.
Full textMonreal-Corona, Roger, Jesse Biddlecombe, Angela Ippolito, and Nelaine Mora-Diez. "Theoretical Study of the Iron Complexes with Lipoic and Dihydrolipoic Acids: Exploring Secondary Antioxidant Activity." Antioxidants 9, no. 8 (July 28, 2020): 674. http://dx.doi.org/10.3390/antiox9080674.
Full textRastogi, Raj Kamal, Sonu Sharma, Gulshan Rastogi, and Alok K. Singh. "SYNTHESIS AND CHARACTERIZATION OF TI (III), V (III),VO (IV), MOO (V),FE (II) AND FE (III) COMPLEXES OF BENZIL- 2,4-DINITROPHENYL HYDRAZONE P-BROMO ANILINE." Green Chemistry & Technology Letters 2, no. 4 (December 14, 2016): 177. http://dx.doi.org/10.18510/gctl.2016.242.
Full textDissertations / Theses on the topic "Complexes de Fe(III)"
Ingle, Shaktisingh K. "Photoactive fe(III) complexes of -hydroxy acid containing ligands." Cincinnati, Ohio : University of Cincinnati, 2006. http://www.ohiolink.edu/etd/view.cgi?acc%5Fnum=ucin1144708291.
Full textPaul, S. "Structure, properties and application of conducting polymers containing organo Fe(II)/Fe(III) complexes." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2007. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2615.
Full textJones, Morris Edward. "Soluble organic-Fe(III) complexes: rethinking iron solubility and bioavailability." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42940.
Full textINGLE, SHAKTISINGH K. "Photoactive Fe(III) complexes of α-hydroxy acid containing ligands." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1144708291.
Full textGreene, Shannon Nicolle. "Computational studies of Fe-type nitrile hydratase and related mononuclear, non-heme Fe(III) complexes." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0013070.
Full textWang, Lei. "Photodegradation of organic pollutants induced by Fe(III)-caoxylate complexes in aqueous solution." Clermont-Ferrand 2, 2008. https://tel.archives-ouvertes.fr/tel-00728829.
Full textFloquet, Sébastien. "Conversion de spin thermo- et photo-induite de complexes ioniques de fe(iii)." Paris 11, 2001. http://www.theses.fr/2001PA112211.
Full textQuirrenbach, Hanna Raquel. "Determinação das constantes de estabilidade, síntese e caracterização dos complexos de ácido fítico com os íons Fe(II) e Fe(III)." UNIVERSIDADE ESTADUAL DE PONTA GROSSA, 2007. http://tede2.uepg.br/jspui/handle/prefix/696.
Full textThe phytic acid depending on the pH value presents high potential quelante, quelanting metallic ions, inhibiting the production of species reactivates of oxygen, responsible for the destruction oxidative in biological systems. That potential quelante has been basing several applied studies to the antioxidant action in foods products, in environmental controls and as antioxidant in the human organism. The objective of this work was to study the degree of interaction of the phytic acid with the metallic ions Fe(II) and Fe(III), of biological importance, in near conditions of the physiologic and the stability of these complexes. Potentiometric titration were driven to determine the constants of formation of the complexes phytic acid-Fe(II) and phytic acid-Fe(III) in solution, under conditions of inert atmosphere, it ionic strength 0,1 mol.L-1 (KCl) at 36±0,1 ºC. For the system phytic acid- Fe(II), were determined seven constant of formation, corresponding to seven species formed in the range p[H] from 2,0 to 12,0. The first constant of formation of the complex phytic acid- Fe(II), it presented log K = 16,06 for the specie [MHL]9-, indicating that a great affinity exists among the ligand monoprotonated with the metal. For the system phytic acid-Fe(III) were determined seven constant of formation, seven species were detected in the range p[H] from 2,5 to 12,0. The first constant of formation of the complex presented log K = 18,87, very high value for the species [ML]9-, this denoted a strong interaction among the ligand deprotonated and the metallic ion. Studies spectroscopy in the region of the UV-Vis, were performed to accompany the formation of the complexes of the phytic acid with the metallic ions Fe(II) and Fe(III). In the studies of UV-Vis of the phytic acid in absence of the metallic ions, not occurred any absorption in the area of wavelength from 200 to 800 nm. Already for the ligand in the presence of the metallic ions two absorption bands were detected in 216 and 279 nm for the phytic acid-Fe(II) and 218 and 274 nm for the phytic acid Fe(III). Those are bands of transfer of electrons of the ligand for the metallic ion with formation of the linking coordinative. The complexes phytic acid-Fe(II) and phytic acid-Fe(III) were synthesized from the data potentiometric and characterized by absorption spectroscopy in the area of the infrared. The spectra for the system phytic acid in presence of the ions Fe(II), synthesized in pH=7,4, and Fe(III), pH=7,1, showed displacements in the areas of frequency of the groups O=PO3H2 of the phytic acid free. Those displacements, evidence that the ligant is coordinated to the metallic ions. Through the termogravimetry it verified that in the interval from 30 to 780 ºC the loss of total mass of the complex phytic acid-Fe(II) it was of 24,43 %. Of the room temperature up to 185 ºC, occurred the liberation of molecules of hydration water. In superior temperatures of this value the mass losses were relative to the decomposition of the compound, with liberation of constitution water and decomposition of the organic matter, with formation of double pyrophosphate of potassium and Fe(II) and potassium metaphosphate. The phytic acid-Fe(III) complexes presented thermal behavior similar to the complex phytic acid-Fe(II), however for the complex phytic acid-Fe(III) synthesized in pH 7,1 the loss of total mass of it was of 25,64 % in the area from 30 to 800 ºC, while the compound synthesized in pH 9,9 presented a loss of total mass of 31,98 % in the interval of temperature from 30 to 845 ºC. The obtained data, for the three complexes, indicate that the ligand is coordinated with the metallic ions so much in values of low pH as to you value of higher pH.
O ácido fítico dependendo do valor de pH apresenta alto potencial quelante, complexando íons metálicos, inibindo assim a produção de espécies reativas de oxigênio, responsáveis pela destruição oxidativa em sistemas biológicos. Esse potencial quelante tem fundamentado diversos estudos aplicados à ação antioxidante em produtos alimentícios, em controles ambientais e como antioxidante no organismo humano. O objetivo deste trabalho foi estudar o grau de interação do ácido fítico com os íons metálicos Fe(II) e Fe(III), de importância biológica, em condições próximas às fisiológicas e a estabilidade destes complexos. Titulações potenciométricas foram conduzidas para determinar as constantes de formação dos complexos ácido fítico-Fe(II) e ácido fítico-Fe(III) em solução, sob condições de atmosfera inerte, força iônica 0,100 mol.L-1 (KCl) a 36±0,1 ºC. Para o sistema ácido fítico- Fe(II), determinaram sete constantes de formação, correspondente a sete espécies formadas na faixa de p[H] de 2,0 a 12,0. A primeira constante de formação do complexo ácido fítico- Fe(II), apresentou log K=16,06 para a espécie [MHL]9-, indicando que existe uma grande afinidade entre o ligante monoprotonado com o metal. Para o sistema ácido fítico-Fe(III) foram determinadas sete constantes de formação, sete espécies foram detectadas na faixa de p[H] de 2,5 a 12,0. A primeira constante de formação do complexo apresentou log K=18,87, valor muito elevado para a espécie [ML]9-, isto denotou uma forte interação entre o ligante totalmente deprotonado e o íon Fe(III). Estudos espectroscópicos na região do UV-Vis foram realizados para acompanhar a formação dos complexos do ligante com os íons metálicos Fe(II) e Fe(III). Nos estudos de UV-Vis do ácido fítico em ausência dos íons metálicos não ocorreu nenhuma absorção na faixa de comprimento de onda de 200 a 800 nm. Já para o ligante na presença dos íons metálicos foram detectadas duas bandas de absorção em 216 e 279 nm para o ácido fítico-Fe(II) e 218 e 274 nm para o ácido fítico Fe(III). Essas são bandas de transferência de elétrons do ligante para o íon metálico com formação da ligação coordenativa. Os complexos ácido fítico-Fe(II) e ácido fítico-Fe(III) foram sintetizados a partir dos dados potenciométricos e caracterizados por espectroscopia de absorção na região do infravermelho. Os espectros para o sistema ácido fítico em presença do íon Fe(II), sintetizado em pH=7,4, e Fe(III), pH=7,1, mostraram deslocamentos nas regiões de freqüência dos grupamentos O=PO3H2 do ácido fítico livre. Esses deslocamentos evidenciam que o ligante encontra-se coordenado aos íons metálicos. Através da termogravimetria constatou-se que no intervalo de 30 a 780 ºC, a perda de massa total do complexo ácido fítico-Fe(II) foi de 24,43 %. Da temperatura ambiente até 185 ºC, ocorreu a liberação de moléculas de água de hidratação. Em temperaturas superiores deste valor as perdas de massa foram relativas à decomposição do complexo, com liberação de água de constituição e decomposição da matéria orgânica, com formação de pirofosfato duplo de potássio e Fe(II) e metafosfato de potássio. Os complexos ácido fítico-Fe(III) apresentaram comportamento térmico semelhante ao complexo ácido fítico-Fe(II), porém, para o complexo ácido fítico-Fe(III) sintetizado em pH 7,1 a perda de massa total do foi de 25,64 % na faixa de 30 a 800 ºC, enquanto que o complexo sintetizado em pH 9,9 apresentou uma perda de massa total de 31,98 % no intervalo de temperatura de 30 a 845 ºC. Os dados obtidos, para os três complexos, indicam que o ligante encontra-se coordenado com os íons metálicos tanto em valores de pH baixo como em valores de pH mais elevados.
Nasri, Habib. "Synthese et caracterisation de porphyrines de fe(ii) et fe(iii) : modelisation du site actif du centre p460 present dans l'hydroxylamine oxydoreductase de la bacterie nitrosomonas europaea." Université Louis Pasteur (Strasbourg) (1971-2008), 1987. http://www.theses.fr/1987STR13149.
Full textWang, Lei. "Photodégradation de pollutants organiques induite par des complexes Fe(III)-carboxylate en solutions aqueuses." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2008. http://tel.archives-ouvertes.fr/tel-00728829.
Full textBooks on the topic "Complexes de Fe(III)"
Khan, Tasneem A. Chemistry of organogold (I) & (III) complexes. Manchester: UMIST, 1997.
Find full textW, Buchler J., ed. Metal complexes with Tetrapyrrole Ligands III. Berlin: Springer, 1995.
Find full textHarris, J. Robin, and Jon Marles-Wright, eds. Macromolecular Protein Complexes III: Structure and Function. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58971-4.
Full textCañadillas-Delgado, Laura. Magnetic interactions in oxo-carboxylate bridged gadolinium (III) complexes. Hauppauge, N.Y: Nova Science Publishers, 2010.
Find full textWright, J. P. The synthesis of organogold(III) complexes with potential medicinal interest. Manchester: UMIST, 1995.
Find full textZemnuhova, L., R. Davidovich, A. Udovenko, A. Panasenko, E. Kovaleva, N. Makarenko, G. Fedorischeva, and V. Logvinova. FLUORIDE COMPLEXES OF ANTIMONY(III). SYNTHESIS, STRUCTURE, PROPERTIES, AND APPLICATION. ru: Publishing Center RIOR, 2023. http://dx.doi.org/10.29039/978-5-6050261-1-2.
Full text1978-, O'Shea Brian W., Heger Alexander, and Abel Tom G. 1970-, eds. First stars III: Santa Fe, New Mexico, 15-20 July 2007. Melville, N.Y: American Institute of Physics, 2008.
Find full textBarrow, Maureen. Chemistry of some organometallic complexes derived from Iron bis-Triphenylphosphite Tricarbonyl, Fe{P(OPh } (CO). Dublin: University College Dublin, 1998.
Find full textKlüglein, Nicole. Bacterial Fe(III) reduction and Fe(II) oxidation: Relevance for magnetite formation in the environment and the mechanism of nitrate-dependent Fe(II) oxidation. [S.l: s.n.], 2014.
Find full textEl-Naby, Sultan Ahmed Abd. A study of the reactions of nucleophiles with [(Indenyl)Fe(CO)2([eta]1-dppa)]BF4 a=m,e,p. Dublin: University College Dublin, 1997.
Find full textBook chapters on the topic "Complexes de Fe(III)"
Plyusnin, Victor, Ivan Pozdnyakov, Eugeny Glebov, Vjacheslav Grivin, and Nikolai Bazhin. "Intermediates in Photochemistry of Fe(III) Complexes in Water." In The Role of Ecological Chemistry in Pollution Research and Sustainable Development, 65–76. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2903-4_7.
Full textYe, Zhonghui, Qing Lin, Yun He, Min Liu, and Yanfang Xia. "Magnetic Studies in Complexes Derived from the Reaction of Fe(III) Salen Base Complexes and Hexacyanoferrate." In Lecture Notes in Electrical Engineering, 807–14. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4847-0_99.
Full textBratu, I., V. Chis, L. David, O. Cozar, GH Bora, P. Legrand, and J. P. Huvenne. "IR and EPR Studies of Some Fe(III)-Complexes With Antiinflammatory Drugs." In Spectroscopy of Biological Molecules, 557–58. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0371-8_257.
Full textHockertz, Joachim M., Steen Steenken, Claudia Stockheim, and Karl Wieghardt. "Radicals in Aqueous Solution from Fe(III) Complexes with Macrocyclic Ligands Containing Phenolates." In Free Radicals in Biology and Environment, 133–44. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-017-1607-9_10.
Full textBenkelberg, H. J., U. Deister, and P. Warneck. "OH Quantum Yields for the Photodecomposition of FE(III) Hydroxo Complexes in Aqueous Solution and the Reaction of OH with Hydroxymethanesulfonate." In Physico-Chemical Behaviour of Atmospheric Pollutants, 263–69. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0567-2_41.
Full textKlein, M., and F. Renz. "Chemical tuning of high-spin complexes based on 3- and 4-hydroxy-pentadentate-Fe (III) complex-units investigated by Mössbauer spectroscopy." In ICAME 2005, 1001–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-49853-7_49.
Full textRenz, F., P. Kerep, D. Hill, and M. Klein. "Complexes based on ethylene- and propylene-bridged-pentadentate-Fe(III)-units allow interplay between magnetic centers and multistability investigated by Mössbauer spectroscopy." In ICAME 2005, 981–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-49853-7_46.
Full textSorenson, John J. R., Lee S. F. Soderberg, Max L. Baker, John B. Barnett, Louis W. Chang, Hamid Salari, and William M. Willngham. "Radiation Recovery Agents: Cu(II), Mn(II), Zn(II), OR Fe(III) 3,5-Diisopropylsalicylate Complexes Facilitate Recovery from Ionizing Radiation Induced Radical Mediated Tissue Damage." In Advances in Experimental Medicine and Biology, 69–77. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5730-8_10.
Full textNakazawa, Hiroshi, and Masumi Itazaki. "Fe–H Complexes in Catalysis." In Iron Catalysis, 27–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14670-1_2.
Full textSchmidtke, Hans-Herbert, C. W. Bradford, and M. J. Cleare. "Pentaammineiridium(III) Complexes." In Inorganic Syntheses, 243–47. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132432.ch42.
Full textConference papers on the topic "Complexes de Fe(III)"
Shukla, Kritika, Ashutosh Mishra, and Pradeep Sharma. "Synthesis, characterization, XRD and EXAFS studies of Fe(III) complexes." In PROF. DINESH VARSHNEY MEMORIAL NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM 2018. Author(s), 2019. http://dx.doi.org/10.1063/1.5098717.
Full textZhou, Danna, Jie Wang, Liwei Hou, Jing Xu, and Yan Zhao. "Photochemistry of Fe(III)-Tetracycline Complexes in Aqueous Solution under UV Irradiation." In 2012 Third International Conference on Digital Manufacturing and Automation (ICDMA). IEEE, 2012. http://dx.doi.org/10.1109/icdma.2012.144.
Full textPrajapat, Garima, Uma Rathore, Rama Gupta, and N. Bhojak. "Thermal and biological evolution of Fe(III)-Sulfanilamide complexes synthesized by green strategy." In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032831.
Full textVidya, G. V., S. S. Meena, Pramod Bhatt, V. Sadasivan, and S. Mini. "Spectroscopic studies on Fe(II) and Fe(III) complexes of 5-aryl azo substituted lH-pyrimidine-2,4-dione." In PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810574.
Full textErmolaeva, A. A., O. M. Lavrova, and E. V. Tovkaleva. "Study of the prediction of biological activity and toxicity of Fe (III) complexes with organic ligands." In ACTUAL PROBLEMS OF ORGANIC CHEMISTRY AND BIOTECHNOLOGY (OCBT2020): Proceedings of the International Scientific Conference. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0070194.
Full textRidhorkar, B. D., A. A. Ramteke, Y. K. Vyawahare, and A. R. Yaul. "Synthesis, characterization and biological screening of Ti(III), Cr(III), Fe(III) and UO2(VI) mononuclear complexes of hydrazone Schiff base ligand containing NON moiety." In NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0061306.
Full textPrananto, Yuniar P., Ade H. Rafika, Sasti G. Fadhilah, Muhammad M. Khunur, and Rachmat T. Tjahjanto. "Effect of type of Fe(III) salts and reaction temperature in the synthesis of Fe(III)-Mn(II)-Tartrate heteronuclear complex." In CHEMISTRY BEYOND BORDERS: INTERNATIONAL CONFERENCE ON PHYSICAL CHEMISTRY: The 1st Annual Meeting of the Physical Chemistry Division of the Indonesian Chemical Society. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0174980.
Full textSow, Ibrahima Sory, Michel Gelbcke, Franck Meyer, Dong Yang, Koen Robeyns, Véronique Fontaine, and François Dufrasne. "Synthesis and antibacterial, antimycobacterial and antifungal activities of the complexes of Fe(II), Fe(III), Cu(II), Zn(II) and Ni(II) of aliphatic hydroxamic acids." In 6th International Electronic Conference on Medicinal Chemistry. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/ecmc2020-07384.
Full text"Synthesis, characterization and biological properties of new Codeine Fe(III) complex." In International Conference on Medicine, Public Health and Biological Sciences. CASRP Publishing Company, Ltd. Uk, 2016. http://dx.doi.org/10.18869/mphbs.2016.65.
Full textLUCCA, B. A. D., C. A. L. GRAÇA, and A. C. S. C. TEIXEIRA. "DEGRADAÇÃO DE ENROFLOXACINA PELO PROCESSO FOTO-FENTON-LIKE UTILIZANDO COMPLEXO DE Fe(III)-TARTARATO COMO FONTE DE Fe (II)." In XXII Congresso Brasileiro de Engenharia Química. São Paulo: Editora Blucher, 2018. http://dx.doi.org/10.5151/cobeq2018-pt.0075.
Full textReports on the topic "Complexes de Fe(III)"
Shen, Wen-Tang. A polarographic study of Fe(II) and Fe(III) complexes with catechol. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2795.
Full textNieland and Ying. L52105 Improvement in Performance in the Mark III Elastic Wave. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2003. http://dx.doi.org/10.55274/r0011087.
Full textKemner, K. M., S. D. Kelly, Bill Burgos, and Eric Roden. Reaction-based reactive transport modeling of Fe(III). Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/896240.
Full textAlexandar, Irina, Nikolay Kaloyanov, Veneta Parvanova, Christian Girginov, and Alexander Zahariev. Antimicrobial Activity of Bi(III) Complexes with Some Sulphonic Acids. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, August 2021. http://dx.doi.org/10.7546/crabs.2021.08.06.
Full textNeal, Andrew. Molecular Mechanism of Bacterial Attachment to Fe(III)-Oxide Surfaces. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/896798.
Full textMaurice, P. Dissolution of Fe(III)(hydr)oxides by an Aerobic Bacterium. Office of Scientific and Technical Information (OSTI), December 2004. http://dx.doi.org/10.2172/837302.
Full textRoden, Eric E., and Matilde M. Urrutia. Advanced Experiment Analysis of controls on Microbial FE(III) Oxide Reduction. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/828053.
Full textKelley, D. Kinetics and mechanisms of the reactions of alkyl radicals with oxygen and with complexes of Co(III), Ru(III), and Ni(III). Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6454295.
Full textBurgos, William D., Eric E. Roden, and Gour-Tsyh Yeh. Reaction-Based Reactive Transport Modeling of Fe(III) and U(V) Reduction. Office of Scientific and Technical Information (OSTI), June 2005. http://dx.doi.org/10.2172/893413.
Full textLovley, Derek R. Mechanisms for Electron Transfer Through Pili to Fe(III) Oxide in Geobacter. Office of Scientific and Technical Information (OSTI), March 2015. http://dx.doi.org/10.2172/1172030.
Full text