To see the other types of publications on this topic, follow the link: Complexe of oriented matroids.

Journal articles on the topic 'Complexe of oriented matroids'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Complexe of oriented matroids.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Mücksch, Paul. "Modular flats of oriented matroids and poset quasi-fibrations." Transactions of the American Mathematical Society, Series B 11, no. 9 (January 30, 2024): 306–28. http://dx.doi.org/10.1090/btran/168.

Full text
Abstract:
We study the combinatorics of modular flats of oriented matroids and the topological consequences for their Salvetti complexes. We show that the natural map to the localized Salvetti complex at a modular flat of corank one is what we call a poset quasi-fibration – a notion derived from Quillen’s fundamental Theorem B from algebraic K K -theory. As a direct consequence, the Salvetti complex of an oriented matroid whose geometric lattice is supersolvable is a K ( π , 1 ) K(\pi ,1) -space – a generalization of the classical result for supersolvable hyperplane arrangements due to Falk, Randell and Terao. Furthermore, the fundamental group of the Salvetti complex of a supersolvable oriented matroid is an iterated semidirect product of finitely generated free groups – analogous to the realizable case. Our main tools are discrete Morse theory, the shellability of certain subcomplexes of the covector complex of an oriented matroid, a nice combinatorial decomposition of poset fibers of the localization map, and an isomorphism of covector posets associated to modular elements. We provide a simple construction of supersolvable oriented matroids. This gives many non-realizable supersolvable oriented matroids and by our main result aspherical CW-complexes.
APA, Harvard, Vancouver, ISO, and other styles
2

Chepoi, Victor, Kolja Knauer, and Manon Philibert. "Ample Completions of Oriented Matroids and Complexes of Uniform Oriented Matroids." SIAM Journal on Discrete Mathematics 36, no. 1 (February 24, 2022): 509–35. http://dx.doi.org/10.1137/20m1355434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bandelt, Hans-Jürgen, Victor Chepoi, and Kolja Knauer. "COMs: Complexes of oriented matroids." Journal of Combinatorial Theory, Series A 156 (May 2018): 195–237. http://dx.doi.org/10.1016/j.jcta.2018.01.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Webster, Julian. "Cell complexes, oriented matroids and digital geometry." Theoretical Computer Science 305, no. 1-3 (August 2003): 491–502. http://dx.doi.org/10.1016/s0304-3975(02)00712-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fukuda, Komei, Hiroyuki Miyata, and Sonoko Moriyama. "Complete Enumeration of Small Realizable Oriented Matroids." Discrete & Computational Geometry 49, no. 2 (December 19, 2012): 359–81. http://dx.doi.org/10.1007/s00454-012-9470-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Knauer, Kolja, and Tilen Marc. "On Tope Graphs of Complexes of Oriented Matroids." Discrete & Computational Geometry 63, no. 2 (July 11, 2019): 377–417. http://dx.doi.org/10.1007/s00454-019-00111-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bokowski, Jürgen, and Tomaž Pisanski. "Oriented matroids and complete-graph embeddings on surfaces." Journal of Combinatorial Theory, Series A 114, no. 1 (January 2007): 1–19. http://dx.doi.org/10.1016/j.jcta.2006.06.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Naimi, Ramin, and Elena Pavelescu. "Linear embeddings of K9 are triple linked." Journal of Knot Theory and Its Ramifications 23, no. 03 (March 2014): 1420001. http://dx.doi.org/10.1142/s0218216514200016.

Full text
Abstract:
We use the theory of oriented matroids to show that any linear embedding of K9, the complete graph on nine vertices, into 3-space contains a non-split link with three components. This shows that Sachs' conjecture on linear, linkless embeddings of graphs, whether true or false, does not extend to 3-links.
APA, Harvard, Vancouver, ISO, and other styles
9

Alfonsín, J. L. Ramírez. "On Linked Spatial Representations." Journal of Knot Theory and Its Ramifications 10, no. 01 (February 2001): 143–50. http://dx.doi.org/10.1142/s0218216501000780.

Full text
Abstract:
What is the smallest positive integer m=m(L) such that every linear spatial representation of the complete graph with n vertices, n≥m contain cycles isotopic to link L? In this paper, we show that [Formula: see text]. The proof uses the well-known cyclic polytope and its combinatorial description in terms of oriented matroids.
APA, Harvard, Vancouver, ISO, and other styles
10

Welsh, D. J. A. "ORIENTED MATROIDS." Bulletin of the London Mathematical Society 27, no. 5 (September 1995): 499–501. http://dx.doi.org/10.1112/blms/27.5.499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Booth, Richard F., Alexandre V. Borovik, Israel M. Gelfand, and Neil White. "Oriented Lagrangian Matroids." European Journal of Combinatorics 22, no. 5 (July 2001): 639–56. http://dx.doi.org/10.1006/eujc.2000.0485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bokowski, Jürgen, António Guedes de Oliveira, and Jürgen Richter-Gebert. "Algebraic varieties characterizing matroids and oriented matroids." Advances in Mathematics 87, no. 2 (June 1991): 160–85. http://dx.doi.org/10.1016/0001-8708(91)90070-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Delucchi, Emanuele. "Modular elimination in matroids and oriented matroids." European Journal of Combinatorics 32, no. 3 (April 2011): 339–43. http://dx.doi.org/10.1016/j.ejc.2010.10.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Wenzel, Walter. "Book Review: Oriented matroids." Bulletin of the American Mathematical Society 31, no. 2 (October 1, 1994): 296–98. http://dx.doi.org/10.1090/s0273-0979-1994-00536-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bachem, A., and W. Kern. "Adjoints of oriented matroids." Combinatorica 6, no. 4 (December 1986): 299–308. http://dx.doi.org/10.1007/bf02579255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Fenton, William E. "Completeness in oriented matroids." Discrete Mathematics 66, no. 1-2 (August 1987): 79–89. http://dx.doi.org/10.1016/0012-365x(87)90120-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

McLennan, Andrew, and Rabee Tourky. "Games in oriented matroids." Journal of Mathematical Economics 44, no. 7-8 (July 2008): 807–21. http://dx.doi.org/10.1016/j.jmateco.2007.07.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Santos, Francisco. "Triangulations of oriented matroids." Memoirs of the American Mathematical Society 156, no. 741 (2002): 0. http://dx.doi.org/10.1090/memo/0741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Sturmfels, Bernd, Alexander Postnikov, and Isabella Novik. "Syzygies of oriented matroids." Duke Mathematical Journal 111, no. 2 (February 2002): 287–317. http://dx.doi.org/10.1215/s0012-7094-02-11124-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Richter-Gebert, Jürgen. "Two interesting oriented matroids." Documenta Mathematica 1 (1996): 137–48. http://dx.doi.org/10.4171/dm/7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hochstättler, Winfried, and Robert Nickel. "Joins of oriented matroids." European Journal of Combinatorics 32, no. 6 (August 2011): 841–52. http://dx.doi.org/10.1016/j.ejc.2011.02.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Borovik, Alexandre V., Israel Gelfand, and Neil White. "On exchange properties for Coxeter matroids and oriented matroids." Discrete Mathematics 179, no. 1-3 (January 1998): 59–72. http://dx.doi.org/10.1016/s0012-365x(96)00027-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Bokowski, J., and A. G. Deoliveira. "Invariant Theory-like Theorems for Matroids and Oriented Matroids." Advances in Mathematics 109, no. 1 (November 1994): 34–44. http://dx.doi.org/10.1006/aima.1994.1078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ardila, Federico, Felipe Rincón, and Lauren Williams. "Positively oriented matroids are realizable." Journal of the European Mathematical Society 19, no. 3 (2017): 815–33. http://dx.doi.org/10.4171/jems/680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Fukuda, Komei, and Tamas Terlaky. "LINEAR COMPLEMENTARITY AND ORIENTED MATROIDS." Journal of the Operations Research Society of Japan 35, no. 1 (1992): 45–61. http://dx.doi.org/10.15807/jorsj.35.45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Bachem, Achim, and Walter Kern. "Extension Equivalence of Oriented Matroids." European Journal of Combinatorics 7, no. 3 (July 1986): 193–97. http://dx.doi.org/10.1016/s0195-6698(86)80020-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sturmfels, Bernd. "Neighborly Polytopes and Oriented Matroids." European Journal of Combinatorics 9, no. 6 (November 1988): 537–46. http://dx.doi.org/10.1016/s0195-6698(88)80050-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bachem, Achim, and Alfred Wanka. "Separation theorems for oriented matroids." Discrete Mathematics 70, no. 3 (August 1988): 303–10. http://dx.doi.org/10.1016/0012-365x(88)90006-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Fukuda, Komei, and Keiichi Handa. "Antipodal graphs and oriented matroids." Discrete Mathematics 111, no. 1-3 (February 1993): 245–56. http://dx.doi.org/10.1016/0012-365x(93)90159-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sturmfels, Bernd, and Günter M. Ziegler. "Extension spaces of oriented matroids." Discrete & Computational Geometry 10, no. 1 (July 1993): 23–45. http://dx.doi.org/10.1007/bf02573961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Richter-Gebert, Jürgen. "Oriented matroids with few mutations." Discrete & Computational Geometry 10, no. 3 (September 1993): 251–69. http://dx.doi.org/10.1007/bf02573980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Miller, Douglas A. "Oriented matroids from smooth manifolds." Journal of Combinatorial Theory, Series B 43, no. 2 (October 1987): 173–86. http://dx.doi.org/10.1016/0095-8956(87)90020-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Abello and Kumar. "Visibility Graphs and Oriented Matroids." Discrete & Computational Geometry 28, no. 4 (November 2002): 449–65. http://dx.doi.org/10.1007/s00454-002-2881-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lawrence, Jim. "Oriented Matroids and Associated Valuations." Discrete & Computational Geometry 33, no. 3 (November 16, 2004): 445–62. http://dx.doi.org/10.1007/s00454-004-1114-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lawrence, J. "Mutation Polynomials and Oriented Matroids." Discrete & Computational Geometry 24, no. 2 (September 2000): 365–90. http://dx.doi.org/10.1007/s004540010042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Cordovil, Raul, and Komei Fukuda. "Oriented Matroids and Combinatorial Manifolds." European Journal of Combinatorics 14, no. 1 (January 1993): 9–15. http://dx.doi.org/10.1006/eujc.1993.1002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Cordovil, Raul, and Pierre Duchet. "Cyclic Polytopes and Oriented Matroids." European Journal of Combinatorics 21, no. 1 (January 2000): 49–64. http://dx.doi.org/10.1006/eujc.1999.0317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Anderson, Laura, and Rephael Wenger. "Oriented Matroids and Hyperplane Transversals." Advances in Mathematics 119, no. 1 (April 1996): 117–25. http://dx.doi.org/10.1006/aima.1996.0028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Roudneff, J. P. "Inseparability graphs of oriented matroids." Combinatorica 9, no. 1 (March 1989): 75–84. http://dx.doi.org/10.1007/bf02122686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Guzmán-Pro, Santiago, and Winfried Hochstättler. "Oriented cobicircular matroids are GSP." Discrete Mathematics 347, no. 1 (January 2024): 113686. http://dx.doi.org/10.1016/j.disc.2023.113686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Chen, Xiangying. "An Axiomatization of Matroids and Oriented Matroids as Conditional Independence Models." SIAM Journal on Discrete Mathematics 38, no. 2 (May 17, 2024): 1526–36. http://dx.doi.org/10.1137/23m1558653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Živaljević, Rade T. "Oriented matroids and Ky Fan’s theorem." Combinatorica 30, no. 4 (July 2010): 471–84. http://dx.doi.org/10.1007/s00493-010-2446-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Hartmann, Mark, and Michael H. Schneider. "Max-balanced flows in oriented matroids." Discrete Mathematics 137, no. 1-3 (January 1995): 223–40. http://dx.doi.org/10.1016/0012-365x(93)e0168-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Cordovil, R., and M. L. Moreira. "A homotopy theorem on oriented matroids." Discrete Mathematics 111, no. 1-3 (February 1993): 131–36. http://dx.doi.org/10.1016/0012-365x(93)90149-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Bokowski, Jürgen, and Bernd Sturmfels. "On the coordinatization of oriented matroids." Discrete & Computational Geometry 1, no. 4 (December 1986): 293–306. http://dx.doi.org/10.1007/bf02187702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Miyata, Hiroyuki, and Arnau Padrol. "Enumerating Neighborly Polytopes and Oriented Matroids." Experimental Mathematics 24, no. 4 (July 24, 2015): 489–505. http://dx.doi.org/10.1080/10586458.2015.1015084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Cordovil, R. "A Commutative Algebra for Oriented Matroids." Discrete & Computational Geometry 27, no. 1 (January 2002): 73–84. http://dx.doi.org/10.1007/s00454-001-0053-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Rambau, J. "Circuit Admissible Triangulations of Oriented Matroids." Discrete & Computational Geometry 27, no. 1 (January 2002): 155–61. http://dx.doi.org/10.1007/s00454-001-0058-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Buchi, J. Richard, and William E. Fenton. "Large convex sets in oriented matroids." Journal of Combinatorial Theory, Series B 45, no. 3 (December 1988): 293–304. http://dx.doi.org/10.1016/0095-8956(88)90074-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Las Vergnas, Michel. "Acyclic reorientations of weakly oriented matroids." Journal of Combinatorial Theory, Series B 49, no. 2 (August 1990): 195–99. http://dx.doi.org/10.1016/0095-8956(90)90027-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography