Academic literature on the topic 'Complex Differential Geometry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Complex Differential Geometry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Complex Differential Geometry"
Beggs, Edwin, and S. Paul Smith. "Non-commutative complex differential geometry." Journal of Geometry and Physics 72 (October 2013): 7–33. http://dx.doi.org/10.1016/j.geomphys.2013.03.018.
Full textWang, Shuguang. "Twisted complex geometry." Journal of the Australian Mathematical Society 80, no. 2 (April 2006): 273–96. http://dx.doi.org/10.1017/s1446788700013112.
Full textDonaldson, S. "DIFFERENTIAL GEOMETRY OF COMPLEX VECTOR BUNDLES." Bulletin of the London Mathematical Society 21, no. 1 (January 1989): 104–6. http://dx.doi.org/10.1112/blms/21.1.104.
Full textDonaldson, S. K. "Some Numerical Results in Complex Differential Geometry." Pure and Applied Mathematics Quarterly 5, no. 2 (2009): 571–618. http://dx.doi.org/10.4310/pamq.2009.v5.n2.a2.
Full textMcKay, B. "Complex nonlinear ordinary differential equations and geometry." Journal of Physics: Conference Series 55 (December 1, 2006): 165–70. http://dx.doi.org/10.1088/1742-6596/55/1/016.
Full textAnco, Stephen, John Bland, and Michael Eastwood. "Some Penrose transforms in complex differential geometry." Science in China Series A: Mathematics 49, no. 11 (November 2006): 1599–610. http://dx.doi.org/10.1007/s11425-006-2066-5.
Full textOkonek, Christian. "Book Review: Differential geometry of complex vector bundles." Bulletin of the American Mathematical Society 19, no. 2 (October 1, 1988): 528–31. http://dx.doi.org/10.1090/s0273-0979-1988-15731-x.
Full textMuñoz Velázquez, Vicente. "The Hodge conjecture: The complications of understanding the shape of geometric spaces." Mètode Revista de difusió de la investigació, no. 8 (June 5, 2018): 51. http://dx.doi.org/10.7203/metode.0.8253.
Full textEveritt, W. N., and L. Markus. "Complex symplectic geometry with applications to ordinary differential operators." Transactions of the American Mathematical Society 351, no. 12 (July 20, 1999): 4905–45. http://dx.doi.org/10.1090/s0002-9947-99-02418-6.
Full textAleksandrov, A. G. "Residues of Logarithmic Differential Forms in Complex Analysis and Geometry." Analysis in Theory and Applications 30, no. 1 (June 2014): 34–50. http://dx.doi.org/10.4208/ata.2014.v30.n1.3.
Full textDissertations / Theses on the topic "Complex Differential Geometry"
Lam, Tsz-fung. "Nesting of 2D parts with complex geometry and material heterogeneity." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/HKUTO/record/B39557005.
Full textLam, Tsz-fung, and 林子峰. "Nesting of 2D parts with complex geometry and material heterogeneity." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39557005.
Full textBrown, James Ryan. "Complex and almost-complex structures on six dimensional manifolds." Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4466.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (February 26, 2007) Vita. Includes bibliographical references.
Kirchhoff-Lukat, Charlotte Sophie. "Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/283007.
Full textHsu, Siu-fai, and 許紹輝. "Geometric quantization of fermions and complex bosons." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hub.hku.hk/bib/B50434500.
Full textpublished_or_final_version
Mathematics
Master
Master of Philosophy
Ugail, Hassan. "Time-dependent shape parameterisation of complex geometry using PDE surfaces." Nashboro Press, 2004. http://hdl.handle.net/10454/2686.
Full textAlves, Leonardo Soriani 1991. "Geometria complexa generalizada e tópicos relacionados." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/305829.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-27T10:27:44Z (GMT). No. of bitstreams: 1 Alves_LeonardoSoriani_M.pdf: 542116 bytes, checksum: b4db821b86b39eb2b221b4f63a4c9829 (MD5) Previous issue date: 2015
Resumo: Estudamos geometria complexa generalizada, que tem como casos particulares as geometrias complexa e simplética. Começamos com os seus fundamentos algébricos num espaço vetorial e transportamos essas noções para variedades. Estudamos o colchete de Courant na soma direta dos fibrados tangente e cotangente de uma variedade, que é essencial para definir a integrabilidade das estruturas complexas generalizadas. Verificamos que em nilvariedades de dimensão 6 sempre existe estrutura complexa generalizada invariante à esquerda, ainda que algumas delas não admitam estrutura complexa ou simplética. Estudamos duas noções de T-dualidade e suas relações com geometria complexa generalizada. Por fim recapitulamos a simetria do espelho para curvas elípticas e obtemos uma manifestação de simetria do espelho através de geometria complexa generalizada
Abstract: We study generalized complex geometry, which encompasses complex and symplectic geometry as particular cases. We begin with the algebraic basics on a vector space and then we transport these concepts to manifolds. We study the Courant bracket on the direct sum of tangent and cotangent bundles of a manifold, which is essential to define the integrability of the generalized complex structures. We check that on every $6$ dimensional nilmanifolds there is a left invariant generalized complex structure, even though some of them do not admit complex or symplectic structure. We study two notions of T-dualidade and its relations to generalized complex geometry. We recall mirror symmetry for elliptic curves and derive a manifestation of mirror symmetry from generalized complex geometry
Mestrado
Matematica
Mestre em Matemática
Gabella, Maxime. "The AdS/CFT correspondence and generalized geometry." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:6fd2037e-d0ec-4806-b4db-631eb3693071.
Full textMa, Yilin. "Nonlinear Calderón Problem on Stein Manifolds." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/25757.
Full textLY, KIM HA. "ON TWO APPROACHES FOR PARTIAL DIFFERENTIAL EQUATIONS IN SEVERAL COMPLEX VARIABLES." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423534.
Full textLo scopo di questa tesi è quello di presentare l'influenza di notazioni di " tipo'' su equazioni differenziali alle derivate parziali in più variabili complesse. Le notazioni di "tipo" qui includono il finito e il tipo di infinito, nel senso di Hormander, e D'Angelo. In particolare, nella prima parte, a condizione tipo finito, prenderemo in considerazione l'esistenza e l'unicità delle soluzioni per il problema del valore iniziale associato ai operatore calore δs+□b su varietà CR. Il tipo finito m è la condizione fondamentale per fornire stime puntuali del nucleo del calore attraverso la teoria degli operatori integrali singolari sviluppate da E. Stein e A. Nagel, D.H. Phong e E. Stein. Prossimo, nella seconda parte, introdurremo un nuovo metodo per indagare la equazioni Cauchy-Riemann δu = φ. Le soluzioni sono costruite con via metodo rappresentazione integrale. Inoltre, mostreremo che il nuovo metodo qui viene applicato anche ben al complesso operatore Monge-Ampère (ddc)n inCn. Il punto principale è che il nostro metodo può passare alcuni risultati noti dal caso di tipo finito al tipo di infinito.
Books on the topic "Complex Differential Geometry"
Kobayashi, Shoshichi. Complex differential geometry. 2nd ed. Basel: Birkhäuser, 1987.
Find full textEbeling, Wolfgang, Klaus Hulek, and Knut Smoczyk, eds. Complex and Differential Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20300-8.
Full textSiu, Yum Tong, ed. Complex differential geometry and nonlinear differential equations. Providence, Rhode Island: American Mathematical Society, 1986. http://dx.doi.org/10.1090/conm/049.
Full textChavel, Isaac, and Hershel M. Farkas, eds. Differential Geometry and Complex Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69828-6.
Full text1943-, Greene Robert Everist, Yau Shing-Tung 1949-, and Summer Research Institute on Differential Geometry (1990 : University of California, Los Angeles), eds. Differential geometry. Providence, R.I: American Mathematical Society, 1993.
Find full textDifferential geometry of complex vector bundles. [Tokyo]: Iwanami Shoten, 1987.
Find full textSummer Research Institute on Several Complex Variables and Complex Geometry (1989 University of California, Santa Cruz). Several complex variables and complex geometry. Edited by Bedford Eric 1947- and American Mathematical Society. Providence, R.I: American Mathematical Society, 1991.
Find full text1946-, Carlson James A., Clemens C. Herbert 1939-, and Morrison David R. 1955-, eds. Complex geometry and Lie theory. Providence, R.I: American Mathematical Society, 1991.
Find full textChriss, Neil. Representation theory and complex geometry. Boston: Birkhäuser, 1997.
Find full textWells, Raymond O'Neil. Differential analysis on complex manifolds. 3rd ed. New York, NY
Book chapters on the topic "Complex Differential Geometry"
Greene, Robert E. "Complex differential geometry." In Lecture Notes in Mathematics, 228–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0078614.
Full textShiffman, Bernard, and Andrew John Sommese. "Complex Differential Geometry." In Vanishing Theorems on Complex Manifolds, 1–25. Boston, MA: Birkhäuser Boston, 1985. http://dx.doi.org/10.1007/978-1-4899-6680-3_1.
Full textWells, Raymond O. "Differential Geometry." In Differential and Complex Geometry: Origins, Abstractions and Embeddings, 17–30. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58184-2_2.
Full textHess, Peter O., Mirko Schäfer, and Walter Greiner. "Pseudo-complex Differential Geometry." In Pseudo-Complex General Relativity, 217–45. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25061-8_7.
Full textMerker, Joël. "Rationality in Differential Algebraic Geometry." In Complex Geometry and Dynamics, 157–209. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20337-9_8.
Full textBauer, Ingrid, Fabrizio Catanese, and Roberto Pignatelli. "Surfaces of general type with geometric genus zero: a survey." In Complex and Differential Geometry, 1–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20300-8_1.
Full textKühnel, Marco. "Complete Kähler-Einstein manifolds." In Complex and Differential Geometry, 171–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20300-8_10.
Full textKureš, Miroslav. "Fixed point subalgebras of Weil algebras: from geometric to algebraic questions." In Complex and Differential Geometry, 183–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20300-8_11.
Full textLee, Yng-Ing. "Self-similar solutions and translating solutions." In Complex and Differential Geometry, 193–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20300-8_12.
Full textLeitner, Felipe. "Aspects of conformal holonomy." In Complex and Differential Geometry, 205–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20300-8_13.
Full textConference papers on the topic "Complex Differential Geometry"
Gilkey, Peter B., and Raina Ivanova. "Complex IP pseudo-Riemannian algebraic curvature tensors." In PDEs, Submanifolds and Affine Differential Geometry. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2002. http://dx.doi.org/10.4064/bc57-0-13.
Full textDjorić, Mirjana, and Masafumi Okumura. "CR submanifolds of maximal CR dimension in complex manifolds." In PDEs, Submanifolds and Affine Differential Geometry. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2002. http://dx.doi.org/10.4064/bc57-0-6.
Full textMATSUZOE, Hiroshi. "COMPLEX STATISTICAL MANIFOLDS AND COMPLEX AFFINE IMMERSIONS." In 4th International Colloquium on Differential Geometry and its Related Fields. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814719780_0012.
Full textRyan, Patrick J. "INTRINSIC PROPERTIES OF REAL HYPERSURFACES IN COMPLEX SPACE FORMS." In Differential Geometry in Honor of Professor S S Chern. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792051_0022.
Full textLI, SHI-JIE. "SUBMANIFOLDS WITH POINTWISE PLANAR NORMAL SECTIONS IN A COMPLEX PROJECTIVE SPACE." In Differential Geometry in Honor of Professor S S Chern. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792051_0012.
Full textANDO, Naoya. "COMPLEX CURVES AND ISOTROPIC MINIMAL SURFACES IN HYPERKÄHLER 4-MANIFOLDS." In 6th International Colloquium on Differential Geometry and its Related Fields. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811206696_0004.
Full textDimiev, Stancho, and Kouei Sekigawa. "Topics in Complex Analysis, Differential Geometry and Mathematical Physics." In Third International Workshop on Complex Structures and Vector Fields. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814529518.
Full textARVANITOYEORGOS, Andreas, Yusuke SAKANE, and Marina STATHA. "HOMOGENEOUS EINSTEIN METRICS ON COMPLEX STIEFEL MANIFOLDS AND SPECIAL UNITARY GROUPS." In 5th International Colloquium on Differential Geometry and its Related Fields. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813220911_0001.
Full textMAEDA, SADAHIRO, and TOSHIAKI ADACHI. "DIFFERENTIAL GEOMETRY OF CIRCLES IN A COMPLEX PROJECTIVE SPACE." In Proceedings of the Second Meeting. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810038_0013.
Full textBAO, Tuya, and Toshiaki ADACHI. "EXTRINSIC SHAPES OF TRAJECTORIES ON REAL HYPERSURFACES OF TYPE (B) IN A COMPLEX HYPERBOLIC SPACE." In 6th International Colloquium on Differential Geometry and its Related Fields. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811206696_0012.
Full textReports on the topic "Complex Differential Geometry"
Snyder, Victor A., Dani Or, Amos Hadas, and S. Assouline. Characterization of Post-Tillage Soil Fragmentation and Rejoining Affecting Soil Pore Space Evolution and Transport Properties. United States Department of Agriculture, April 2002. http://dx.doi.org/10.32747/2002.7580670.bard.
Full text