Academic literature on the topic 'Complex coacervate'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Complex coacervate.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Complex coacervate"
Kim, Sangsik, Jun Huang, Yongjin Lee, Sandipan Dutta, Hee Young Yoo, Young Mee Jung, YongSeok Jho, Hongbo Zeng, and Dong Soo Hwang. "Complexation and coacervation of like-charged polyelectrolytes inspired by mussels." Proceedings of the National Academy of Sciences 113, no. 7 (February 1, 2016): E847—E853. http://dx.doi.org/10.1073/pnas.1521521113.
Full textFurlani, Franco, Pietro Parisse, and Pasquale Sacco. "On the Formation and Stability of Chitosan/Hyaluronan-Based Complex Coacervates." Molecules 25, no. 5 (February 27, 2020): 1071. http://dx.doi.org/10.3390/molecules25051071.
Full textDompé, Marco, Francisco Javier Cedano-Serrano, Mehdi Vahdati, Dominique Hourdet, Jasper van der Gucht, Marleen Kamperman, and Thomas E. Kodger. "Hybrid Complex Coacervate." Polymers 12, no. 2 (February 4, 2020): 320. http://dx.doi.org/10.3390/polym12020320.
Full textLu, Tiemei, and Evan Spruijt. "Multiphase Complex Coacervate Droplets." Journal of the American Chemical Society 142, no. 6 (January 20, 2020): 2905–14. http://dx.doi.org/10.1021/jacs.9b11468.
Full textVoets, Ilja K., Arie de Keizer, and Martien A. Cohen Stuart. "Complex coacervate core micelles." Advances in Colloid and Interface Science 147-148 (March 2009): 300–318. http://dx.doi.org/10.1016/j.cis.2008.09.012.
Full textNguyen Le, My Lan, Hang Nga Le Thi, and Vinh Tien Nguyen. "Hydrolyzed Karaya Gum: Gelatin Complex Coacervates for Microencapsulation of Soybean Oil and Curcumin." Journal of Food Quality 2021 (April 14, 2021): 1–10. http://dx.doi.org/10.1155/2021/5593065.
Full textHofs, B., A. de Keizer, S. van der Burgh, F. A. M. Leermakers, M. A. Cohen Stuart, P. E. Millard, and A. H. E. Müller. "Complex coacervate core micro-emulsions." Soft Matter 4, no. 7 (2008): 1473. http://dx.doi.org/10.1039/b802148a.
Full textWang, Qifeng, and Joseph B. Schlenoff. "The Polyelectrolyte Complex/Coacervate Continuum." Macromolecules 47, no. 9 (April 28, 2014): 3108–16. http://dx.doi.org/10.1021/ma500500q.
Full textMason, Alexander F., and Jan C. M. van Hest. "Multifaceted cell mimicry in coacervate-based synthetic cells." Emerging Topics in Life Sciences 3, no. 5 (September 4, 2019): 567–71. http://dx.doi.org/10.1042/etls20190094.
Full textDompé, Marco, Francisco J. Cedano-Serrano, Mehdi Vahdati, Ugo Sidoli, Olaf Heckert, Alla Synytska, Dominique Hourdet, et al. "Tuning the Interactions in Multiresponsive Complex Coacervate-Based Underwater Adhesives." International Journal of Molecular Sciences 21, no. 1 (December 21, 2019): 100. http://dx.doi.org/10.3390/ijms21010100.
Full textDissertations / Theses on the topic "Complex coacervate"
Sureka, Hursh Vardhan. "Protein immobilization using complex coacervates and complex coacervate thin films." Thesis, Massachusetts Institute of Technology, 2021. https://hdl.handle.net/1721.1/130824.
Full textCataloged from the official PDF of thesis.
Includes bibliographical references.
Enzymes can enable a wide and growing range of chemistries, often outperforming synthetic catalysts. However, enzymes must often be converted to heterogeneous catalysts. Protein immobilization enables this conversion and can enhance the stability of enzymes. Complex coacervates are highly effective at encapsulating and stabilizing enzymes. This thesis demonstrates the use of complex coacervate thin films for the immobilization of enzymes and systematically probes methods to enhance the performance of these materials. The first study presents a proof-of-concept demonstration of complex coacervate thin films for the synthesis of functional biomaterials. The immobilization method itself is all-aqueous, reducing the likelihood of enzyme denaturation, and facile, only requiring two steps: coating followed by crosslinking.
A model biosensor was synthesized and demonstrated to have both high sensitivity and selectivity, and the immobilization method imparted increased thermal stability on the enzyme. From here, two directions were explored: how protein properties affect their coacervation behavior and optimizing the performance of the complex coacervate thin films. The second study aims to quantify the surface charge distribution or the "patchiness" of proteins and relate this to their complexation behavior. A patchiness parameter that averaged pair correlations between neighboring points on the protein surface was shown to correlate with the coacervation behavior of proteins with greater patchiness favoring the formation of complexes. Further work will enable this parameter to be incorporated with other protein properties in order to create robust predictive algorithms for protein-polymer coacervation.
The third and fourth studies aimed to enhance the performance and properties of complex coacervate thin films. The third study probed whether the morphology of these composite materials could be controlled and found that morphologies varied greatly as a function of the polyelectrolyte strength and the loading of the encapsulated molecule. The strongest interactions led to precipitation, but weaker interactions led to micellization in both solution and the films. The fourth study aimed to understand how various polymer properties, including polyelectrolyte strength and monomer conformational freedom, affect the performance of complex coacervate thin films. Strong interactions were found to favor greater catalytic activity but lower stability, while weaker interactions favored greater stability.
by Hursh Vardhan Sureka.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Chemical Engineering
Sampaio, Nayara Syndel Franco Soares. "Estudo da formaÃÃo de coacervatos com nitrosilos complexos de rutÃnio." Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11049.
Full textO trabalho reporta o estudo da formaÃÃo de um novo coacervato preparado a partir da mistura de soluÃÃes aquosas de polifosfato de sÃdio e nitrosilos complexos de rutÃnio. Foram utilizados os nitrosilos complexos cis-[Ru(bpy)2(L)(NO)]n+, com L=1-metilimidazol (MeimN), imidazol (ImN) ou sulfito (SO32-). A formaÃÃo dos coacervatos se mostrou possÃvel alterando a metodologia tradicional pela adiÃÃo de etanol. Com relaÃÃo à caracterizaÃÃo dos coacervatos a espectroscopia eletrÃnica na regiÃo do UV-Vis mostra as bandas caracterÃsticas dos complexos indicando a presenÃa deles nos coacervatos. A espectroscopia de absorÃÃo na regiÃo do infravermelho indica que apÃs a coacervaÃÃo, o oxido nÃtrico (NO) mantÃm-se coordenado ao complexo na forma NO+ sugerindo que os coacervatos nÃo interferem no estado de oxidaÃÃo do NO nos complexos. Os espectros de ressonÃncia magnÃtica nuclear de 1H apontam a presenÃa dos ligantes (L) que fazem parte da esfera de coordenaÃÃo dos complexos, mais uma vez sugerindo a presenÃa dos complexos nos coacervatos. Os resultados mostram que à possÃvel controlar a quantidade de complexo no coacervato simplesmente aumentando a quantidade de complexo no inÃcio da mistura. Os resultados mostram que as soluÃÃes de polifosfato e os coacervatos exercem um efeito muito interessante no processo de conversÃo nitrosilo-nitro. Em soluÃÃes de polifosfato o processo de conversÃo ocorre lentamente em pH 7,0 enquanto nos coacervatos o complexo permanece estÃvel por atà 12 meses sem sofrer conversÃo. O processo de conversÃo foi monitorado por espectroscopia eletrÃnica a regiÃo do UV-Vis pelo deslocamento da banda de transferÃncia de carga metal-ligante (MLCT) de 332nm para 450nm. A liberaÃÃo do Ãxido nÃtrico foi estudada nos coacervatos em testes baseados na reduÃÃo fotoquÃmica e na reduÃÃo quÃmica. Em ambos a liberaÃÃo foi possÃvel mostrando que os complexos nos coacervatos mantem sua capacidade de liberadores de NO.
This work reports the preparation of a new coacervate by mixture of aqueous solution of sodium polyphosphate and nitrosyl ruthenium complexes. The complexes used were: cis-[Ru(bpy)2(L)(NO)]n+, where L = 1-methylimidazole (MeimN), imidazole (ImN) and sulfite (SO32-). The preparation of the coacervates is possible only when ethanol is used. In accord of characterization of the coacervates the electronic absorption spectroscopy (UV-Vis) shows the characteristics bands of complex indicating their presence in the coacervates. Even after the preparation of the coacervates the infrared spectra show the presence of the NO+ group. Therefore, the preparation doesnât change the form (oxidation state) of the NO ligand attached in the complexes. The nuclear magnetic resonance (NMR) 1H spectra have showed the signals of the hydrogen of the ligands into the coordination sphere of the complexes. Several compositions to coacervates are possible only changing the initial concentration of the complexes into mixture. The aqueous solution of sodium polyphosphate and the coacervates have showed interesting features related to conversion process nitrosyl-nitro. The conversion process nitrosyl-nitro occurs slowly into aqueous solution of the sodium polyphosphate at pH 7,0 but into the coacervates thereâs no evidence of conversion process nitrosyl-nitro during 12 months. The shifting of the metal-ligand charge-transfer (MLCT) band from 332nm to 450nm was used to evaluated the conversion process nitrosyl-nitro by electronic absorption spectroscopy (UV-Vis). The release of the nitric oxide in the coacervates was induced by photochemical and chemical reduction. In both situations the release occurred and the complexes showed the properties of the nitric oxide releasing.
Kaur, Sarbjit. "Adhesive complex coacervate inspired by the sandcastle worm as a sealant for fetoscopic defects." Thesis, The University of Utah, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3704736.
Full textInspired by the Sandcastle Worm, biomimetic of the water-borne adhesive was developed by complex coacervation of the synthetic copolyelectrolytes, mimicking the chemistries of the worm glue. The developed underwater adhesive was designed for sealing fetal membranes after fetoscopic surgery in twin-to-twin transfusion syndrome (TTTS) and sealing neural tissue of a fetus in aminiotic sac for spina bifida condition.
Complex coacervate with increased bond strength was created by entrapping polyethylene glycol diacrylate (PEG-dA) monomer within the cross-linked coacervate network. Maximum shear bond strength of ~ 1.2 MPa on aluminum substrates was reached. The monomer-filled coacervate had complex flow behavior, thickening at low shear rates and then thinning suddenly with a 16-fold drop in viscosity at shear rates near 6 s-1. The microscale structure of the complex coacervates resembled a three-dimensional porous network of interconnected tubules. This complex coacervate adhesive was used in vitro studies to mimic the uterine wall-fetal membrane interface using a water column with one end and sealed with human fetal membranes and poultry breast, and a defect was created with an 11 French trocar. The coacervate adhesive in conjunction with the multiphase adhesive was used to seal the defect. The sealant withstood an additional traction of 12 g for 30−60 minutes and turbulence of the water column without leakage of fluid or slippage. The adhesive is nontoxic when in direct contact with human fetal membranes in an organ culture setting.
A stable complex coacervate adhesive for long-term use in TTTS and spina bifida application was developed by methacrylating the copolyelectrolytes. The methacrylated coacervate was crosslinked chemically for TTTS and by photopolymerization for spina bifida. Tunable mechanical properties of the adhesive were achieved by varying the methacrylation of the polymers. Varying the amine to phosphate (A/P) ratio in the coacervate formation generated a range of viscosities. The chemically cured complex coacervate, with sodium (meta) periodate crosslinker, was tested in pig animal studies, showing promising results. The adhesive adhered to the fetal membrane tissue, with maximum strength of 473 ± 82 KPa on aluminum substrates. The elastic modulus increased with increasing methacrylation on both the polyphosphate and polyamine within the coacervate. Photopolymerized complex coacervate adhesive was photocured using Eosin-Y and treiethanolamine photoinitiators, using a green laser diode. Soft substrate bond strength increased with increasing PEG-dA concentration to a maximum of ~90 kPa. The crosslinked complex coacervate adhesives with PEG networks swelled less than 5% over 30 days in physiological conditions. The sterile glue was nontoxic, deliverable through a fine cannula, and stable over a long time period. Preliminary animal studies show a novel innovative method to seal fetal membrane defects in humans, in utero.
Heimonen, Johanna. "Synthesis of a polar conjugated polythiophene for 3D-printing of complex coacervates." Thesis, Linköpings universitet, Laboratoriet för organisk elektronik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177396.
Full textExamensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet
ZHANG, HUAN. "EFFECTS OF SOLUTION COMPOSITION (SALTS, PH, DIELECTRIC CONSTANT) ON POLYELECTROLYTE COMPLEX (PEC) FORMATION AND THEIR PROPERTIES." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1543848436422118.
Full textMiranda, Tavares Guilherme. "Coacervats de B-lactoglobuline et de lactoferrine : caractérisation et application potentielle pour l'encapsulation de bioactifs." Thesis, Rennes, Agrocampus Ouest, 2015. http://www.theses.fr/2015NSARB268/document.
Full textEncapsulation of bioactives has been used by the food industries for decades and represents a great potential for the development of innovative products. Given their versatile functional properties, milk proteins in particular from whey have been used for encapsulation purposes using several encapsulation techniques. In parallel, recent studies showed the ability of oppositely charged food proteins to co-assemble into microspheres through complex coacervation. Understanding the driving forces governing heteroprotein coacervation process and how it is affected by the presence of ligands (bioactives) is a prerequisite to use heteroprotein coacervates as encapsulation device. In this context, the objective of my thesis work was to understand the mechanism of complex coacervation between -lactoglobulin (-LG) and lactoferrin (LF) in the absence and presence of small ligands. The conditions of optimal ¿-LG - LF coacervation were found at pH range 5.4-6 with a molar excess of ¿-LG. RemarkabAt molecular level, the presence of two binding sites on LF for -LG was evidenced. Moreover, the heterocomplexes such as pentamers LF(-LG2)2 and quite large complexes (LF-LG2)n were identified as the constituent molecular species of the coacervate phase. To evaluate the -LG - LF complex coacervation in the presence of small ligands, models of hydrophobic (ANS) and hydrophilic molecules (folic acid) were used. Although under the experimental conditions tested the small ligands did not interact with -LG, both interacted with LF inducing its self-association into nanoparticles. High relati
Wadhawan, Kirty. "Factors Influencing the Formation of Zein and Gum Arabic Complex Coacervates." Thesis, North Dakota State University, 2014. https://hdl.handle.net/10365/27345.
Full textNorth Dakota Corn and Soybean Councils
Tavares, Guilherme Miranda. "β-lactoglobulin and lactoferrin complex coacervates: Characterization and putative applications as encapsulation device." Universidade Federal de Viçosa, 2015. http://www.locus.ufv.br/handle/123456789/7801.
Full textMade available in DSpace on 2016-06-06T15:05:41Z (GMT). No. of bitstreams: 1 texto completo.pdf: 3560441 bytes, checksum: 82236d1734bfb37faef9de46c5042ddf (MD5) Previous issue date: 2015-10-08
Conselho Nacional de Desenvolvimento Científico e Tecnológico
A encapsulação de moléculas bioativas é utilizada há décadas pelas industrias de alimentos e representa uma real oportunidade de desenvolvimento de produtos inovadores. Dada a sua versatilidade funcional, as proteínas do leite, em particular as proteínas do soro de leite, tem sido utilizadas para fins de encapsulação por meio de diferentes técnicas. Complementarmente, estudos recentes mostraram a habilidade de proteínas alimentares de carga oposta de se co-associar formando micro-esferas através da coacervação complexa. Compreender as forças que governam o processo de coacervação de hetero-proteínas e o efeito da presença de pequenos ligantes (bioativos) são pré-requisitos para o uso de coacervados complexos de hetero-proteínas como agentes de encapsulação. Neste contexto, o objetivo do meu projeto de tese foi entender o mecanismo de coacervação complexa entre β-lactoglobulina (β-LG) e lactoferrina (LF) na ausência ou na presença de pequenos ligantes. As condições ótimas para a coacervação entre β-LG e LF foram identificadas como sendo entre os pH 5.4 – 6.0 e em presença de um excesso molar de β-LG. Interessantemente, LF demonstrou uma seletividade de coacervação com a β-LG A, a isoforma ligeiramente mais eletronegativa. A nivel molecular, a presença de dois sítios de interação da β-LG com a LF foram evidenciados. Em complemento, hetero-complexos como o pentâmero LF(β-LG 2 ) 2 e outros complexos maiores (LFβ- LG 2 ) n foram identificados como constituintes da fase coacervada. Para avaliar o efeito da presença de pequenos ligantes na coacervação complexa entre β-LG e LF, foram usados modelos de moléculas hidrofóbica (ANS) e hidrofílica (ácido fólico). Embora nas condições experimentais os pequenos ligantes não tenham interagido com a β-LG, ambos interagiram com a LF induzindo sua auto-associação em nano- partículas. Concentrações relativamente elevadas de pequenos ligantes afetaram a interação entre as duas proteínas levando a uma transição entre os regimes de coacervação e agregação.
Le bénéfice de l’encapsulation des molécules bioactives a séduit les industries agroalimentaires depuis plusieurs décennies et constitue toujours un levier de développement pour des produits innovants. Plus récemment des études ont montré la capacité de protéines alimentaires de charge opposée à s’assembler en microsphères par coacervation complexe. La compréhension des forces gouvernant le processus de coacervation complexe entre protéines et l’influence exercée par la présence de petits ligands (bioactifs) demeurent des prérequis pour l’utilisation des coacervats complexes de protéines comme agent d’encapsulation. Dans ce contexte, l’objectif de mon projet de thèse a été de comprendre le mécanisme de coacervation complexe entre une protéine chargée négativement, la β-lactoglobuline (β-LG), et une protéine chargée positivement, la lactoferrine (LF), issues du lactosérum en absence et en présence de petits ligands. Les conditions optimales de coacervation entre la β-LG et la LF ont été définies entre pH 5.4 et 6.0 ainsi qu’en présence d’un excès de β-LG. La LF a présenté une coacervation préférentielle avec le variant A de la β-LG qui se distingue du variant B par la substitution de 2 acides aminés. Au niveau moléculaire, deux sites de fixation de la β-LG sur la LF ont été identifiés. En outre, par la mesure d’une part des coefficients de diffusion rotationnel et d’autre part de la cinétique de diffusion des entités moléculaires constituant les coacervats, il est suggéré que ces derniers sont formés à partir de β-LG libre, de pentamère, LF(β- LG 2 ) 2 , ainsi que des entités plus larges, (LFβ-LG 2 ) n . Afin d’évaluer l’effet de la présence de petits ligands sur la coacervation complexe entre la β-LG et la LF, des ligands modèles, l’un hydrophobe (ANS), l’autre hydrophile (acide folique) ont été utilisés. Dans les conditions expérimentales testées ces deux ligands n’ont pas d’affinité pour la β-LG, mais après interaction avec la LF ils sont capables d’induire son auto-association en nanoparticules. En concentrations élevées de ligands, la coacervation complexe entre la β-LG et la LF est perturbée et une transition vers un régime d’agrégation est observée.
Encapsulation of bioactives has been used by the food industries for decades and represents a great potential for the development of innovative products. Given their versatile functional properties, milk proteins in particular from whey have been used for encapsulation purposes using several encapsulation techniques. In parallel, recent studies showed the ability of oppositely charged food proteins to co-assemble into microspheres through complex coacervation. Understanding the driving forces governing heteroprotein coacervation process and how it is affected by the presence of ligands (bioactives) is a prerequisite to use heteroprotein coacervates as encapsulation device. In this context, the objective of my thesis work was to understand the mechanism of complex coacervation between β-lactoglobulin (β-LG) and lactoferrin (LF) in the absence and presence of small ligands. The conditions of optimal β-LG - LF coacervation were found at pH range 5.4-6 with a molar excess of β-LG. Remarkably, LF showed selective coacervation with β-LG A, the slightly more negative isoform. At molecular level, the presence of two binding sites on LF for β-LG was evidenced. Moreover, the heterocomplexes such as pentamers LF(β-LG 2 ) 2 and quite large complexes (LFβ-LG 2 )n were identified as the constituent molecular species of the coacervate phase. To evaluate the β-LG - LF complex coacervation in the presence of small ligands, models of hydrophobic (ANS) and hydrophilic molecules (folic acid) were used. Although under the experimental conditions tested the small ligands did not interact with β-LG, both interacted with LF inducing its self- association into nanoparticles. High relative concentrations of small ligands affected the interaction between the two proteins leading to a transition from coacervation to aggregation regime.
Sampaio, Nayara Syndel Franco Soares. "Estudo da formação de coacervatos com nitrosilos complexos de rutênio." reponame:Repositório Institucional da UFC, 2013. http://www.repositorio.ufc.br/handle/riufc/14135.
Full textSubmitted by Daniel Eduardo Alencar da Silva (dealencar.silva@gmail.com) on 2014-11-26T21:13:16Z No. of bitstreams: 1 2013_dis_nsfssampaio.pdf: 6573398 bytes, checksum: df38cc1de438d15d468f16728faeb5ec (MD5)
Approved for entry into archive by José Jairo Viana de Sousa(jairo@ufc.br) on 2015-11-25T12:31:59Z (GMT) No. of bitstreams: 1 2013_dis_nsfssampaio.pdf: 6573398 bytes, checksum: df38cc1de438d15d468f16728faeb5ec (MD5)
Made available in DSpace on 2015-11-25T12:31:59Z (GMT). No. of bitstreams: 1 2013_dis_nsfssampaio.pdf: 6573398 bytes, checksum: df38cc1de438d15d468f16728faeb5ec (MD5) Previous issue date: 2013
This work reports the preparation of a new coacervate by mixture of aqueous solution of sodium polyphosphate and nitrosyl ruthenium complexes. The complexes used were: cis-[Ru(bpy)2(L)(NO)]n+, where L = 1-methylimidazole (MeimN), imidazole (ImN) and sulfite (SO32-). The preparation of the coacervates is possible only when ethanol is used. In accord of characterization of the coacervates the electronic absorption spectroscopy (UV-Vis) shows the characteristics bands of complex indicating their presence in the coacervates. Even after the preparation of the coacervates the infrared spectra show the presence of the NO+ group. Therefore, the preparation doesn’t change the form (oxidation state) of the NO ligand attached in the complexes. The nuclear magnetic resonance (NMR) 1H spectra have showed the signals of the hydrogen of the ligands into the coordination sphere of the complexes. Several compositions to coacervates are possible only changing the initial concentration of the complexes into mixture. The aqueous solution of sodium polyphosphate and the coacervates have showed interesting features related to conversion process nitrosyl-nitro. The conversion process nitrosyl-nitro occurs slowly into aqueous solution of the sodium polyphosphate at pH 7,0 but into the coacervates there’s no evidence of conversion process nitrosyl-nitro during 12 months. The shifting of the metal-ligand charge-transfer (MLCT) band from 332nm to 450nm was used to evaluated the conversion process nitrosyl-nitro by electronic absorption spectroscopy (UV-Vis). The release of the nitric oxide in the coacervates was induced by photochemical and chemical reduction. In both situations the release occurred and the complexes showed the properties of the nitric oxide releasing.
O trabalho reporta o estudo da formação de um novo coacervato preparado a partir da mistura de soluções aquosas de polifosfato de sódio e nitrosilos complexos de rutênio. Foram utilizados os nitrosilos complexos cis-[Ru(bpy)2(L)(NO)]n+, com L=1-metilimidazol (MeimN), imidazol (ImN) ou sulfito (SO32-). A formação dos coacervatos se mostrou possível alterando a metodologia tradicional pela adição de etanol. Com relação à caracterização dos coacervatos a espectroscopia eletrônica na região do UV-Vis mostra as bandas características dos complexos indicando a presença deles nos coacervatos. A espectroscopia de absorção na região do infravermelho indica que após a coacervação, o oxido nítrico (NO) mantém-se coordenado ao complexo na forma NO+ sugerindo que os coacervatos não interferem no estado de oxidação do NO nos complexos. Os espectros de ressonância magnética nuclear de 1H apontam a presença dos ligantes (L) que fazem parte da esfera de coordenação dos complexos, mais uma vez sugerindo a presença dos complexos nos coacervatos. Os resultados mostram que é possível controlar a quantidade de complexo no coacervato simplesmente aumentando a quantidade de complexo no início da mistura. Os resultados mostram que as soluções de polifosfato e os coacervatos exercem um efeito muito interessante no processo de conversão nitrosilo-nitro. Em soluções de polifosfato o processo de conversão ocorre lentamente em pH 7,0 enquanto nos coacervatos o complexo permanece estável por até 12 meses sem sofrer conversão. O processo de conversão foi monitorado por espectroscopia eletrônica a região do UV-Vis pelo deslocamento da banda de transferência de carga metal-ligante (MLCT) de 332nm para 450nm. A liberação do óxido nítrico foi estudada nos coacervatos em testes baseados na redução fotoquímica e na redução química. Em ambos a liberação foi possível mostrando que os complexos nos coacervatos mantem sua capacidade de liberadores de NO.
Newton, David William. "Physical studies of including drugs within complex coacervates of gelatin-acacia to produce microglobules for use in parenteral pharmaceutical dosage forms /." Ann Arbor,Mich. : University Microfilms International, 1992. http://www.gbv.de/dms/bs/toc/016106555.pdf.
Full textBook chapters on the topic "Complex coacervate"
Peker, Sümer, Şerife Helvacı, and Handan Esen. "UREA Permeation through Complex Coacervate Membranes." In Biomedical Science and Technology, 73–80. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5349-6_7.
Full textBurges, D. J., and J. E. Carless. "Complex Coacervate Formation Between Acid- and Alkaline-Processed Gelatins." In ACS Symposium Series, 251–60. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0302.ch021.
Full textFang, Liang, Honglei Xi, and Dongmei Cun. "Formation of Ion Pairs and Complex Coacervates." In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement, 175–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45013-0_13.
Full textDevi, Nirmala, Chayanika Deka, Prajnya Nath, and Dilip Kumar Kakati. "Encapsulation of Theophylline in Gelatin A–Pectin Complex Coacervates." In Advances in Experimental Medicine and Biology, 63–74. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7572-8_6.
Full textHuisinga, Lisa R., and Robert Y. Lochhead. "Investigation of the Structure of Polyelectrolyte-Based Complex Coacervates and the Effects of Electrolyte Order of Addition." In ACS Symposium Series, 97–122. Washington, DC: American Chemical Society, 2007. http://dx.doi.org/10.1021/bk-2007-0961.ch005.
Full textBlocher McTigue, Whitney C., and Sarah L. Perry. "Incorporation of proteins into complex coacervates." In Methods in Enzymology. Elsevier, 2020. http://dx.doi.org/10.1016/bs.mie.2020.06.006.
Full textTurgeon, Sylvie L., and Sandra I. Laneuville. "Protein + Polysaccharide Coacervates and Complexes." In Modern Biopolymer Science, 327–63. Elsevier, 2009. http://dx.doi.org/10.1016/b978-0-12-374195-0.00011-2.
Full textSchmitt, C., L. Aberkane, and C. Sanchez. "Protein–polysaccharide complexes and coacervates." In Handbook of Hydrocolloids, 420–76. Elsevier, 2009. http://dx.doi.org/10.1533/9781845695873.420.
Full textKöse, Merve D., Oguz Bayraktar, and Özge K. Heinz. "Application of complex coacervates in controlled delivery." In Design and Development of New Nanocarriers, 475–507. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-813627-0.00013-2.
Full textBrzozowska, Agata Maria. "On the Use of Complex Coacervates for Encapsulation." In Polymer Capsules, 119–70. Jenny Stanford Publishing, 2019. http://dx.doi.org/10.1201/9780429428739-4.
Full text