Dissertations / Theses on the topic 'COMPLES NETWORK'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'COMPLES NETWORK.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
HANOT, RAHUL. "COMMUNITY DTECTION USING FIRE PROPAGATION AND BOUNDARY VERTICES ALGORITHMS." Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2020. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18779.
Full textKleineberg, Kaj Kolja. "Evolution and ecology of the digital world: A complex systems perspective." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/400404.
Full textEsta tesis está dedicada a los retos de un mundo interconectado que ha emergido a partir de la reciente revolución digital en el que servicios digitales se desarrollan y compiten en la ausencia de control central. Por tanto, herramientas, ideas y técnicas de análisis de sistemas complejos son útiles y especialmente adecuadas para describir la evolución y competencia entre redes sociales online. El éxito del Internet ha conectado individuos a escalas sin precedentes y la Web 2.0 promociona hoy en día colaboración global y el intercambio de ideas casi instantáneo. Sin embargo, la dominación de unos pocos poderosos monopolios de información representa un peligro para la libertad de ideas y decisiones de individuos. Por tanto, dos factores son esenciales para un futuro próspero en la era digital: diversidad digital y decentralización. En cuanto al primero, hemos introducido modelos basados en observaciones empíricas que permiten entender mejor la dinámica y las interacciones competitivas de las redes sociales online, los sistemas claves en el cosmos de la Web 2.0. En particular, nuestros descubrimientos revelan las condiciones en las cuales la diversidad digital se puede sostener. Con respecto al segundo, el diseño de arquitecturas descentralizadas contiene retos específicos, entre los que nos dirigimos especialmente a la búsqueda y navegación basada exclusivamente en conocimiento local. Hemos revelado en qué condiciones la existencia de muchas redes interaccionando facilita estas tareas. Afortunadamente, muchos sistemas reales cumplen estas condiciones. Para concluir, desde una perspectiva a nivel de sistema, un futuro próspero en el mundo digital compuesto por un paisaje digital diverso con arquitecturas descentralizadas en constante interacción es posible, pero no seguro. En esta situación, la conciencia, así como la creación de los incentivos adecuados, son retos importantes que nuestra sociedad debe afrontar. Crear conciencia suficiente e incentivos correctos para crear ese futuro sigue siendo un reto para la sociedad.
Lordan, Oriol. "Airline route networks : a complex network approach." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/144526.
Full textPaula, DemÃtrius Ribeiro de. "Dynamics of neural networks and cluster growth in complex networks." Universidade Federal do CearÃ, 2006. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=206.
Full textEste dissertaÃÃo foi dividida em duas partes, na primeira parte nÃs propomos um modelo de crescimento competitivo de gregados em redes complexas para simular a propagaÃÃo de idÃias ou opiniÃes em comunidades. Investigamos como as distribuiÃÃes de tamanhos de agregados variam com a topologia de construÃÃo da rede e com o nÃmero de sementes aleatoriamente dispersas na estrutura. Para tal, analisamos redes do tipo de Erdos-RÃnyi, redes de contato preferencial e a chamada rede Apoloniana. Esta Ãltima apresenta distribuiÃÃes de tamanho de agregado em forma de uma lei de potÃncia com um expoente aproximadamente 1. Resultados similares sÃo observados com as distribuiÃÃes obtidas para as fraÃÃes de votos por candidato Ãs eleiÃÃes proporcionais para deputados no Brasil. Na segunda parte, analisamos o comportamento temporal da atividade neural em redes com caracterÃsticas de mundo pequeno e em redes construÃdas segundo o modelo do contato preferencial. Nesta primeira topologia, estudamos como a sÃrie temporal se comporta com a variaÃÃo do alcance das conexÃes. Em ambas as topologias, observamos a formaÃÃo de perÃodos e investigamos como estes variam com o tamanho da rede.
The process by which news trends and ideas propagate in social communities can have a profound impact in the life of individuals. To understand thi process, we introduce a competitive cluster growth model in complex networks. In our model, each cluster represents the set of individuals with a certain opinion or preference. We investigate how the cluster size distribution depends on the topology of the network and how it is affected by the number of initial seeds dispersed in the structure. We study our model using different network models, namely, the Erdos-Renyi geometry, the preferential attachment model, and the so-called Apollonian network. This last complex geometry displays a cluster size distribution that follows a power-law with an exponent 1.0. Similar results have been obtained for the distributions of number of votes per candidate in the proportional elections for federal representation in Brazil. In the second part of this work, we investigate the temporal behavior of neural networks with small world topology and in networks built according to the preferential attachment model. In the first case we study the effect of the range of connections on the behavior of the time series. In both topologies, we detect the existence of cycles and investigate how their periods depend on the size of the system.
Reis, Saulo-Davi Soares e. "Navegação em redes espacialmente correlacionadas." reponame:Repositório Institucional da UFC, 2009. http://www.repositorio.ufc.br/handle/riufc/12888.
Full textSubmitted by Edvander Pires (edvanderpires@gmail.com) on 2015-06-16T20:25:53Z No. of bitstreams: 1 2009_dis_sdsreis.pdf: 1915908 bytes, checksum: f38f094759742ce9d7cc35ad2d50209c (MD5)
Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2015-06-18T18:21:10Z (GMT) No. of bitstreams: 1 2009_dis_sdsreis.pdf: 1915908 bytes, checksum: f38f094759742ce9d7cc35ad2d50209c (MD5)
Made available in DSpace on 2015-06-18T18:21:10Z (GMT). No. of bitstreams: 1 2009_dis_sdsreis.pdf: 1915908 bytes, checksum: f38f094759742ce9d7cc35ad2d50209c (MD5) Previous issue date: 2009
A significant number of real networks have well-defined spatial characteristics. We studied how network with spatially correlated topolgies can influence the processes of navigation through them. For this, we study the behavior of the average shortest-path length to networks defined within Kleinberg’s model [1, 2] to analyze the navigation dictated by rules of global knowledge. The Kleinberg’s model is characterized by allowing long-range connections between two vertices u and v distributed by a power-law probability distribution. For a better understanding of the topological characteristics presented by this family of networks, we applied the epidemic model susceptible-infected-susceptible (SIS) and we found that, we see that the Kleinberg’s model presents the small-world phenomenon only for a certain range of values of the clustering exponent α. We introduced a model of spatially embedded networks, conceptually based on the Kleinberg’s model. This model consist in introduction of a constrain to the distribution of long-range connections. We associate his constrain to a possible cost involved in the process of adding new long-range connections to the network. We studied how this cost constrain affects the navigation through the system, taking as a basis for comparison the work of Kleinberg for navigation with local knowledge, and our results conserning for navigation with global knowledge.
Um número significativo de redes reais apresentam características espaciais bem definidas. Nós estudamos como topologias de redes espacialmente correlacionadas podem influenciar processos de navegação através das mesmas. Para isso estudamos o comportamento do mínimo caminho médio para redes definidas dentro de modelo de Kleinberg para analisar a navegação ditada por regras de conhecimento global. O modelo que Kleinberg caracteriza-se por permitir conexões de longo alcance entre dois vértices u e v distribuídas por uma distribuição de probabilidade em lei de potência. Para um melhor entendimento das características topológicas apresentadas por essa família de redes, nós aplicamos o modelo epidêmico suscetível-infectado-suscetível (SIS), e com isso verificamos que o modelo de Kleinberg apresenta fenômeno de mundo pequeno apenas para uma determinada faixa de valores assumidos pelo expoente de agregação α. Em seguida, introduzimos um modelo de redes espacialmente embutidas, conceitualmente inspirado no modelo de Kleinberg. Este traduz-se na introdução de um vínculo para a distribuição das conexões de longo alcance. Associamos este vínculo a um possível custo envolvido no processo de adição de novas conexões de longo alcance à rede. Estudamos como esse vínculo no custo afeta a navegação na rede, tendo como base de comparação os trabalhos de Kleinberg para a navegação com conhecimento local da topologia, e nossos resultados considerando a navegação com conhecimento global.
Khorramzadeh, Yasamin. "Network Reliability: Theory, Estimation, and Applications." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/64383.
Full textPh. D.
Reis, Elohim Fonseca dos 1984. "Criticality in neural networks = Criticalidade em redes neurais." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/276917.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-08-29T15:40:55Z (GMT). No. of bitstreams: 1 Reis_ElohimFonsecados_M.pdf: 2277988 bytes, checksum: 08f2c3b84a391217d575c0f425159fca (MD5) Previous issue date: 2015
Resumo: Este trabalho é dividido em duas partes. Na primeira parte, uma rede de correlação é construída baseada em um modelo de Ising em diferentes temperaturas, crítica, subcrítica e supercrítica, usando um algorítimo de Metropolis Monte-Carlo com dinâmica de \textit{single-spin-flip}. Este modelo teórico é comparado com uma rede do cérebro construída a partir de correlações das séries temporais do sinal BOLD de fMRI de regiões do cérebro. Medidas de rede, como coeficiente de aglomeração, mínimo caminho médio e distribuição de grau são analisadas. As mesmas medidas de rede são calculadas para a rede obtida pelas correlações das séries temporais dos spins no modelo de Ising. Os resultados da rede cerebral são melhor explicados pelo modelo teórico na temperatura crítica, sugerindo aspectos de criticalidade na dinâmica cerebral. Na segunda parte, é estudada a dinâmica temporal da atividade de um população neural, ou seja, a atividade de células ganglionares da retina gravadas em uma matriz de multi-eletrodos. Vários estudos têm focado em descrever a atividade de redes neurais usando modelos de Ising com desordem, não dando atenção à estrutura dinâmica. Tratando o tempo como uma dimensão extra do sistema, a dinâmica temporal da atividade da população neural é modelada. O princípio de máxima entropia é usado para construir um modelo de Ising com interação entre pares das atividades de diferentes neurônios em tempos diferentes. O ajuste do modelo é feito com uma combinação de amostragem de Monte-Carlo e método do gradiente descendente. O sistema é caracterizado pelos parâmetros aprendidos, questões como balanço detalhado e reversibilidade temporal são analisadas e variáveis termodinâmicas, como o calor específico, podem ser calculadas para estudar aspectos de criticalidade
Abstract: This work is divided in two parts. In the first part, a correlation network is build based on an Ising model at different temperatures, critical, subcritical and supercritical, using a Metropolis Monte-Carlo algorithm with single-spin-flip dynamics. This theoretical model is compared with a brain network built from the correlations of BOLD fMRI temporal series of brain regions activity. Network measures, such as clustering coefficient, average shortest path length and degree distributions are analysed. The same network measures are calculated to the network obtained from the time series correlations of the spins in the Ising model. The results from the brain network are better explained by the theoretical model at the critical temperature, suggesting critical aspects in the brain dynamics. In the second part, the temporal dynamics of the activity of a neuron population, that is, the activity of retinal ganglion cells recorded in a multi-electrode array was studied. Many studies have focused on describing the activity of neural networks using disordered Ising models, with no regard to the dynamic nature. Treating time as an extra dimension of the system, the temporal dynamics of the activity of the neuron population is modeled. The maximum entropy principle approach is used to build an Ising model with pairwise interactions between the activities of different neurons at different times. Model fitting is performed by a combination of Metropolis Monte Carlo sampling with gradient descent methods. The system is characterized by the learned parameters, questions like detailed balance and time reversibility are analysed and thermodynamic variables, such as specific heat, can be calculated to study critical aspects
Mestrado
Física
Mestre em Física
2013/25361-6
FAPESP
Jiang, Jian. "Modeling of complex network, application to road and cultural networks." Phd thesis, Université du Maine, 2011. http://tel.archives-ouvertes.fr/tel-00691129.
Full textHollingshad, Nicholas W. "A Non-equilibrium Approach to Scale Free Networks." Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc149609/.
Full textRocha, Luis Enrique Correa da. "Redes acopladas: estrutura e dinâmica." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-11092007-183106/.
Full textComplex network theory has become very popular because of its interdisciplinarity, conceptual simplicity and wide applicability to model real systems. Although fast growing, there is a number of problems which have not been addressed by using complex networks. For example, few efforts have been directed to systems involving coupling and interaction between different complex networks. In the following monography, we present two fundamental contributions in the study of such systems. The first consists in a model which describes the interaction dynamics between a mass pattern evolving in a regular network with a complex network, which are expected to control the pattern evolution. As soon as a complex network node is activated by the regular network, it requests help from its topological neighbours and activates them. The activation is triggered when the mass concentration overcomes a threshold in the node position and consists in liberating an opposite diffusion intended to eliminate the original pattern. The dynamics is completely related to the structure of the control network. The existence of hubs in the Barabási-Albert model plays a fundamental role to accelerate the opposite mass generation. Conversely, the uniform distribution of neighbours in the Erdös-Rényi network provided an increase in the efficiency when several focuses of the original pattern were distributed in the regular network. The second contribution consists in a model based on interactions between two species (predator and prey) provided by sensitive fields which depends of the Euclidean distance between two agents and on their respective types. Spatio-temporal patterns emerge in the system which are directly related to the attraction intensity between same species agents. To understand the dynamics evolution and quantify the information transfer through different clusters, we built two complex networks where the nodes represent the agents. In the first network, the edge weight is given by the Euclidean distance between two agents and, in the second network, by the amount of time two agents become close one another. By following a merging process, another network is obtained whose nodes correspond to spatial groups defined by a weight thresholding process in the first network. Some configurations favor the preys survival, while predators efficiency are improved by other ones.
Paula, Demétrius Ribeiro de. "Dinâmica de redes neurais e formação de agregados em redes complexas." reponame:Repositório Institucional da UFC, 2006. http://www.repositorio.ufc.br/handle/riufc/9649.
Full textSubmitted by Edvander Pires (edvanderpires@gmail.com) on 2014-11-03T18:54:59Z No. of bitstreams: 1 2006_dis_drpaula.pdf: 978829 bytes, checksum: 6f46a6d334b9c066ec1350d74f8beb77 (MD5)
Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2014-11-03T19:00:07Z (GMT) No. of bitstreams: 1 2006_dis_drpaula.pdf: 978829 bytes, checksum: 6f46a6d334b9c066ec1350d74f8beb77 (MD5)
Made available in DSpace on 2014-11-03T19:00:08Z (GMT). No. of bitstreams: 1 2006_dis_drpaula.pdf: 978829 bytes, checksum: 6f46a6d334b9c066ec1350d74f8beb77 (MD5) Previous issue date: 2006
The process by which news trends and ideas propagate in social communities can have a profound impact in the life of individuals. To understand thi process, we introduce a competitive cluster growth model in complex networks. In our model, each cluster represents the set of individuals with a certain opinion or preference. We investigate how the cluster size distribution depends on the topology of the network and how it is affected by the number of initial seeds dispersed in the structure. We study our model using different network models, namely, the Erdos-Renyi geometry, the preferential attachment model, and the so-called Apollonian network. This last complex geometry displays a cluster size distribution that follows a power-law with an exponent 1.0. Similar results have been obtained for the distributions of number of votes per candidate in the proportional elections for federal representation in Brazil. In the second part of this work, we investigate the temporal behavior of neural networks with small world topology and in networks built according to the preferential attachment model. In the first case we study the effect of the range of connections on the behavior of the time series. In both topologies, we detect the existence of cycles and investigate how their periods depend on the size of the system.
Este dissertação foi dividida em duas partes, na primeira parte nós propomos um modelo de crescimento competitivo de gregados em redes complexas para simular a propagação de idéias ou opiniões em comunidades. Investigamos como as distribuições de tamanhos de agregados variam com a topologia de construção da rede e com o número de sementes aleatoriamente dispersas na estrutura. Para tal, analisamos redes do tipo de Erdos-Rényi, redes de contato preferencial e a chamada rede Apoloniana. Esta última apresenta distribuições de tamanho de agregado em forma de uma lei de potência com um expoente aproximadamente 1. Resultados similares são observados com as distribuições obtidas para as frações de votos por candidato às eleições proporcionais para deputados no Brasil. Na segunda parte, analisamos o comportamento temporal da atividade neural em redes com características de mundo pequeno e em redes construídas segundo o modelo do contato preferencial. Nesta primeira topologia, estudamos como a série temporal se comporta com a variação do alcance das conexões. Em ambas as topologias, observamos a formação de períodos e investigamos como estes variam com o tamanho da rede.
Sousa, Sandro Ferreira. "Estudo das propriedades e robustez da rede de transporte público de São Paulo." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/100/100132/tde-29072016-103544/.
Full textComplex systems are characteristic by having an internal network representing the structural relationship between its elements and a natural way to interpret this interaction is through a graph. In this work, the urban public transport system of São Paulo is reinterpreted as a coupled (bus and subway) complex network, bypassing operational details and focusing on connectivity. Using the empirically generated graph, a statistical characterisation is made by network metrics where different radius values are used to group nearby stops and stations that were disconnected before. That can be interpreted as a public policy tool, representing the user\'s willingness to get around the nearest point to access transportation. This process has shown that increasing this willingness generates great reduction in the distance and in the number of jumps between buses, trains and subways lines to achieve all the network destinations. An exploratory model is used to test the robustness of the network by randomly, deterministically and preferentially targeting the stops and service lines. According to the grouping radius, aka willingness, different fragmentation values were obtained under attack simulations. These findings support two main characteristics observed in such networks literature: they have a high degree of robustness to random failures, but are vulnerable to targeted attacks
Antiqueira, Lucas. "Relações da estrutura de redes complexas com as dinâmicas do passeio aleatório, de transporte e de sincronização." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-13032012-100543/.
Full textThe relationship between structure and dynamics was addressed by employing a wide range of different approaches. First, the correlations between degree and activity were studied in various real-world networks. The activity is defined as the proportion of visits to each node in the steady-state regime of the simple random walk. This type of correlation can provide means to assess node activity only in terms of the degree. The concept of accessibility was included in this analysis, showing an intimate relationship (in networks such as the WWW) between the type of correlation and the level of accessibility observed on nodes. A new complex network model founded on growth was also proposed, with new connections being established proportionally to the current activity of each node. This model can be understood as a generalization of the Barabási-Albert model for directed networks. By using several topological measurements we showed that this new model provides, among several other traditional theoretical types of networks, the greatest compatibility with three real-world cortical networks. Additionally, we developed a novel approach considering non-overlapping subgraphs and their interrelationships and distribution through a given network. The main aspect of the methodology is a novel merging procedure developed to assess the relevance of nodes (in relation to the overall subgraph interconnectivity) lying outside subgraphs. Experiments were carried out on four types of network models and five instances of real-world networks, in order to illustrate the application of the method. Furthermore, these results were related to the properties of the transport and spreading processes. Other topic here addressed is the sampling problem in cortical networks. Effects of sampling were quantified using multivariate analysis and classifiers based on structural network measurements. Samples were also evaluated in terms of their dynamical behavior using a synchronization model and the measure of accessibility. By simulating MEG/EEG recordings it was found that sampled networks may substantially deviate from the respective original networks, mainly for small sample sizes. We also report an analysis of the integrated network of Escherichia coli, which incorporates (i) transcriptional regulatory interactions, (ii) metabolic/signaling feedback and (iii) protein-protein interactions. Network outliers, which represent global transcriptional regulators, were identified in the relationship between out-degree and activity. These outliers are highly and widely expressed across conditions, therefore supporting their global nature in controlling many genes in the cell.
Haschke, Robert. "Bifurcations in discrete time neural networks : controlling complex network behaviour with inputs." kostenfrei, 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=973184663.
Full textReis, Saulo Davi Soares e. "NavegaÃÃo em redes espacialmente correlacionadas." Universidade Federal do CearÃ, 2009. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=2817.
Full textUm nÃmero significativo de redes reais apresentam caracterÃsticas espaciais bem definidas. NÃs estudamos como topologias de redes espacialmente correlacionadas podem influenciar processos de navegaÃÃo atravÃs das mesmas. Para isso estudamos o comportamento do mÃnimo caminho mÃdio para redes definidas dentro de modelo de Kleinberg para analisar a navegaÃÃo ditada por regras de conhecimento global. O modelo que Kleinberg caracteriza-se por permitir conexÃes de longo alcance entre dois vÃrtices u e v distribuÃdas por uma distribuiÃÃo de probabilidade em lei de potÃncia. Para um melhor entendimento das caracterÃsticas topolÃgicas apresentadas por essa famÃlia de redes, nÃs aplicamos o modelo epidÃmico suscetÃvel-infectado-suscetÃvel (SIS), e com isso verificamos que o modelo de Kleinberg apresenta fenÃmeno de mundo pequeno apenas para uma determinada faixa de valores assumidos pelo expoente de agregaÃÃo α. Em seguida, introduzimos um modelo de redes espacialmente embutidas, conceitualmente inspirado no modelo de Kleinberg. Este traduz-se na introduÃÃo de um vÃnculo para a distribuiÃÃo das conexÃes de longo alcance. Associamos este vÃnculo a um possÃvel custo envolvido no processo de adiÃÃo de novas conexÃes de longo alcance à rede. Estudamos como esse vÃnculo no custo afeta a navegaÃÃo na rede, tendo como base de comparaÃÃo os trabalhos de Kleinberg para a navegaÃÃo com conhecimento local da topologia, e nossos resultados considerando a navegaÃÃo com conhecimento global.
A significant number of real networks have well-defined spatial characteristics. We studied how network with spatially correlated topolgies can influence the processes of navigation through them. For this, we study the behavior of the average shortest-path length to networks defined within Kleinbergâs model [1, 2] to analyze the navigation dictated by rules of global knowledge. The Kleinbergâs model is characterized by allowing long-range connections between two vertices u and v distributed by a power-law probability distribution. For a better understanding of the topological characteristics presented by this family of networks, we applied the epidemic model susceptible-infected-susceptible (SIS) and we found that, we see that the Kleinbergâs model presents the small-world phenomenon only for a certain range of values of the clustering exponent α. We introduced a model of spatially embedded networks, conceptually based on the Kleinbergâs model. This model consist in introduction of a constrain to the distribution of long-range connections. We associate his constrain to a possible cost involved in the process of adding new long-range connections to the network. We studied how this cost constrain affects the navigation through the system, taking as a basis for comparison the work of Kleinberg for navigation with local knowledge, and our results conserning for navigation with global knowledge.
Silva, Filipi Nascimento. "Redes complexas: novas metodologias e modelagem de aquisição de conhecimento." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-15032010-105321/.
Full textStudies of complex networks have gained increasing research interest in recent years, in part due to its potential for simple representation of complex systems in various fields of science. The needs of quantitative models representing observed phenomena, as well the development of methods for the characterization of complex networks, is a essential matter for the development and understanding of scientific researches exploring such structures. This work aims to develop and study some new methods for the characterization of complex networks, exploring them in the context of knowledge modeling. Initially, two complex networks were developed, a collaborative network of researchers from the Universidade de Sao Paulo and the other obtained from the database of Wikip´edia articles, considering only those strict related to mathematical theorems. The recently formalized concentric measurements are explored and applied to the described networks, as well to other several theoretical models, providing much more information about the topology of these networks than by the use of traditional measurements. Even more interesting results are obtained by the characterization of the vertices of the collaboration network, which reveal patterns of interdisciplinarity among the many fields of science. A model of knowledge acquisition has also been proposed by the use of simulations of multiple interacting agents walking through a complex network in self-avoiding trajectories. Results of those simulations, performed for the network of Wikipedia and other theoretical models shows that certain sets of parameters and networks perform better in the acquisition of knowledge, through the network of theorems presenting the worst of them. However, unlike what should be expected on the basis of intuition, the agents memories do not play much influence to the speed of acquisition of knowledge. The agent access frequencies of vertices was also been obtained and explored superficially in order to determine where the agents walk more ofen. Several softwares had been developed in this masters thesis project, among these, there is a complex network computational visualization tool, which had become indispensable for the many analysis of the contributions obtained by the use of the other described properties.
Hoffmann, Salvaña Xavier Roderic. "Memory-induced complex contagion in spreading phenomena on networks." Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/672674.
Full textEl modelatge epidèmic ha demostrat ser un marc essencial per a l’estudi dels fenòmens de contagi en sistemes biològics, socials i tècnics. Tot i que els models epidèmics han evolucionat cap a potents eines de predicció, la majoria assumeixen agents sense memòria i canals de transmissió independents. No obstant això, molts exemples de la vida real mostren fortes correlacions temporals i estructurals. A més, les tendències recents en la modelització basada en agents donen suport a un canvi generalitzat de les descripcions basades en els enllaços cap a enfocaments on els nodes són centrals. Aquí desenvolupo un mecanisme d’infecció dotat de memòria a exposicions passades i que simultàniament incorpora l’efecte conjunt de múltiples fonts infeccioses. Una noció de reforç/inhibició social sorgeix de manera orgànica, sense incorporar-se explícitament al model. Com a resultat, els conceptes de dinàmica no markoviana i contagi complex s’acoblen intrínsecament. Derivo aproximacions de camp mitjà per a xarxes aleatòries de grau fix i realitzo extenses simulacions estocàstiques per a xarxes no homogènies. L'anàlisi del model SIS revela una interacció sofisticada entre dos modes de memòria, que es manifesta mitjançant una pèrdua de memòria col·lectiva i la dislocació del punt crític en dues transicions de fase. Apareix una regió intermitja on el sistema és excitable o bistable, amb comportaments fonamentalment diferents en comparació amb les fases sanes i endèmiques habituals. A més, la transició a la fase endèmica esdevé híbrida, mostrant propietats contínues i també discontínues. Aquests resultats proporcionen una visió renovada sobre la interacció entre mecanismes microscòpics i aspectes topològics de les xarxes de contacte subjacents, i el seu efecte conjunt sobre les propietats dels processos de propagació. En particular, aquest tipus de modelització que combina efectes de memòria i contagi complex podria ser adequat per descriure interaccions ecològiques entre patògens biològics i socials.
El modelado epidémico ha demostrado ser un marco esencial para el estudio de los fenómenos de contagio en sistemas biológicos, sociales y técnicos. Aunque los modelos epidémicos han evolucionado hacia potentes herramientas de predicción, la mayoría asumen agentes sin memoria y canales de transmisión independientes. Sin embargo, muchos ejemplos de la vida real muestran fuertes correlaciones temporales y estructurales. Además, las tendencias recientes en la modelización basada en agentes apoyan un cambio generalizado de las descripciones basadas en los enlaces hacia enfoques donde los nodos son centrales.Aquí desarrollo un mecanismo de infección dotado de memoria a exposiciones pasadas y que simultáneamente incorpora el efecto conjunto de múltiples fuentes infecciosas. Una noción de refuerzo/inhibición social surge de manera orgánica, sin incorporarse explícitamente al modelo. Como resultado, los conceptos de dinámica no Markoviana y contagio complejo se acoplan intrínsecamente. Derivo aproximaciones de campo medio para redes aleatorias de grado fijo y realizo extensas simulaciones estocásticas para redes no homogéneas.El análisis del modelo SIS revela una interacción sofisticada entre dos modos de memoria, que se manifiesta mediante una pérdida de memoria colectiva y la dislocación del punto crítico en dos transiciones de fase. Aparece una región intermedia donde el sistema es excitable o bistable, con comportamientos fundamentalmente diferentes en comparación con las fases sanas y endémicas habituales. Además, la transición a la fase endémica se convierte en híbrida, mostrando propiedades continuas y también discontinuas.Estos resultados proporcionan una visión renovada sobre la interacción entre mecanismos microscópicos y aspectos topológicos de las redes de contacto subyacentes, y su efecto conjunto sobre las propiedades de los procesos de propagación. En particular, este tipo de modelización que combina efectos de memoria y contagio complejo podría ser adecuado para describir interacciones ecológicas entre patógenos biológicos y sociales.
Kim, Hyoungshick. "Complex network analysis for secure and robust communications." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610134.
Full textSagarra, Pascual Oleguer Josep. "Non-binary maximum entropy network ensembles and their application to the study of urban mobility." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/400560.
Full textLes xarxes complexes tenen una estructura complicada, on sovint es fa difícil establir les relacions de causalitat entre les seves propietats macroscòpiques (mesurables). Per tal de fer-ho es necessiten models nuls amb propietats flexibles que es puguin fixar. Per a xarxes amb connexions binàries (que tenen valor dicotòmic u o zero), s'han proposat col·lectivitats de xarxes que compleixen un principi de màxima entropia per a resoldre el problema de generació d'aquest tipus de models. En aquest treball explorem la seva generalització per a xarxes no-binàries, on les connexions entre elements estan graduades. Desenvolupem un tractament matemàtic que ens permet obtenir prediccions sobre els observables més rellevants d'una xarxa que tingui certes propietats prefixades, a triar en un rang ampli de funcions lineals i no-lineals pertanyent a col·lectivitats micro-canòniques (propietats fixades de manera estricta) i gran canòniques (propietats fixades sols en promig sobre la col·lectivitat). Detectem tres possibles varietats que duen a estadístiques d'ocupació d'enllaços diferents, depenent de la distingibilitat dels elements a partir del qual s'ha generat la xarxa. Per cada cas, desenvolupem eines per a la generació computacional i l'anàlisi de mostres de xarxes pertanyents a cada col·lectivitat. Tot seguit apliquem la teoria desenvolupada a l'anàlisi de mobilitat humana emprant sets de dades de desplaçaments de taxis a Nova York, Singapur, San Francisco i Viena. Mostrem l'estabilitat espaciotemporal de les dades estudiades i l'aparició de propietats comunes. Tot seguit realitzem un anàlisi crític de models de predicció de mobilitat existents i la seva possible adaptació als entorns urbans, mostrant com els models de màxima entropia tenen el major poder predictiu per descriure les dades. Finalment presentem dues aplicacions de la teoria desenvolupada que exploten les propietats comunes detectades a les dades estudiades. D'una banda, derivem un model que permet extrapolar dades de mobilitat sobre sets de dades reduïts. De l'altra, proposem un mètode de filtratge per extreure les contribucions de les dades reals dels trajectes esperats d'acord a qualssevol dels nostres models de màxima entropia. Aquest procediment permet obtenir versions simplificades de les xarxes originals que continguin les seves propietats més rellevants.
Kasthurirathna, Dharshana Mahesh. "The influence of topology and information diffusion on networked game dynamics." Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14570.
Full textSavoy, Daniel Prata. "A dinâmica de opinião dos debates públicos em redes sociais complexas." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/100/100132/tde-04022013-114700/.
Full textThis work studies the effects caused by variations in network topology in the behavior of four different models of opinion dynamics: the Voter Model, Bounded Confidence Model, the Majority Rule Model and the CODA Model. First, these models are used in simulations over a number of different complex social networks, generated to show sereval combinations of key properties such as clustering, connectivity, assortativity and path distances. Then, we perform experiments that show how the topology influences the results in modeling scenarios of public debates, where two rival opinions, A and B, compete under unequal conditions for the consensus of a simulated population.
Bockholt, Mareike [Verfasser], and Katharina A. [Akademischer Betreuer] Zweig. "Analysis of network flows in complex networks / Mareike Bockholt ; Betreuer: Katharina A. Zweig." Kaiserslautern : Technische Universität Kaiserslautern, 2021. http://d-nb.info/1238074545/34.
Full textVallès, Català Toni. "Network inference based on stochastic block models: model extensions, inference approaches and applications." Doctoral thesis, Universitat Rovira i Virgili, 2016. http://hdl.handle.net/10803/399539.
Full textEl estudio de las redes del mundo real han empujado hacia la comprensión de sistemas complejos en una amplia gama de campos como la biología molecular y celular, la anatomía, la neurociencia, la ecología, la economía y la sociología . Sin embargo, el conocimiento disponible de muchos sistemas reales aún es limitado, por esta razón el poder predictivo de la ciencia en redes se debe mejorar para disminuir la brecha entre conocimiento y información. Para abordar este tema usamos la familia de 'Stochastic Block Modelos' (SBM), una familia de modelos generativos que está ganando gran interés recientemente debido a su adaptabilidad a cualquier tipo de red. El objetivo de esta tesis es el desarrollo de nuevas metodologías de inferencia basadas en SBM que perfeccionarán nuestra comprensión de las redes complejas. En primer lugar, investigamos en qué medida hacer un muestreo sobre modelos puede mejorar significativamente la capacidad de predicción a considerar un único conjunto óptimo de parámetros. Seguidamente, aplicamos el método mas predictivo en una red real particular: una red basada en las interacciones/suturas entre los huesos del cráneo humano en recién nacidos. Concretamente, descubrimos que las suturas cerradas a causa de una enfermedad patológica en recién nacidos son menos probables, desde un punto de vista morfológico, que las suturas cerradas bajo un desarrollo normal. Concretamente, descubrimos que las suturas cerradas a causa de una enfermedad patológica en recién nacidos son menos probables, desde un punto de vista morfológico, que las suturas cerradas bajo un desarrollo normal. Recientes investigaciones en las redes multicapa concluye que el comportamiento de las redes en una sola capa son diferentes a las de múltiples capas; por otra parte, las redes del mundo real se nos presentan como redes con una sola capa. La parte final de la tesis está dedicada a diseñar un nuevo enfoque en el que dos SBM separados describen simultáneamente una red dada que consta de una sola capa, observamos que esta metodología predice mejor que la metodología de un SBM solo.
The study of real-world networks have pushed towards to the understanding of complex systems in a wide range of fields as molecular and cell biology, anatomy, neuroscience, ecology, economics and sociology. However, the available knowledge from most systems is still limited, hence network science predictive power should be enhanced to diminish the gap between knowledge and information. To address this topic we handle with the family of Stochastic Block Models (SBMs), a family of generative models that are gaining high interest recently due to its adaptability to any kind of network structure. The goal of this thesis is to develop novel SBM based inference approaches that will improve our understanding of complex networks. First, we investigate to what extent sampling over models significatively improves the predictive power than considering an optimal set of parameters alone. Once we know which model is capable to describe better a given network, we apply such method in a particular real world network case: a network based on the interactions/sutures between bones in newborn skulls. Notably, we discovered that sutures fused due to a pathological disease in human newborn were less likely, from a morphological point of view, that those sutures that fused under a normal development. Recent research on multilayer networks has concluded that the behavior of single-layered networks are different from those of multilayer ones; notwhithstanding, real world networks are presented to us as single-layered networks. The last part of the thesis is devoted to design a novel approach where two separate SBMs simultaneously describe a given single-layered network. We importantly find that it predicts better missing/spurious links that the single SBM approach.
Garuccio, Elena. "Reconstruction, modelling and analysis of economic networks." Doctoral thesis, Università di Siena, 2018. http://hdl.handle.net/11365/1059854.
Full textCiotti, Valerio. "Positive and negative connections and homophily in complex networks." Thesis, Queen Mary, University of London, 2018. http://qmro.qmul.ac.uk/xmlui/handle/123456789/31787.
Full textPimenta, Mayra Mercedes Zegarra. "Self-organization map in complex network." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-30102018-111955/.
Full textUm Mapa Auto-organizativo (da sigla SOM, Self-organized map, em inglês) é uma rede neural artificial que foi proposta como uma ferramenta para análise exploratória em conjuntos de dados de grande dimensionalidade, sendo utilizada de forma eficiente na mineração de dados. Um dos principais tópicos de pesquisa nesta área está relacionado com as aplicações de agrupamento de dados. Vários algoritmos foram desenvolvidos para realizar agrupamento de dados, tendo cada um destes algoritmos uma acurácia específica para determinados tipos de dados. Esta tese tem por objetivo principal analisar a rede SOM a partir de duas abordagens diferentes: mineração de dados e redes complexas. Pela abordagem de mineração de dados, analisou-se como o desempenho do algoritmo está relacionado à distribuição ou características dos dados. Verificou-se a acurácia do algoritmo com base na configuração dos parâmetros. Da mesma forma, esta tese mostra uma análise comparativa entre a rede SOM e outros métodos de agrupamento. Os resultados revelaram que o uso de valores aleatórios nos parâmetros de configuração do algoritmo SOM tende a melhorar sua acurácia quando o número de classes é baixo. Observou-se também que, ao considerar as configurações padrão dos métodos adotados, a abordagem espectral usualmente superou os demais algoritmos de agrupamento. Pela abordagem de redes complexas, esta tese mostra que, se considerarmos outro tipo de topologia de rede, além do modelo regular geralmente utilizado, haverá um impacto na acurácia da rede. Esta tese mostra que o impacto na acurácia é geralmente observado em escalas de tempo de aprendizado curto e médio. Esse comportamento foi observado usando três conjuntos de dados diferentes. Além disso, esta tese mostra como diferentes topologias também afetam a auto-organização do mapa topográfico da rede SOM. A auto-organização da rede foi estudada por meio do particionamento do mapa em grupos ou comunidades. Foram utilizadas quatro medidas topológicas para quantificar a estrutura dos grupos em três modelos distintos de rede: modularidade, número de elementos por grupo, número de grupos por mapa, tamanho do maior grupo. Em redes de pequeno mundo, os grupos se tornam mais densos à medida que o tempo aumenta. Um comportamento oposto a isso é encontrado nas redes assortativas. Apesar da modularidade, tem um alto valor em ambos os casos.
Dias, Eduardo de Souza. "Estudo do risco sistêmico em redes interbancárias pela abordagem de sistemas complexos." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/100/100132/tde-05012016-225818/.
Full textEconomic and financial studies have been changing and searching new methodologies. Since the 2008 subprime crisis, which spread into economies around the globe, new discussions on how it could have been prevented, and paths which countries should follow to emerge from stagflation have been discussed by the academic world towards the complexity subject. In economic terms, some of the criticism of neoclassic economics, mainly due to excessive constrains used by its models, can now be eased, one by one, through agent based modeling. Regarding financial risk understanding and control, complex networks assume fundamental distinction. Models applied so far in financial market risk control dont consider global risk, but only the local one. Many theories on risk diversification are accepted and indeed produce more stable systems, although with little resilience, which means smaller number of crisis, but when it does occur, are more serious ones. This paper suggested an agent based model, using a simple economic system capable of generating crisis. This model was constituted by firms and stochastic demand, using banks to simulate the financial market. These banks were connected though a banking network. In order to test systemic risk, the model performed three tests. First, the maximum leverage allowed was increased and banks were able to achieve higher profits and growth, but from a certain level, the system collapsed with frequent crisis. Second, the average connectivity was increased and banks obtained higher profits, however with more severe crisis. Finally, increasing banking network cluster index, similarly to the first two tests, banks achieved higher growth, but without the undesirable effects caused by risk increase.
Holovatch, T. "Complex transportation networks : resilience, modelling and optimisation." Thesis, Coventry University, 2011. http://curve.coventry.ac.uk/open/items/eafefd84-ff08-43cf-a544-597ee5e63237/1.
Full textHill, Robert M. Martin Barbara N. "Leadership capacity in a complex connected age." Diss., Columbia, Mo. : University of Missouri--Columbia, 2009. http://hdl.handle.net/10355/7033.
Full textOh, Se-Wook. "Complex contagions with lazy adoption." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:207c7ce3-d4fb-4657-8386-4e5174a8b7dc.
Full textWeighill, Deborah A. "Exploring the topology of complex phylogenomic and transcriptomic networks." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95800.
Full textENGLISH ABSTRACT: This thesis involved the development and application of network approaches for the construction, analysis and visualization of phylogenomic and transcriptomic networks. A co-evolutionary network model of grapevine genes was constructed based on three mechanisms of evolution. The investigation of local neighbourhoods of this network revealed groups of functionally related genes, illustrating that the multi-mechanism evolutionary model was identifying groups of potentially co-evolving genes. An extended network definition, namely 3-way networks, was investigated, in which edges model relationships between triplets of objects. Strategies for weighting and pruning these 3-way networks were developed and applied to a phylogenomic dataset of 211 bacterial genomes. These 3-way bacterial networks were compared to standard 2-way network models constructed from the same dataset. The 3-way networks modelled more complex relationships and revealed relationships which were missed by the two-way network models. Network meta-modelling was explored in which global network and node-bynode network comparison techniques were applied in order to investigate the effect of the similarity metric chosen on the topology of multiple types of networks, including transcriptomic and phylogenomic networks. Two new network comparison techniques were developed, namely PCA of Topology Profiles and Cross-Network Topological Overlap. PCA of Topology Profiles compares networks based on a selection of network topology indices, whereas Cross- Network Topological Overlap compares two networks on a node-by-node level, identifying nodes in two networks with similar neighbourhood topology and thus highlighting areas of the networks with conflicting topologies. These network comparison methods clearly indicated how the similarity metric chosen to weight the edges of the network influences the resulting network topology, consequently influencing the biological interpretation of the networks.
AFRIKAANSE OPSOMMING: Hierdie tesis hou verband met die ontwikkeling en toepassing van netwerk benaderings vir die konstruksie, analise en visualisering van filogenomiese en transkriptomiese netwerke. 'n Mede-evolusionêre netwerk model van wingerdstok gene is gebou, gebaseerd op drie meganismes van evolusie. Die ondersoek van plaaslike omgewings van die netwerk het groepe funksioneel verwante gene aan die lig gebring, wat daarop dui dat die multi-meganisme evolusionêre model groepe van potensieele mede-evolusieerende gene identifiseer. 'n Uitgebreide netwerk definisie, naamliks 3-gang netwerke, is ondersoek, waarin lyne die verhoudings tussen drieling voorwerpe voorstel. Strategieë vir weeg en snoei van hierdie 3-gang netwerke was ontwikkel en op 'n filogenomiese datastel van 211 bakteriële genome toegepas. Hierdie 3-gang bakteriële netwerke is met die standaard 2-gang netwerk modelle wat saamgestel is uit dieselfde datastel vergelyk. Die 3-gang netwerke het meer komplekse verhoudings gemodelleer en het verhoudings openbaar wat deur die tweerigting-netwerk modelle gemis is. Verder is netwerk meta-modellering ondersoek waarby globalle netwerk en punt-vir-punt netwerk vergelykings tegnieke toegepas is, met die doel om die effek van die ooreenkoms-maatstaf wat gekies is op die topologie van verskeie tipes netwerke, insluitend transcriptomic en filogenomiese netwerke, te bepaal. Twee nuwe netwerk-vergelyking tegnieke is ontwikkel, naamlik "PCA of Topology Profiles" en"Cross-Network Topological Overlap". PCA van Topologie Profiele vergelyk netwerke gebaseer op 'n seleksie van netwerk topologie indekse, terwyl Cross-netwerk Topologiese Oorvleuel vergelyk twee netwerke op 'n punt-vir-punt vlak, en identifiseer punte in twee netwerke met soortgelyke lokale topologie en dus lê klem op gebiede van die netwerke met botsende topologieë. Hierdie netwerk-vergelyking metodes dui duidelik aan hoe die ooreenkoms maatstaf wat gekies is om die lyne van die netwerk gewig te gee, die gevolglike netwerk topologie beïnvloed, wat weer die biologiese interpretasie van die netwerke kan beïnvloed.
Gattaz, Cristiane Chaves. "Um modelo de referência de formação e gestão de redes organizacionais: o caso do sistema de C,T&I do setor aeroespacial brasileiro." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/3/3136/tde-10012011-095422/.
Full textThis study aims to build a conceptual approach for the design and management of a given business cooperation network (BCN). The theoretical framework that supports this research is organized upon the most recent conceptual contributions based on the paradigms of Complex Networks, Socio-economic Networks, Organizational Networks and Organizational Management. Regarded as one of the priority actions for management of the Brazilian government, the design of an inter-organizational cooperation network that could promote the insertion of Brazil in innovation in Nanotechnology applied to Payloads and Satellites is used as a unique case study for this research. The agents who represent significantly the Science, Technology & Innovation (S,T&I) System of the Brazilian Aerospace Sector - the AEB, CGEE, INPE, UnB, MCT, IPEA, MPOG, CTA (current DCTA) are interviewed in a semistructured technique and the most relevant technical reports of the case are analyzed. Due to the greater ability to consolidate the data obtained in compliance with the constructs proposed in this work, the data are presented using a software technology for organizational modeling named PArchitect in partnership with the Society of Design and Process Science. In summary, the evidence confirms the assumptions of this research characterizing the BCN as a complex and dynamic socio-economic system, considering the modalities of technical-productive, interorganizational and technological cooperation, driven by culture and competitiveness. Moreover, the process of designing a given BCN contributes to the dynamics of management. As a result, this study provides a reference model for the design and network management for organizational cooperation, highlighting the case. It contributes to the understanding of the BCN dynamics under a systemic approach; the location and interpretation of changes and impacts on the network at a given context; and the correction in a timely manner of the direction of the network around their common goal in a given context.
Jorge, Fabricio Gava de Almeida. "Redes Empresariais e Sustentabilidade: modelos baseados em agentes para análise da difusão de estratégias no ambiente competitivo." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/100/100132/tde-15122014-120056/.
Full textWith the disclosure of anthropogenic impacts on climate in recent years, there has been a growing debate about the incorporation of environmental issues on the corporate agenda. Although the environmental externalities of productive activity are known since the beginning of the Industrial Revolution, the processes of development and implementation of corporate sustainability strategies are still under development. The present work analyzes the dynamics of the diffusion of sustainability strategies on enterprise networks through models of complex social systems. Hence, we analyze three well known models: Ising (1925), Barabási-Albert (1999) and Ito and Kaneko (2002). This analysis underpins the creation of a specific model, which results are used to generate hypotheses that support the development of prospective scenarios, based on Berger (1959) and Godet (2008). Finally, these scenarios present possible future realities for the emergence of a sustainable productive sector, assisting in the planning of businesses and governments.
Al-Musawi, Ahmad Jr. "COMPLEX NETWORK GROWING MODEL USING DOWNLINK MOTIFS." VCU Scholars Compass, 2013. http://scholarscompass.vcu.edu/etd/3088.
Full textMatamalas, Llodrà Joan Tomàs. "Higher-order dynamics on complex networks." Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/666484.
Full textEl estudio de redes complejas se ha convertido en un nuevo paradigma para comprender y modelar sistemas físicos. Uno de los principales puntos de interés son las dinámicas que podemos modelar. Pero como en todo modelo, la cantidad de información que podemos representar está limitada por su complejidad. La motivación principal de esta tesis es estudiar el efecto que un incremento de la complejidad estructural, relacional y temporal tiene sobre tres importantes áreas de estudio: la evolución de la cooperación, la propagación de enfermedades, y el estudio de la movilidad humana. En este trabajo hemos utilizado dilemas sociales para estudiar cómo evoluciona la cooperación dentro de una población. Incrementando el orden de complejidad estructural de las redes, permitiendo que los individuos se puedan relacionar en diferentes contextos sociales, se ha demostrado capital para explicar algunas de las características sobre la aparición de comportamientos altruistas. Utilizando estas nuevas estructuras, las redes multicapa, permitimos a los miembros de la población cooperar en determinados contextos y no hacerlo en otros, con lo que, como demostramos analíticamente, aumenta el espectro de escenarios en los que la cooperación y la defección pueden sobrevivir. A continuación, estudiamos modelos de propagación de enfermedades desde el punto de vista de los enlaces entre individuos. Con este aumento de complejidad relacional de los modelos epidémicos, conseguimos extraer información que nos permite, entre otras cosas, definir una medida de contención, basada en la eliminación de los enlaces más influyentes, que se muestra más eficaz que otros métodos previos. Finalmente, proponemos un método para describir la movilidad que permite capturar patrones recurrentes y heterogeneidades en los tiempos que los individuos están en un lugar antes de desplazarse a otro. Estas propiedades son intrínsecas a la movilidad humana y el hecho de poder capturarlas, a pesar de incrementar el orden temporal, es crítico, como demostramos, para modelar cómo las epidemias se difunden por medio del movimiento de las personas.
The study of complex networks has become a new paradigm to understand and model physical systems. One of the points of interest is the dynamics that we can model. However, as with any model, the amount of information that we can represent is limited by its complexity. The primary motivation of this thesis is the study of the effect that an increase in structural, relational and temporal complexity has on three critical areas of study: the evolution of cooperation, epidemic spreading and human mobility. In this work, we have used social dilemmas to study how cooperation within a population evolves. Increasing the order of structural complexity of the networks, allowing individuals to interact in different social contexts, has shown to be crucial to explain some features about the emergence of altruistic behaviors. Using these new structures, multilayer networks, we allow members of the population to cooperate in specific contexts and defect in others, and this, as we analytically demonstrate, increases the spectrum of scenarios where both strategies can survive. Next, we study the models of epidemic spreading from the point of view of the links between individuals. With this increase in the relational complexity of the epidemic models, we can extract information that allows us, among other things, to define a measure of the contribution of a link to the spreading. We use this metric to propose a new containment measure, based on the elimination of the most influential links, which is more effective than other previous methods. Finally, we propose a method to describe mobility that allows capturing recurrent and heterogeneous patterns in the times that individuals stay in a place before moving to another. These properties are intrinsic to human mobility, and the fact of being able to capture them, despite the cost of increasing the temporal order is critical, as we demonstrate, when it comes to modeling how epidemics spread through the movement of the people.
Araújo, Eduardo Barbosa. "Scientific Collaboration Networks from Lattes Database: Topology, Dynamics and Gender Statistics." reponame:Repositório Institucional da UFC, 2016. http://www.repositorio.ufc.br/handle/riufc/18489.
Full textSubmitted by Edvander Pires (edvanderpires@gmail.com) on 2016-07-19T15:58:54Z No. of bitstreams: 1 2016_tese_ebaraujo.pdf: 3600069 bytes, checksum: a78e83ffda97c499e589b405da4da3c8 (MD5)
Approved for entry into archive by Edvander Pires (edvanderpires@gmail.com) on 2016-07-19T15:59:07Z (GMT) No. of bitstreams: 1 2016_tese_ebaraujo.pdf: 3600069 bytes, checksum: a78e83ffda97c499e589b405da4da3c8 (MD5)
Made available in DSpace on 2016-07-19T15:59:07Z (GMT). No. of bitstreams: 1 2016_tese_ebaraujo.pdf: 3600069 bytes, checksum: a78e83ffda97c499e589b405da4da3c8 (MD5) Previous issue date: 2016
Understanding the dynamics of research production and collaboration may reveal better strategies for scientific careers, academic institutions and funding agencies. Here we propose the use of a large and multidisciplinary database of scientific curricula in Brazil, namely, the Lattes Platform, to study patterns of scientific production and collaboration. Detailed information about publications and researchers is available in this database. Individual curricula are submitted by the researchers themselves so that co-authorship is unambiguous. Researchers can be evaluated by scientific productivity, geographical location and field of expertise. Our results show that the collaboration network is growing exponentially for the last three decades, with a distribution of number of collaborators per researcher that approaches a power-law as the network gets older. Moreover, both the distributions of number of collaborators and production per researcher obey power-law behaviors, regardless of the geographical location or field, suggesting that the same universal mechanism might be responsible for network growth and productivity. We also show that the collaboration network under investigation displays a typical assortative mixing behavior, where teeming researchers (i.e., with high degree) tend to collaborate with others alike. Moreover, we discover that on average men prefer collaborating with other men than with women, while women are more egalitarian. This is consistently observed over all fields and essentially independent on the number of collaborators of the researcher. The solely exception is for engineering, where clearly this gender bias is less pronounced, when the number of collaborators increases. We also find that the distribution of number of collaborators follows a power-law, with a cut-off that is gender dependent. This reflects the fact that on average men produce more papers andhave more collaborators than women. We also find that both genders display the same tendency towards interdisciplinary collaborations, except for Exact and Earth Sciences, where women having many collaborators are more open to interdisciplinary research.
Compreender a dinâmica de produção e colaboração em pesquisa pode revelar melhores estratégias para carreiras científicas, instituições acadêmicas e agências de fomento. Neste trabalho nós propomos o uso de uma grande e multidisciplinar base de currículos científicos brasileira, a Plataforma Lattes, para o estudo de padrões em pesquisa científica e colaborações. Esta base de dados inclui informações detalhadas acerca de publicações e pesquisadores. Currículos individuais são enviados pelos próprios pesquisadores de forma que a identificação de coautoria não é ambígua. Pesquisadores podem ser classificados por produção científica, localização geográfica e áreas de pesquisa. Nossos resultados mostram que a rede de colaborações científicas tem crescido exponencialmente nas últimas três décadas, com a distribuição do número de colaboradores por pesquisador se aproximando de uma lei de potência à medida que a rede evolui. Além disso, ambas a distribuição do número de colaboradores e a produção por pesquisador seguem o comportamento de leis de potência, independentemente da região ou áreas, sugerindo que um mesmo mecanismo universal pode ser responsável pelo crescimento da rede e pela produtividade dos pesquisadores. Também mostramos que as redes de colaboração investigadas apresentam um típico comportamento assortativo, no qual pesquisadores de alto nível (com muitos colaboradores) tendem a colaborador com outros semelhantes. Em seguida, mostramos que homens preferem colaborar com outros homens enquanto mulheres são mais igualitárias ao estabelecer suas colaborações. Isso é consistentemente observado em todas as áreas e é essencialmente independente do número de colaborações do pesquisador. A única exceção sendo a área de Engenharia, na qual este viés é claramente menos pronunciado para pesquisadores com muitas colaborações. Também mostramos que o número de colaborações segue o comportamento de leis de potência, com um cutoff dependente do gênero. Isso se reflete no fato de que em média mulheres produzem menos artigos e têm menos colaborações que homens. Também mostramos que ambos os gêneros exibem a mesma tendência quanto a colaborações interdisciplinares, exceto em Ciências Exatas e da Terra, nas quais mulheres tendo mais colaboradores são mais propensas a pesquisas interdisciplinares.
Abreu, Luís Fernando Dorelli de. "Estrutura e dinâmica de redes de informação." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-08112016-091004/.
Full textThe raise in the availability of data regarding interactions between people online has opened new doors to study the process of information diffusion in social networks. In this present work, we make use of the data from the micro-blogging website Twitteralong with complex networks concepts to understand, characterize and classify information diffusion processes observed in this platform and in social networks in general. We present important measures to characterize information cascades and efficient algorithms to calculate them. With the help of these measures, we show that it is possible to quantify the influence of the social network in the process of information diffusion. After that, we show that information does tend to travel along shortest paths on Twitter. Finally, we show that the topology of the social network, without any extra semantic information, can be used to aggregate topics, and that such topology is highly influenced by the topics being discussed on it. Altough we work with only a single dataset, our methods and measures developed are general and can be applied to any process of information diffusion and any complex network.
Fajardo, Fontiveros Oscar. "Transitions in Bayesian model selection problems: Network-based recommender system and symbolic regression." Doctoral thesis, Universitat Rovira i Virgili, 2021. http://hdl.handle.net/10803/673178.
Full textEn esta tesis hemos hecho un estudio del proceso de inferencia Bayesiana aplicado a los problemas de selección de modelos. Estos problemas consisten en dado un conjunto de modelos y unos datos observados, mirar cuál es se modelo más plausible. Usando el teorema de Bayes en este tipo de problemas, nos permite no sólo valorar cómo un modelo se ajusta a sus datos con la función de verosimilitud, sino que también tiene en cuenta la información que pensamos a priori pueda ser cierta con el prior. Esto hace que los tipos de predicciones que obtenemos de estos procesos puedan estar basados en sus datos, bien en las hipótesis que tenemos a priori, o bien por ambas. El objetivo de esta tesis es ver cómo afectan los diferentes tipos de modelos encontrados en las predicciones, por esto hemos decidido enfocarnos en dos problemas: el problema del sistema de recomendaciones y el problema de regresión simbólica. El sistema de recomendaciones es un problema que consiste al predecir sus preferencias de un usuario dado sus que ya sabemos. En este caso hemos usado un método bayesiano y hemos puesto como prior que los usuarios con atributos parecidos tengan gustos parecidos. En el problema de su regresión simbólica, el problema consiste en encontrar la expresión matemática de entre todo un espacio de expresiones matemáticas. Aquí hemos usado el Bayesian machine scientists que usa el teorema de Bayes y tiene como prior que sus expresiones matemáticas sean parecidas a las que hay en la Wikipèdia. Como resultado, hemos visto que en diferentes situaciones, el prior y los datos pueden ayudar o no a hacer predicciones dando a lugar transiciones en la predictibilidad (en el caso del recomanador) y a la detectabilidad (en el caso de la regresión simbólica).
In this thesis we have done a study of the Bayesian inference process applied to model selection problems. These problems consist of a set of models and observed data, looking at which model is the most plausible. Using Bayes theorem in such problems, it allows us not only to value how a model fits in with the data with the likelihood, but also to consider the information that we think can be true a priori thanks to the prior. This makes that the models that we get from these processes can be data based, based in the hypotheses we have (prior), or on both. The aim of this thesis is to see how the different types of models found affect us in the predictions, so we have decided to focus on two problems: the problem of the recommender system and the problem of symbolic regression. The recommender system is a problem with predicting the preferences of a given user who we already know. In this case we have used a Bayesian method and have set as a prior to users with similar attributes having similar tastes. In the case of symbolic regression, the problem consists in finding the best mathematical expression from all the space of mathematical expressions. Here we have used the Bayesian machine scientists that he uses Bayes' theorem where its prior looks for mathematical expressions that are like those in the Wikipedia. As a result, we have seen that in different situations, the prior and data can or cannot help making predictions by giving rise to transitions in accuracy (in the case of the recommender) and detectability (in the case of symbolic regression).
Martins, Rafael Franco. "Uma proposta de modelagem por agentes para o problema da herança e desigualdade econômica." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/100/100132/tde-12042017-111602/.
Full textIn recent years a concern for a possible rise in social inequality has increased considerably, especially on account of Piketty\'s work entitled \"Capital in the 21st Century.\" For a small reduction in the birth rate among the rich, it will be one of the crucial points for this increase. As predictions contained in the book are overwhelming, there is nothing for an inequality will increase a threatening point to democracy and existing political and social systems. However, some economists, such as Matthew Rognlie, do not agree with this article and point out supposed errors and failures committed by the French economist. The purpose of this paper is to try a different path from Piketty, using other means and techniques, this work is useful for an analysis of the issue of inequality caused by the inheritance of goods. A model of family network for the distribution of wealth in societies \"to a model of family network for the distribution of wealth in societies. The result obtained is in line with the results obtained by Piketty
Ferreira, Leandro Augusto. "As redes complexas e o estudo do risco sistêmico no sistema financeiro." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/100/100132/tde-12092013-184127/.
Full textThe financial crises are processes of losses arising from financial market mechanism. They affect the institutions of the financial system by the process of contagion. Sometimes it is equal to the domino effect. This process can make many healthy financial institutions become insolvents. It happens because economic agents are interconnected through contractual relations and become dependent on each other. Systemic risk can be understood as the risk of a huge loss in a system. The present work aims to study the properties of a contagion model proposed to study the effects of the spread of financial crises, as well as the measurement of systemic risk in the interbank system. This problem was investigated considering three different network topologies: Erdös-Rényi, Scale-Free and Empirical Interbank. The choice of these topologies was made by the fact that two of them - Scale-Free and Empirical Interbank - may emulate the real banking system and Erdös-Rényi has been used in several models in the literature. Each node is a bank and consists on a balance sheet split as liabilities (equity, borrowings and deposits) and assets (lendings, bonds and securities). It was analyzed the influence of the coefficient of leverage, the influence of the initial probability of default and the influence of the number of clusters on the Empirical Interbank. The systemic risk was measured using the Systemic Risk Indicator, Systemic Index and Systemic Value at Risk. It was shown that Scale-Free networks are more robust against random attacks, avoiding increases in the number of defaults. The abrupt increase in the impact caused by the crisis happens due to the increase in coefficient of leverage. The number of clusters on Empirical Interbank network impacts the robustness of the system. The model reproduces the result known as Too Interconnected to Fail, that is, banks more interconnected offer higher risk to the system.
Lima, Nicholas Veloso. "Difusão competitiva de produtos e inovações: um modelo de duopólio em redes complexas do tipo small world." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/100/100132/tde-30032016-081314/.
Full textIn the last 60 years, product and innovation models were so widespread in so many fields of study that they became ubiquitous, being employed in such diverse backgrounds like marketing, medicine, anthropology and geography. Such widespread influence arises from the fact that products, innovations and Technologies have a big role in any individuals daily lives and a huge impact on the development and dynamics of communities, countries and its economies. After huge leaps on this field of research during the 1960s and 1970s, its study faded away from mainstream research in the following two decades. Only regaining widespread academic interest in the beginning of 21st century, with the advent of Customer Relationship Management systems, which made available huge amounts of data, other factors that contributed to this resurgence in diffusion literature were the advancements on new tools for research, notably the developments in complex systems theory and network theory. In the view of the still small, but rapidly increasing, number of studies integrating competitive diffusion and network models of partially connected networks (such as small world networks and scale-free networks), this study aims to characterize the dynamics of competitive diffusion in small world networks with the Watts-Strogatz topology. For its intended purpose, simulations were created, both for the classical formulation of the Bass Diffusion Model, as well as more modern approaches for competitive diffusion, such as the models proposed by Libai, Muller and Peres and Peres, Muller and Mahajan. A new model was developed in order expand the model proposed by Libai et al (2009c) in order incorporate the small world network topology and other characteristics associated to competition that were not explicitly represented. Allowing the inference of behaviors in various scenarios that are not explicitly covered in the classical formulations. For intuitive logic and simplicity, it is believed that this model is of significant value for teaching and for the study of competitive diffusion
Arruda, Guilherme Ferraz de. "Mineração de dados em redes complexas: estrutura e dinâmica." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-25062013-085958/.
Full textThe theory of complex networks is a highly interdisciplinary reseach area offering resources for the study of various types of complex systems, from the brain to the society. Many problems of nature can be modeled as networks, such as protein interactions, social organizations, the financial market, the Internet and World Wide Web. The organization of all these complex systems can be represented by graphs, i.e. a set of vertices connected by edges. Such topologies have a fundamental influence on many dynamic processes. For example, highly connected routers are essential to keep traffic on the Internet, while people who have a large number of social contacts may infect many other individuals. Indeed, studies have shown that the structure of brain is related to neurological conditions such as epilepsy, which is relatad to synchronization phenomena. In this text, we present how data mining techniques data can be used to study the relation between complex network topologies and dynamic processes. This study will be conducted with the simulation of synchronization, failures, attacks and the epidemics spreading. The structure of the networks will be characterized by data mining methods, which allow classifying according to a set of theoretical models and to determine patterns of connections present in the organization of different types of complex systems. The analyzes will be performed with applications in neuroscience, systems biology, social networks and the Internet
Aldecoa, García Rodrigo. "Detección de comunidades en redes complejas." Doctoral thesis, Universitat Politècnica de València, 2013. http://hdl.handle.net/10251/31638.
Full textAldecoa García, R. (2013). Detección de comunidades en redes complejas [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31638
TESIS
Premiado
RADICIONI, Tommaso. "All the ties that bind. A socio-semantic network analysis of Twitter political discussions." Doctoral thesis, Scuola Normale Superiore, 2021. http://hdl.handle.net/11384/109224.
Full textArulselvan, Ashwin. "Complex network assortment and modeling." [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0014925.
Full textNovelli, Leonardo. "Relating network structure and function via information theory." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/24093.
Full textPatricio, Vitor Hugo Louzada. "Canalização: fenótipos robustos como consequência de características da rede de regulação gênica." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/95/95131/tde-30052011-223151/.
Full textIn biological systems, the study of gene regulatory networks stability is seen as an important contribution that Mathematics can make to cancer research and that of other genetic diseases. In this work, we consider the concept of ``canalization\'\' as a consequence of stability in gene regulatory networks. The characteristics of canalized regulatory networks are superficially understood. Hence, we study the canalization concept under a computational framework: a simplified model is proposed to describe the phenomenon using Boolean Networks - a classical paradigm to modeling regulatory networks. Specifically, the stability of the largest basin of attraction in gene regulatory networks is analyzed. Our results indicate that the stability of the largest basin of attraction is related to biological data on growth of yeast colonies, and that thoughts about the interaction between Boolean functions and network topologies must be given in the analysis of stable networks.
Tirico, Michele. "Morphogenesis of complex networks. : An application in urban growth." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMLH17.
Full textThe characteristics, functions and morphogenetic processes of a large number of complex spatial networks are influenced by the position and the geometry of their constituent elements. In this work, we address the computational aspects of the morphogenesis of complex networks by proposing a general model, simulating their formation. The networks are generated under the influence of constraints expressed through a vector field that is determined using a reaction-diffusion system. We use the Gray-Scott model to produce a wide variety of dynamic patterns. The resulting vector field controls the geometry and the growth rate of the constructed network that feeds back the reaction-diffusion process. A study was carried out on the influence of the patterns and feedback processes on the structure of the obtained networks using measures from graph theory and multi-fractality theory. A process of validation and evaluation of the model's behaviour was carried out and applied by comparing the networks obtained to largest French cities and the most relevant geometric planar graphs
Wiedermann, Marc. "Classification of complex networks in spatial, topological and information theoretic domains." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/18818.
Full textComplex network theory provides a powerful tool to quantify and classify the structure of many real-world complex systems, including the climate system. In its first part, this work demonstrates the discriminative power of complex network theory to objectively classify Eastern and Central Pacific phases of El Niño and La Niña by proposing an index based on evolving climate networks. After an investigation of the climatic impacts of these discriminated flavors, this work moves from the classification of sets of single-layer networks to the more general study of interacting networks. Here, subnetworks represent oceanic and atmospheric variability. It is revealed that the ocean-to-atmosphere interaction in the Northern hemisphere follows a hierarchical structure and macroscopic network characteristics discriminate well different parts of the atmosphere with respect to their interaction with the ocean. The second part of this work assesses the effect of the nodes’ spatial embedding on the networks’ topological characteristics. A hierarchy of null models is proposed which generate random surrogates from a given network such that global and local statistics associated with the spatial embedding are preserved. The proposed models capture macroscopic properties of the studied spatial networks much better than standard random network models. Depending on the models’ actual performance networks can ultimately be categorized into different classes. This thesis closes with extending the zoo of network classifiers by a two-fold metric to discriminate different classes of networks based on assessing their complexity. Within this framework networks of the same category tend to cluster in distinct areas of the complexity-entropy plane. The proposed framework further allows to objectively construct climate networks such that the statistical network complexity is maximized.
Schultz, Paul. "Stability Concepts of Networked Infrastructure Networks." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19310.
Full textIn the light of the energy transition, power systems undergo a major transformation enabled by appropriate modifications of the grid’s underlying structure. This network constitutes the complex interaction of numerous producers and consumers. The power grid is additionally subject to intermittent disturbances that also include large deviations. These aspects prompt methodological problems for (future) power grids in particular and complex systems in general. How can the stability of different operating points or scenarios be compared? What are the critical components of the network? To which extent is the stability of an operating point determined by the network structure? This dissertation focusses on the emergent phenomenon of synchronisation on networks. In power grids, this corresponds to all units working at the same rhythm – the rated grid frequency. Regarding an analysis with so-called probabilistic stability measures, important limitations are discussed and novel approaches are developed. In particular, the new measures consider repeated perturbations as well as operational bounds on transient deviations. Moreover, the influence of small network structures, so-called motifs, on the stability is investigated. For this purpose, the stability measures are paired with network characteristics using statistical approaches. On this basis, it turns out that, while the abundance of special motifs enhances stability, others typically diminish it. In conclusion, the development of analysis methods and their comparison with network characteristics uncovers relationships between network motifs and the stability of synchronisation. These results are general to a large class of complex systems and build a foundation to future research in this direction. In addition to that, the novel probabilistic stability measures extend the range of methods in nonlinear dynamics by important aspects, especially for high-dimensional complex systems.