Academic literature on the topic 'Competition (Biology) – Australia'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Competition (Biology) – Australia.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Competition (Biology) – Australia"

1

Clarke, Anthony R., and Penelope F. Measham. "Competition: A Missing Component of Fruit Fly (Diptera: Tephritidae) Risk Assessment and Planning." Insects 13, no. 11 (November 17, 2022): 1065. http://dx.doi.org/10.3390/insects13111065.

Full text
Abstract:
Tephritid fruit flies are internationally significant pests of horticulture. Because they are also highly invasive and of major quarantine concern, significant effort is placed in developing full or partial pest risk assessments (PRAs) for fruit flies, while large investments can be made for their control. Competition between fruit fly species, driven by the need to access and utilise fruit for larval development, has long been recognised by researchers as a fundamental component of fruit fly biology, but is entirely absent from the fruit fly PRA literature and appears not be considered in major initiative planning. First presenting a summary of the research data which documents fruit fly competition, this paper then identifies four major effects of fruit fly competition that could impact a PRA or large-scale initiative: (i) numerical reduction of an existing fruit fly pest species following competitive displacement by an invasive fruit fly; (ii) displacement of a less competitive fruit fly pest species in space, time or host; (iii) ecological resistance to fruit fly invasion in regions already with competitively dominant fruit fly species; and (iv) lesser-pest fruit fly resurgence following control of a competitively superior species. From these four major topics, six more detailed issues are identified, with each of these illustrated by hypothetical, but realistic biosecurity scenarios from Australia/New Zealand and Europe. The scenarios identify that the effects of fruit fly competition might both positively or negatively affect the predicted impacts of an invasive fruit fly or targeted fruit fly control initiative. Competition as a modifier of fruit fly risk needs to be recognised by policy makers and incorporated into fruit fly PRAs and major investment initiatives.
APA, Harvard, Vancouver, ISO, and other styles
2

Nield, Andrew P., Philip G. Ladd, and Colin J. Yates. "Reproductive biology, post-fire succession dynamics and population viability analysis of the critically endangered Western Australian shrub Calytrix breviseta subsp. breviseta (Myrtaceae)." Australian Journal of Botany 57, no. 6 (2009): 451. http://dx.doi.org/10.1071/bt09043.

Full text
Abstract:
Calytrix breviseta Lindl. subsp. breviseta is a critically endangered, obligate-seeder shrub within fire-prone kwongan of south-west Western Australia. Little is known about the species’ reproductive biology and how threatening processes, particularly altered fire regimes and exotic species invasion, will impact the long-term viability of the species. This study aims to elucidate the species’ reproductive biology and patterns of seedling recruitment during succession after fire. The effects of changes to the fire return interval and exotic species invasion on the long-term viability of the species is also described. The species exhibits abundant recruitment following fire and the application of a smoke treatment significantly improves germination, similar to many other Western Australian shrubs. However, significant inter-fire recruitment was observed up to 10 years following fire, leading to the presence of multi-aged subpopulations, although seedling recruitment was negligible >20 years after fire. The juvenile period is short at 3–4 years to first flowering. Population viability analysis (PVA) predicted that the optimal fire return interval to maintain C. breviseta subsp. breviseta was dependent on the carrying capacity (K) of the community and the number of individuals present. Carrying capacity will be related to site quality and competition from invasive species. PVA showed that if K remains high, then the optimal fire return interval is ~15–20 years, but under lower carrying capacity, (i.e. weed competition) fires decrease the likelihood of population survival.
APA, Harvard, Vancouver, ISO, and other styles
3

Karubian, Jordan. "The Social Organization and Mating System of the Striated Grasswren." Condor 103, no. 2 (May 1, 2001): 412–17. http://dx.doi.org/10.1093/condor/103.2.412.

Full text
Abstract:
Abstract This paper summarizes the breeding biology, social organization, and mating system of the Striated Grasswren (Amytornis striatus), a member of one of the least-known genera of Australian passerines, the grasswrens. I studied 18 color-banded groups and 14 nests in South Australia for one breeding season in 1996. Mean territory size was 3.0 ha, and territories consisted of sandy dunes dominated by spinifex (Triodea irritans). This apparent dependency on mature spinifex, coupled with poor dispersal ability, suggests that the Striated Grasswren is particularly susceptible to habitat destruction. Most groups consisted of socially monogamous pairs, mean group size was 2.1 adults, and the adult sex ratio was 0.95 (males:females). The average clutch size was 2.2 ± 0.4 eggs and an average of 1.1 ± 1.1 young fledged per nesting effort. A male and a female provided similar amounts of parental care at a single nest. Cloacal protuberance size and amount of sperm collected did not suggest intense sperm competition among males.
APA, Harvard, Vancouver, ISO, and other styles
4

Fromant, Aymeric, Nicole Schumann, Peter Dann, Yves Cherel, and John P. Y. Arnould. "Trophic niches of a seabird assemblage in Bass Strait, south-eastern Australia." PeerJ 8 (March 11, 2020): e8700. http://dx.doi.org/10.7717/peerj.8700.

Full text
Abstract:
The foraging niches of seabirds are driven by a variety of factors, including competition for prey that promotes divergence in trophic niches. Bass Strait, south-eastern Australia, is a key region for seabirds, with little penguins Eudyptula minor, short-tailed shearwaters Ardenna tenuirostris, fairy prions Pachyptila turtur and common diving-petrels Pelecanoides urinatrix being particularly abundant in the region. The trophic niches of these species were investigated using isotopic values in whole blood and by identifying prey remains in stomach contents. The four species occupied different isotopic niches that varied among years, seasons and regions. Little penguins consumed mainly fish whereas the three procellariforms primarily consumed coastal krill Nyctiphanes australis. The dietary similarities between the procellariforms suggest that food resources are segregated in other ways, with interspecific differences in isotope niches possibly reflecting differential consumption of key prey, divergent foraging locations and depth, and differences in breeding phenology. Because oceanographic changes predicted to occur due to climate change may result in reduced coastal krill availability, adversely affecting these seabird predators, further information on foraging zones and feeding behaviour of small procellariform species is needed to elucidate more fully the segregation of foraging niches, the capacity of seabirds to adapt to climate change and the potential for interspecific competition in the region.
APA, Harvard, Vancouver, ISO, and other styles
5

Strzepek, Kenneth, and Brent Boehlert. "Competition for water for the food system." Philosophical Transactions of the Royal Society B: Biological Sciences 365, no. 1554 (September 27, 2010): 2927–40. http://dx.doi.org/10.1098/rstb.2010.0152.

Full text
Abstract:
Although the global agricultural system will need to provide more food for a growing and wealthier population in decades to come, increasing demands for water and potential impacts of climate change pose threats to food systems. We review the primary threats to agricultural water availability, and model the potential effects of increases in municipal and industrial (M&I) water demands, environmental flow requirements (EFRs) and changing water supplies given climate change. Our models show that, together, these factors cause an 18 per cent reduction in the availability of worldwide water for agriculture by 2050. Meeting EFRs, which can necessitate more than 50 per cent of the mean annual run-off in a basin depending on its hydrograph, presents the single biggest threat to agricultural water availability. Next are increases in M&I demands, which are projected to increase upwards of 200 per cent by 2050 in developing countries with rapidly increasing populations and incomes. Climate change will affect the spatial and temporal distribution of run-off, and thus affect availability from the supply side. The combined effect of these factors can be dramatic in particular hotspots, which include northern Africa, India, China, parts of Europe, the western US and eastern Australia, among others.
APA, Harvard, Vancouver, ISO, and other styles
6

Mitchell, M. L., J. M. Virgona, J. L. Jacobs, and D. R. Kemp. "Population biology of Microlaena stipoides in a south-eastern Australian pasture." Crop and Pasture Science 65, no. 8 (2014): 767. http://dx.doi.org/10.1071/cp13404.

Full text
Abstract:
Microlaena (Microlaena stipoides var. stipoides (Labill.) R.Br.) is a C3 perennial grass that is native to areas of south-eastern Australia. In this region, perennial grasses are important for the grazing industries because of their extended growing season and persistence over several years. This series of experiments focused on the population biology of Microlaena by studying the phenology (when seed was set), seed rain (how much seed was produced and where it fell), seed germination, germinable seedbank, seed predation and seedling recruitment in a pasture. Experiments were conducted at Chiltern, in north-eastern Victoria, on an existing native grass pasture dominated by Microlaena. Seed yields were substantial (mean 800 seeds m–2), with seed rain occurring over December–May. Microlaena has two distinct periods of high seed rain, in early summer and in early autumn. Seed predation is high. Within a 24-h period during peak seed production, up to 30% of Microlaena seed was removed from a pasture, primarily by ants. Microlaena seedlings recruited throughout an open paddock; however, seedling density was low (5 seedlings m–2). Microlaena represented only low numbers in the seedbank (0.01–0.05% of total); hence, any seedlings of Microlaena that germinate from the seedbank would face immense competition from other species. Management strategies for Microlaena-dominant pastures need to focus on the maintenance of existing plants.
APA, Harvard, Vancouver, ISO, and other styles
7

Bebawi, Faiz F., Shane D. Campbell, and Robert J. Mayer. "Can competition with pasture be used to manipulate bellyache bush (Jatropha gossypiifolia L.) population biology?" Rangeland Journal 35, no. 4 (2013): 393. http://dx.doi.org/10.1071/rj13011.

Full text
Abstract:
Bellyache bush (Jatropha gossypiifolia L.) is an invasive weed that poses economic and environmental problems in northern Australia. Competition between pasture and bellyache bush was examined in North Queensland using combinations of five pasture treatments (uncut (control); cut as low, medium, and high pasture; and no pasture) and four bellyache bush densities (0, 2, 6 and 12 plants m−2) in a buffel grass (Cenchrus ciliaris L.) dominated pasture. The pasture treatments were applied approximately once per year but no treatments were applied directly to the bellyache bush plants. Measurements of bellyache bush flowering, seed formation, and mortality were undertaken over a 9-year period, along with monitoring the pasture basal cover and plant species diversity. Maximum flowering rates of bellyache bush occurred after 9 years (97%) in plots containing no pasture, with the lowest rates of 9% in uncut control plots. Earliest flowering (322 days after planting) and seed formation (411 days) also occurred in plots with no pasture compared with all other pasture treatments (range 1314–1393 days for seed formation to occur). No seeds were produced in uncut plots. At the end of 9 years, mortality rates of bellyache bush plants initially planted averaged ≥73% for treatments with some pasture compared with 55% under the no-pasture treatment. The percentage of herbaceous plant basal cover in uncut plots was increased 5-fold after 9 years, much greater than the average 2% increase recorded across the low, medium, and high pasture treatments. The number of herbaceous species in uncut plots remained largely unchanged, whereas there was an average reduction of 46% in the cut pasture treatments. Buffel grass remained the species with the greatest basal cover across all cut pasture treatments, followed by sabi grass (Urochloa mosambicensis (Hack.) Dandy) and then red Natal grass (Melinis repens (Willd.) Ziska). These results suggest that grazing strategies that maintain a healthy and competitive pasture layer may contribute to reducing the rate of spread of bellyache bush and complement traditional control techniques such as the use of herbicides.
APA, Harvard, Vancouver, ISO, and other styles
8

Ridsdill-Smith, T. J., A. A. Hoffmann, G. P. Mangano, J. M. Gower, C. C. Pavri, and P. A. Umina. "Strategies for control of the redlegged earth mite in Australia." Australian Journal of Experimental Agriculture 48, no. 12 (2008): 1506. http://dx.doi.org/10.1071/ea08020.

Full text
Abstract:
The redlegged earth mite, Halotydeus destructor, continues to be an intractable pest causing damage to most crop and pasture species in southern Australia. H. destructor feed on all stages of plants, but particularly damage seedlings in autumn. Research has aimed to develop new controls based on a better understanding of the biology and ecology of this pest. Chemicals remain the key tool to control H. destructor, despite the recent appearance of resistance to synthetic pyrethroids. A control package, Timerite, has been developed by which a single well-timed spray in spring can prevent H. destructor from developing diapause eggs. Field trials show this strategy provides effective control of H. destructor the following autumn, and protects plant seedlings, although mite populations build up again during winter. Non-chemical control strategies include grazing, the use of tolerant plants such as cereals, resistant legume cultivars and avoiding rotations where favourable host plants are available in the year before growing susceptible crops such as canola. Natural enemies can assist in mite control, and their numbers can be enhanced by methods including increasing landscape features like shelterbelts. Interspecific competition can occur between H. destructor and other pest mites, but the extent to which these interactions influence the structure of pest communities under different management regimes remains to be investigated.
APA, Harvard, Vancouver, ISO, and other styles
9

Arena, Derrick A., Michael Archer, Henk Godthelp, Suzanne J. Hand, and Scott Hocknull. "Hammer-toothed ‘marsupial skinks' from the Australian Cenozoic." Proceedings of the Royal Society B: Biological Sciences 278, no. 1724 (April 20, 2011): 3529–33. http://dx.doi.org/10.1098/rspb.2011.0486.

Full text
Abstract:
Extinct species of Malleodectes gen. nov. from Middle to Late Miocene deposits of the Riversleigh World Heritage Area, northwestern Queensland, Australia are enigmatic, highly specialized, probably snail-eating marsupials. Dentally, they closely resemble a bizarre group of living heterodont, wet forest scincid lizards from Australia ( Cyclodomorphus ) that may well have outcompeted them as snail-eaters when the closed forests of central Australia began to decline. Although there are scincids known from the same Miocene deposits at Riversleigh, these are relatively plesiomorphic, generalized feeders. This appears to be the most striking example known of dental convergence and possible competition between a mammal and a lizard, which in the long run worked out better for the lizards.
APA, Harvard, Vancouver, ISO, and other styles
10

Smith, Adam, Al Songcuan, Jonathan Mitchell, Max Haste, Zachary Schmidt, Glenn Sands, and Marcus Lincoln Smith. "Quantifying Catch Rates, Shark Abundance and Depredation Rate at a Spearfishing Competition on the Great Barrier Reef, Australia." Biology 11, no. 10 (October 18, 2022): 1524. http://dx.doi.org/10.3390/biology11101524.

Full text
Abstract:
We developed and applied a method to quantify spearfisher effort and catch, shark interactions and shark depredation in a boat-based recreational spearfishing competition in the Great Barrier Reef Marine Park in Queensland. Survey questions were designed to collect targeted quantitative data whilst minimising the survey burden of spearfishers. We provide the first known scientific study of shark depredation during a recreational spearfishing competition and the first scientific study of shark depredation in the Great Barrier Reef region. During the two-day spearfishing competition, nine vessels with a total of 33 spearfishers reported a catch of 144 fish for 115 h of effort (1.25 fish per hour). A subset of the catch comprised nine eligible species under competition rules, of which 47 pelagic fish were weighed. The largest fish captured was a 34.4 kg Sailfish (Istiophorus platypterus). The most common species captured and weighed was Spanish Mackerel (Scomberomorus commerson). The total weight of eligible fish was 332 kg and the average weight of each fish was 7.1 kg. During the two-day event, spearfishers functioned as citizen scientists and counted 358 sharks (115 h effort), averaging 3.11 sharks per hour. Grey Reef Sharks (Carcharhinus amblyrhynchos) comprised 64% of sightings. Nine speared fish were fully depredated by sharks as spearfishers attempted to retrieve their catch, which equates to a depredation rate of 5.9%. The depredated fish included four pelagic fish and five reef fish. The shark species responsible were Grey Reef Shark (C. amblyrhynchos) (66%), Bull Shark (Carcharhinus leucas) (11%), Whitetip Reef Shark (Triaenodon obesus) (11%) and Great Hammerhead (Sphyrna mokarran) (11%). There were spatial differences in fish catch, shark sightings and rates of depredation. We developed a report card that compared average catch of fish, sightings of sharks per hour and depredation rate by survey area, which assists recreational fishers and marine park managers to assess spatio-temporal changes. The participating spearfishers can be regarded as experienced (average 18 days a year for average 13.4 years). Sixty percent of interviewees perceived that shark numbers have increased in the past 10 years, 33% indicated no change and 7% indicated shark numbers had decreased. Total fuel use of all vessels was 2819 L and was equivalent to 6.48 tons of greenhouse gas emissions for the competition.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Competition (Biology) – Australia"

1

Mutton, Thomas Y. "Evolutionary biology of the Australian carnivorous marsupial genus Antechinus." Thesis, Queensland University of Technology, 2017. https://eprints.qut.edu.au/104321/6/Thomas_Mutton_Thesis.pdf.

Full text
Abstract:
Antechinus is an Australian genus of small carnivorous marsupials. Since 2012, the number of described species in the genus has increased by 50% from ten to fifteen. The systematic relationships of these new species and others in the genus have not been well resolved and a broad phylogeographic study of the genus is lacking. Moreover, little ecological information is known about these new species. Therefore, the present thesis examined the evolutionary biology of Antechinus in two complimentary components. The first component aimed to resolve the systematics and phylogeography of the genus Antechinus. The second component, at a finer spatiotemporal scale, aimed to improve understanding of the autecology, habitat use and risk of extinction within the group, with a focus on the recently named buff-footed antechinus, A. mysticus and a partially sympatric congener, A. subtropicus.
APA, Harvard, Vancouver, ISO, and other styles
2

Dalby, Paul Reginald. "Competition between earthworms in high rainfall pastures in the Mt. Lofty Ranges, South Australia." Title page, contents and summary only, 1996. http://web4.library.adelaide.edu.au/theses/09PH/09phd137.pdf.

Full text
Abstract:
Copy of author's previously published work inserted. Bibliography: leaves 261-306. The objectives of the project were: i. to determine whether there are competitive interactions between Aporrectodea trapezoides and A. caliginosa and A. rosea.--ii. to investigate compeditive interactions between A. calignosa, Microscolex dubius and A. trapezoides.--iii . to determine the likely impact of A. longa on soil fauna, especially the native earthworm, Gemascolex lateralis, in native ecosystems.
APA, Harvard, Vancouver, ISO, and other styles
3

Paini, Dean. "The impact of the European honey bee (Apis mellifera) on Australian native bees." University of Western Australia. School of Animal Biology, 2004. http://theses.library.uwa.edu.au/adt-WU2004.0022.

Full text
Abstract:
The European honey bee (Apis mellifera) has been present in Australia for approximately 150 years. For the majority of that time it was assumed this species could only be of benefit to Australia‘s natural ecosystems. More recently however, researchers and conservationists have questioned this assumption. Honey bees are an introduced species and may be affecting native fauna and flora. In particular, native bees have been highlighted as an animal that may be experiencing competition from honey bees as they are of similar sizes and both species require nectar and pollen for their progeny. Most research to date has focused on indirect measures of competition between honey bees and native bees (resource overlap, visitation rates and resource harvesting). The first chapter of this thesis reviews previous research explaining that many experiments lack significant replication and indirect measures of competition cannot evaluate the impact of honey bees on native bee fecundity or survival. Chapters two and four present descriptions of nesting biology of the two native bee species studied (Hylaeus alcyoneus and an undescribed Megachile sp.). Data collected focused on native bee fecundity and included nesting season, progeny mass, number of progeny per nest, sex ratio and parasitoids. This information provided a picture of the nesting biology of these two species and assisted in determining the design of an appropriate experiment. Chapters three and five present the results of two experiments investigating the impact of honey bees on these two species of native bees in the Northern Beekeepers Nature Reserve in Western Australia. Both experiments focused on the fecundity of these native bee species in response to honey bees and also had more replication than any other previous experiment in Australia of similar design. The first experiment (Chapter three), over two seasons, investigated the impact of commercial honey bees on Hylaeus alcyoneus, a native solitary bee. The experiment was monitored every 3-4 weeks (measurement interval). However, beekeepers did not agist hives on sites simultaneously so measurement intervals were initially treated separately using ANOVA. Results showed no impact of honey bees at any measurement interval and in some cases, poor power. Data from both seasons was combined in a Wilcoxon‘s sign test and showed that honey bees had a negative impact on the number of nests completed by H. alcyoneus. The second experiment (Chapter 5) investigated the impact of feral honey bees on an undescribed Megachile species. Hive honey bees were used to simulate feral levels of honey bees in a BACI (Before/After, Control/Impact) design experiment. There was no impact detected on any fecundity variables. The sensitivity of the experiment was calculated and in three fecundity variables (male and female progeny mass and the number of progeny per nest) the experiment was sensitive enough to detect 15-30% difference between control and impact sites. The final chapter (Chapter six) makes a number of research and management recommendations in light of the research findings.
APA, Harvard, Vancouver, ISO, and other styles
4

Jefferson, Lara Vanessa. "The biology and ecology of species of Maireana and Enchylaena: intra- and inter-specific competition in plant communities in the eastern goldfields of Western Australia." Thesis, Curtin University, 2001. http://hdl.handle.net/20.500.11937/2361.

Full text
Abstract:
Members of the family Chenopodiaceae are routinely used as colonizer plant species to rehabilitate waste and tailings materials on mine sites in the Eastern Goldfields of Western Australia. These are specifically selected for their salt and drought tolerance and also because they are representative of the surrounding natural vegetation. Where these have been sown, competition between several species has been observed. The resulting plant community structure is typically lower in species diversity than the initial seed mixture. This study aimed to determine whether competition was occurring between five of the species commonly used and some of the mechanisms that determine community structure on the rehabilitated areas of waste material. Atriplex bunburyana, Atriplex codonocarpa, Maireana brevifolia, Maireana georgei and Enchylaena tomentosa were selected for the study, which was conducted in three parts. Firstly, different plant densities and species combinations were studied in the field and in a pot trial to determine whether or not competition was occurring and to determine the resources that the plants were competing for. The results of the field trial revealed that competition was occurring, but that it formed only one component of the complex interactions between plant species, density and soil characteristics (i.e. pH and salinity). The pot trial complemented the outcome of the field trial. In addition, it showed that competition was occurring, but was even more pronounced. This was most likely due to the lack of nutrients and the limited availability of space in the pots.In the second part of this study, the ability of each species to survive and grow when subjected to adverse environmental conditions, such as low moisture availability, high salinity and low light availability, was examined in relation to competition. All five species were treated with different water regimes and soil salinity. Salt played an important role, especially for the Atriplex spp. and M. brevifolia, in ensuring survival when moisture availability was low. The effect of shade on the Maireana species and E. tomentosa was also researched after field observations suggested that M georgei was adversely affected when growing within the canopy of A. bunburyana. The pot trial showed that growth of M. georgei was affected by progressively more shade, whereas E. tomentosa was facilitated by shade. Maireana brevifolia exhibited significant tolerance to low light intensity. In the last part of this three-part study, all five chenopods were screened for allelopathy. Allelopathy may play an important role in determining community structure in successive plant generations. All chenopod species produced allelopathic substances, which were isolated from their leaves. The inhibition of seed germination was found to be speciesspecific and occurred only at certain concentrations. The seed of the Atriplex spp. was not affected by M. georgei and E. tomentosa extracts.
APA, Harvard, Vancouver, ISO, and other styles
5

Jefferson, Lara Vanessa. "The biology and ecology of species of Maireana and Enchylaena : intra- and inter- specific competition in plant communities in the eastern goldfields of Western Australia /." Curtin University of Technology, School of Chemical and Biological Sciences, 2001. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=14451.

Full text
Abstract:
Members of the family Chenopodiaceae are routinely used as colonizer plant species to rehabilitate waste and tailings materials on mine sites in the Eastern Goldfields of Western Australia. These are specifically selected for their salt and drought tolerance and also because they are representative of the surrounding natural vegetation. Where these have been sown, competition between several species has been observed. The resulting plant community structure is typically lower in species diversity than the initial seed mixture. This study aimed to determine whether competition was occurring between five of the species commonly used and some of the mechanisms that determine community structure on the rehabilitated areas of waste material. Atriplex bunburyana, Atriplex codonocarpa, Maireana brevifolia, Maireana georgei and Enchylaena tomentosa were selected for the study, which was conducted in three parts. Firstly, different plant densities and species combinations were studied in the field and in a pot trial to determine whether or not competition was occurring and to determine the resources that the plants were competing for. The results of the field trial revealed that competition was occurring, but that it formed only one component of the complex interactions between plant species, density and soil characteristics (i.e. pH and salinity). The pot trial complemented the outcome of the field trial. In addition, it showed that competition was occurring, but was even more pronounced. This was most likely due to the lack of nutrients and the limited availability of space in the pots.
In the second part of this study, the ability of each species to survive and grow when subjected to adverse environmental conditions, such as low moisture availability, high salinity and low light availability, was examined in relation to competition. All five species were treated with different water regimes and soil salinity. Salt played an important role, especially for the Atriplex spp. and M. brevifolia, in ensuring survival when moisture availability was low. The effect of shade on the Maireana species and E. tomentosa was also researched after field observations suggested that M georgei was adversely affected when growing within the canopy of A. bunburyana. The pot trial showed that growth of M. georgei was affected by progressively more shade, whereas E. tomentosa was facilitated by shade. Maireana brevifolia exhibited significant tolerance to low light intensity. In the last part of this three-part study, all five chenopods were screened for allelopathy. Allelopathy may play an important role in determining community structure in successive plant generations. All chenopod species produced allelopathic substances, which were isolated from their leaves. The inhibition of seed germination was found to be speciesspecific and occurred only at certain concentrations. The seed of the Atriplex spp. was not affected by M. georgei and E. tomentosa extracts.
APA, Harvard, Vancouver, ISO, and other styles
6

Treloar, Shannon. "Potential for resource competition between the boodie (Bettongia lesueur) and mala (Lagorchestes hirsutus) in the fenced Matuwa reserve, central Western Australia." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2022. https://ro.ecu.edu.au/theses/2514.

Full text
Abstract:
Translocations to closed systems such as fenced reserves are commonly used for the conservation of threatened fauna species worldwide and although fenced reserves can provide significant conservation benefits to biodiversity, they can also bring forth potential threats. Ecologically similar species can stably coexist by partitioning resources along at least one of three niche dimensions (food, space, or time), thereby reducing interspecific competition. However, resources are limited in fenced reserves and natural processes that regulate populations in response to resource availability, such as dispersal into surrounding areas, are unable to occur. Consequently, there is increased potential for competition because there are less resources available for partitioning. Furthermore, the removal of predators and competitors, both native and introduced, can increase the risk of overpopulation due to a reduction in the incidence of density-dependant mortality. This can potentially lead to overuse of resources and further increase the potential for competition. Interspecific competition may lead to the decline or exclusion of a more sensitive species by a less sensitive species. Such interactions are difficult to predict, especially as many threatened species no longer naturally co-exist in their current ranges or are poorly studied. I investigated resource use of two potentially competing native marsupials, boodies (Bettongia lesueur) and mala (Lagorchestes hirsutus), that co-exist in a 1100 ha predator-free fenced reserve located in the arid rangelands of central Western Australia. Resource overlap between coexisting populations of these two species has not been studied previously, but the literature suggests the potential for considerable dietary overlap. I investigated the degree of dietary overlap using scat DNA from non-invasively collected scats, as well as the degree of spatial overlap using scat counts and temporal overlap using camera traps. Boom-bust dynamics have been observed in the Matuwa boodie population (and elsewhere), which raised the concern of subsequent suppression of the potentially less competitive mala. The suppression of mala however cannot be confirmed because there are currently no effective methods to monitor the population size of this elusive species at Matuwa. Therefore, I also trialled non-invasive DNA-based sampling methods using field-collected scats to estimate the abundance of the Matuwa mala population. This method has not been used on mala previously. Results from the dietary analyses suggest there is potential for significant exploitative competition, as both species’ scats consisted of a high percentage of Acacia spp. However, the Acacia DNA could not be identified to species level and there are at least 19 Acacia species within the enclosure, so it is unknown which species they are consuming, and further studies are necessary to resolve the extend of overlap. Additionally, boodies also consumed a much higher proportion of fungi than mala, which may reduce the extent of overall dietary overlap, thereby reducing the potential for resource competition. The species displayed no sign of significant spatial or temporal avoidance at a broad scale, possibly because dietary partitioning exists so there is limited risk from using the same habitats and having similar activity rhythms. The results however, suggest the potential for fine scale spatial and temporal avoidance; this should be investigated further. This study successfully used non-invasively collected scat DNA to identify individuals and estimate the abundance of the mala population at Matuwa. Spatially explicit capture recapture (SECR) and mark-resight models estimated a population size of over 110 individuals. With refined scat collection methods, DNA-based sampling will be an effective and valuable method for monitoring mala. This is a significant outcome because current methods have limited success with the elusive species, but it is essential the few remaining mala populations are effectively monitored to prevent further decline. The information gained from this study will contribute to the successful conservation of boodies and mala by adding to existing knowledge and providing insight into the ability of these species to coexist. Finally, this study will contribute to gaining a better understanding of resource use by small mammals and how they partition resources (including food, space and time) in a closed environment where resources are significantly more limited than the wider landscape.
APA, Harvard, Vancouver, ISO, and other styles
7

Page, Brad, and page bradley@saugov sa gov au. "Niche partitioning among fur seals." La Trobe University. Zoology Department, School of Life Sciences, 2005. http://www.lib.latrobe.edu.au./thesis/public/adt-LTU20060622.153716.

Full text
Abstract:
At Cape Gantheaume, Kangaroo Island (South Australia), adult male, lactating female and juvenile New Zealand (NZ) and Australian fur seals regularly return to the same colony, creating the potential for intra- and inter-specific foraging competition in nearby waters. I hypothesised that these demographic groups would exhibit distinct foraging strategies, which reduce competition and facilitate their coexistence. I analysed the diet of adult male, adult female and juvenile NZ fur seals and adult male Australian fur seals and studied the diving behaviour of adult male and lactating female NZ fur seals and the at-sea movements of juvenile, adult male and lactating female NZ fur seals. Female diet reflected that of a generalist predator, influenced by prey availability and their dependant pups� fasting abilities. In contrast, adult male NZ and Australian fur seals used larger and more energy-rich prey, most likely because they could more efficiently access and handle such prey. Juvenile fur seals primarily utilised small lantern fish, which occur south of the shelf break, in pelagic waters. Juveniles undertook the longest foraging trips and adult males conducted more lengthy trips than lactating females, which perform relatively brief trips in order to regularly nurse their pups. Unlike lactating females, some adult males appeared to rest underwater by performing dives that were characterised by a period of passive drifting through the water column. The large body sizes of adult males and lactating females facilitated the use of both benthic and pelagic habitats, but adult males dived deeper and for longer than lactating females, facilitating vertical separation of their foraging habitats. Spatial overlap in foraging habitats among the age/sex groups was minimal, because lactating females typically utilised continental shelf waters and males used deeper water over the shelf break, beyond female foraging grounds. Furthermore, juveniles used pelagic waters, up to 1000 km south of the regions used by lactating females and adult males. The age and sex groups in this study employed dramatically different strategies to maximise their survival and reproductive success. Their prey and foraging habitats are likely to be shaped by body size differences, which determine their different physiological constraints and metabolic requirements. I suggest that these physiological constraints and the lactation constraints on females are the primary factors that reduce competition, thereby facilitating niche partitioning.
APA, Harvard, Vancouver, ISO, and other styles
8

Bournez, Laure. "Facteurs explicatifs de la répartition spatiale en Afrique australe de deux espèces de tiques parapatriques, vectrices de la cowdriose, Amblyomma variegatum et Amblyomma hebraeum et rôle de la compétition." Thesis, Antilles-Guyane, 2014. http://www.theses.fr/2014AGUY0705/document.

Full text
Abstract:
La connaissance des facteurs qui influent sur les populations de tiques et en particulier sur leurs distributions est un préalable indispensable à l’étude des maladies qu’elles transmettent. Parmi eux, l’importance des facteurs biotiques et en particulier celle de la compétition interspécifique est peu connue et souvent négligée. L’objectif de ce travail était d’évaluer le rôle de la compétition interspécifique sur la distribution de deux espèces de tiques d’importance vétérinaire, Amblyomma variegatum et A. hebraeum. Alors que seule A. variegatum favorise la transmission de la dermatophilose, une maladie de peau débilitante pour les ruminants, les deux espèces sont vectrices de la cowdriose, maladie due à une bactérie Ehrlichia ruminantium qui représente une contrainte économique majeure pour l’élevage. L’impact de l’espèce vectrice dans l’épidémiologie de la cowdriose (différences de souches circulantes, sévérité des cas,…) est inconnu bien qu’ayant potentiellement des conséquences en termes de surveillance (risque épidémiologique à l’introduction d’animaux) et de contrôle (développement de vaccin régional adapté aux souches circulantes) de la maladie. Ces deux espèces ont une distribution contiguë en Afrique australe avec peu de chevauchement (distribution parapatrique) suggérant une préférence environnementale différentielle ou une compétition exclusive entre elles. Une revue des données de la littérature a permis de mettre en évidence un chevauchement de leur niche trophique, climatique, et temporelle, et une interférence comportementale via la production de leurs phéromones. Les deux espèces pourraient donc rentrer en compétition directement par interférence communicative ou reproductive (hybridation stérile), ou indirectement via le partage de ressources, prédateurs ou pathogènes communs. Le rôle des facteurs biotiques et abiotiques sur le maintien de la parapatrie de ces deux espèces a été analysée (i) d’une part par la comparaison de leur niche environnementale réalisée en Afrique australe, et aux deux zones de contact au Zimbabwe et Mozambique, par des méthodes d’ordination et de modèles de niche (Maxent) ; (ii) et d’autre part par l’étude de leurs distributions et de leurs interactions (distribution sur les hôtes, croisements hétérospécifiques) dans la zone de contact au Mozambique. Globalement les résultats montrent qu’en Afrique Sud-Est et au Zimbabwe les deux espèces occupent des niches environnementales distinctes, celle d’A. hebraeum incluant des zones plus chaudes et plus sèches que celle d’A. variegatum. Au contraire au Mozambique les deux niches se chevauchent considérablement. L’enquête de terrain dans cette zone montre que les deux espèces y sont moins souvent trouvées en sympatrie que les données prédites, suggérant une distribution en partie déterminée par des interactions biotiques. Dans les rares sites avec présence des deux espèces, A. variegatum et A. hebraeum partagent les mêmes sites de fixation sur les animaux et forment un pourcentage relativement élevé de couples hétérospécifiques. Ce pourcentage, bien que similaire entre les femelles A. variegatum et A. hebraeum, semble impliquer des processus de discrimination spécifique propres aux deux espèces intervenant au niveau de l’agrégation, de la fixation et du contact des individus. Nos résultats suggèrent l’existence d’une compétition exclusive entre les deux espèces, due à une compétition sexuelle probablement associée à une compétition indirecte. La frontière parapatrique semble occuper une position stable le long d’un gradient environnemental au Zimbabwe mais pas au Mozambique. Les conditions entrainant la coexistence ou l’exclusion des deux espèces avec formation d’une frontière parapatrique sont discutés à l’aide de modèles théoriques de compétition
Studying the factors that influence tick populations and their distributions is an essential pre-requisite to understanding the dynamics of the diseases they transmit. The relative importance of biotic factors such as interspecific competition is not well known and often neglected. The objective of this study was to assess the influence of interspecific competition on the distribution of two tick species of veterinary importance, Amblyomma variegatum and A. hebraeum. Whereas only A. variegatum is known to favor dermatophilosis, a debilitating skin disease of ruminants, both species are good vectors of Ehrlichia ruminantium, the bacteria causing heartwater, a fatal disease of ruminants that presents a major constraint for livestock development in Africa. The impact of vector species in heartwater epidemiology (differences of circulating strains, severity of clinical cases…) is poorly known but may have important implications for surveillance (epidemiological risk of imported animals) and control (adapting regional vaccine programs to circulating strains) of the disease. These two ticks have abutting and marginally overlapping (i.e. parapatric) distributions in southern Africa, suggesting either differential environmental preferences or exclusive competition between the two species. A review of published data highlighted an important overlap of their trophic, climatic and seasonal niche, and existence of chemical behavior interference through pheromone production. Therefore, the two species might compete either directly by communicative or reproductive interference (sterile hybridization), or indirectly by sharing the same resources, predators or pathogens. The role of biotic and abiotic factors in determining parapatry of these species was assessed by (i) comparing their realized environmental niche in southern Africa, and at contact zones in Zimbabwe and Mozambique, using ordination techniques and environmental niche modeling (Maxent); (ii) studying their distributions and their interactions (distribution on co-infested host, heterospecific mating) at the contact zone in Mozambique. Globally, the results indicated the two species occupied distinctly different environmental niches in southern Africa and at the contact zone in Zimbabwe, with the niche of A. hebraeum including both hotter and drier areas than that of A. variegatum. However, in Mozambique their niches overlapped considerably. Field studies within this zone showed that sympatry was observed less frequently than predicted by niche models, suggesting an importance of biotic interactions. At the rare sites where both species were present, A. variegatum and A. hebraeum were observed to share the same preference sites on hosts and formed a high percentage of heterospecific pairs. Though this cross-mating rate was not significantly different between A. variegatum and A. hebraeum females, our observations suggest different mechanism of species discrimination involved for the two species acting at the aggregation, fixation and partner contact level. Our results strongly suggest exclusive competition between these species may arise from sexual competition probably interacting with other indirect forms of competition. The parapatric boundary apparently occupies a stable location along an environmental gradient at the contact zone in Zimbabwe but not in Mozambique. Conditions inducing coexistence or exclusion of both species with the formation of parapatric distributions are discussed in relation to theoretical models of competition. When sexual competition is introduced in these models, the relative frequency of two species is determined by their endogenous fitness (a function of environmental conditions), density dependent effects of competitive interactions, historical distributions and dispersal rates: survival of the first prevails when the immigration rate of a fitter invading species remains lower than an invasion threshold
APA, Harvard, Vancouver, ISO, and other styles
9

Dalby, Paul Reginald. "Competition between earthworms in high rainfall pastures in the Mt. Lofty Ranges, South Australia / Paul Reginald Dalby." Thesis, 1996. http://hdl.handle.net/2440/18758.

Full text
Abstract:
Copy of author's previously published work inserted.
Bibliography: leaves 261-306.
xxix, 308 leaves : ill. (some col.), maps ; 30 cm.
The objectives of the project were: i. to determine whether there are competitive interactions between Aporrectodea trapezoides and A. caliginosa and A. rosea.--ii. to investigate compeditive interactions between A. calignosa, Microscolex dubius and A. trapezoides.--iii . to determine the likely impact of A. longa on soil fauna, especially the native earthworm, Gemascolex lateralis, in native ecosystems.
Thesis (Ph.D.)--University of Adelaide, Dept. of Soil Science, 1996
APA, Harvard, Vancouver, ISO, and other styles
10

Osborne, Louise. "Male contest behaviour and information content of signals used by the Australian tawny dragon, Ctenophorus decresii." Phd thesis, 2004. http://hdl.handle.net/1885/148467.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Competition (Biology) – Australia"

1

Culver, David C., and Tanja Pipan. "Biotic Interactions and Community Structure." In The Biology of Caves and Other Subterranean Habitats, 98–118. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198820765.003.0005.

Full text
Abstract:
A general pattern emerges from studies of subterranean communities. At a regional scale, hydrogeological and historical factors exert a controlling influence on many species, and the importance of species interactions is small. This is the pattern of the Jura Mountain groundwater communities. At a smaller geographical scale, there is little variation in hydrogeological or historical factors. For example, in both the Slovenian epikarst and Lyon aquifer studies, there was little if any variation in hydrogeological or historical factors. Species did differ in their occurrence along physicochemical axes, and these differences may well be the result of competition. Finally, some intensively studied communities show high levels of competition and predation, so strong that divergence rather than convergence occurs. There remains a gap between these somewhat unusual species combinations (beetles and cricket eggs, Appalachian cave stream invertebrates, Dinaric Niphargus, Australian calcrete diving beetles) and the broader scale community studies.
APA, Harvard, Vancouver, ISO, and other styles
2

Denison, R. Ford. "What Has Worked." In Darwinian Agriculture. Princeton University Press, 2012. http://dx.doi.org/10.23943/princeton/9780691139500.003.0008.

Full text
Abstract:
This chapter discusses approaches that have worked in the past in improving cooperation within species. Taking a multidisciplinary approach, with evolutionary biology at the center, it argues that we need to pay particular attention to tradeoffs. The chapter first considers the Green Revolution, which it claims was based on reversing past natural selection, before looking at past evolutionary arms races and how they have resulted in plants, and even chickens, that compete vigorously with their neighbors for resources, even when that competition reduces their collective productivity. The chapter examines the ideas of Colin Donald and the case of the Australian wheat variety called Drysdale, and solar tracking by leaves. It also explores the tradeoff between the yield potential of a crop genotype and its ability to suppress weeds based on cooperation, group selection as a strategy for crop genetic improvement, and the role of biotechnology in understanding how plants detect crowding.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography