Dissertations / Theses on the topic 'Compactness'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Compactness.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Morgan, Frank. "Compactness." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/96708.
Full textDavis, Brian L. "Generalized compactness and applications /." Full text available from ProQuest UM Digital Dissertations, 2006. http://0-proquest.umi.com.umiss.lib.olemiss.edu/pqdweb?index=0&did=1283960471&SrchMode=1&sid=2&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1193421049&clientId=22256.
Full textPotter, M. D. "Separators, coseparators and compactness." Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355770.
Full textDiener, Hannes. "Compactness Under Constructive Scrutiny." Thesis, University of Canterbury. Mathematics and Statistics, 2008. http://hdl.handle.net/10092/1823.
Full textDevlin, Barry-Patrick. "Codensity, compactness and ultrafilters." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/19476.
Full textWolf, Robert G. "Compactness of Isoresonant Potentials." UKnowledge, 2017. http://uknowledge.uky.edu/math_etds/45.
Full textMasuret, Jacques. "Closure and compactness in frames." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4108.
Full textENGLISH ABSTRACT: As an introduction to point-free topology, we will explicitly show the connection between topology and frames (locales) and introduce an abstract notion, which in the point-free setting, can be thought of as a subspace of a topological space. In this setting, we refer to this notion as a sublocale and we will show that there are at least four ways to represent sublocales. By using the language of category theory, we proceed by investigating closure in the point-free setting by way of operators. We de ne what we mean by a coclosure operator in an abstract context and give two seemingly di erent examples of co-closure operators of Frm. These two examples are then proven to be the same. Compactness is one of the most important notions in classical topology and therefore one will nd a great number of results obtained on the subject. We will undertake a study into the interrelationship between three weaker compact notions, i.e. feeble compactness, pseudocompactness and countable compactness. This relationship has been established and is well understood in topology, but (to a degree) the same cannot be said for the point-free setting. We will give the frame interpretation of these weaker compact notions and establish a point-free connection. A potentially promising result will also be mentioned.
AFRIKAANSE OPSOMMING: As 'n inleiding tot punt-vrye topologie, sal ons eksplisiet die uiteensetting van hierdie benadering tot topologie weergee. Ons de nieer 'n abstrakte konsep wat, in die punt-vrye konteks, ooreenstem met 'n subruimte van 'n topologiese ruimte. Daar sal verder vier voorstellings van hierdie konsep gegee word. Afsluiting, deur middel van operatore, word in die puntvrye konteks ondersoek met behulp van kategorie teorie as taalmedium. Ons sal 'n spesi eke operator in 'n abstrakte konteks de nieer en twee o enskynlik verskillende voorbeelde van hierdie operator verskaf. Daar word dan bewys dat hierdie twee operatore dieselfde is. Kompaktheid is een van die mees belangrikste konsepte in klassieke topologie en as gevolg daarvan geniet dit groot belangstelling onder wiskundiges. 'n Studie in die verwantskap tussen drie swakker forme van kompaktheid word onderneem. Hierdie verwantskap is al in topologie bevestig en goed begryp onder wiskundiges. Dieselfde kan egter, tot 'n mate, nie van die puntvrye konteks ges^e word nie. Ons sal die puntvrye formulering van hierdie swakker konsepte van kompaktheid en hul verbintenis, weergee. 'n Resultaat wat moontlik belowend kan wees, sal ook genoem word.
Marcus, Nizar. "E-compactness in pointfree topology." Doctoral thesis, University of Cape Town, 1998. http://hdl.handle.net/11427/9572.
Full textThe main purpose of this thesis is to develop a point-free notion of E-compactness. Our approach follows that of Banascheski and Gilmour in [17]. Any regular frame E has a fine nearness and hence induces a nearness on an E-regular frame L. We show that the frame L is complete with respect this nearness iff L is a closed quotient of a copower of E. This resembles the classical definition, but it is not a conservative definition: There are spaces that may be embedded as closed subspaces of powers of a space E, but their frame of opens are not closed quotients of copowers of the frame of opens of E. A conservative definition of E-compactness is obtained by considering Cauchy completeness with respect to this nearness. Another central notion in the thesis is that of K-Lindelöf frames, a generalisation of Lindelöf frames introduced by J.J. Madden [59]. In the last chapter we investigate the interesting relationship between the completely regular K-Lindelöf frames and the K-compact frames.
Mabula, Mokhwetha Daniel. "Compactness in asymmetrically normed lattices." Doctoral thesis, University of Cape Town, 2012. http://hdl.handle.net/11427/11707.
Full textIncludes bibliographical references.
The aim of the thesis is to investigate aspects of the theory of such spaces, concentrating mainly, but not exclusively, on nite dimensional spaces. One of the main aims of this thesis is to investigate compactness in the setting of asymmetrically normed lattices. In order to do this, it was necessary to study convergence of sequences and left-K-sequential completeness and precompactness of subsets of such spaces.
Kudri, Soraya Rosana Torres. "L-fuzzy compactness and related concepts." Thesis, City University London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283158.
Full textDietrich, Jens. "On the compactness of nonmonotonic logics." Universität Leipzig, 1996. https://ul.qucosa.de/id/qucosa%3A34509.
Full textZagorskas, Jurgis. "City Compactness and Modeling of Sustainable Development." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2008. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2008~D_20080207_161808-44105.
Full textDarbe analizuojama kompaktiško miesto teorija ir jos raida, miestų vystymosi tendencijos ir urbanistines kryptis. Nagrinėjami taikomi miesto formos įvertinimo metodai, parinkti metodai urbanistinei miesto erdvinės struktūros analizei. Įvertintas 7 didžiausių Lietuvos miestų kompaktiškumas ir darnumo aspektu įvertinta Kauno miesto erdvinė struktūra.
Steinke, Thomas Alexander. "Constructive Notions of Compactness in Apartness Spaces." Thesis, University of Canterbury. Mathematics and Statistics, 2011. http://hdl.handle.net/10092/5682.
Full textVan, Coller Henry. "A categorical study of compactness via closure." Thesis, Stellenbosch : Stellenbosch University, 2009. http://hdl.handle.net/10019.1/2351.
Full textWe have the familiar Kuratowski-Mr owka theorem in topology, where compactness is characterised by a closure and a projection-map (X is compact i p : X Y ! Y is a closed mapping, for any space Y , i.e. p(A) = p(A) A X Y ). Using this as our starting point, we generalise compactness to a categorical setting. We then generalise even further to "asymmetric" compactness. Then we discuss a functional approach to compactness, where we do not explicitly mention closure operators. All this provides economical proofs as well as applications in di erent areas of mathematics.
Quercioli, Nicola. "A compactness theorem in group invariant persistent homology." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13485/.
Full textFlucher, Martin. "Concentration and compactness of functionals on Sobolev spaces /." [S.l.] : [s.n.], 1991. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=9525.
Full textCaliskan, Olgu. "Urban Compactness: A Study Of Ankara Urban Form." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12605289/index.pdf.
Full texts meaning for the developing world
Ankara is examined as a case study by re-reading its planning history and the transformation of its urban form from the point of view of compactness.
D'Ambrosio, Roberta. "Imbedding and compactness results in some function spaces." Doctoral thesis, Universita degli studi di Salerno, 2011. http://hdl.handle.net/10556/192.
Full textAbstract Nello studio di vari problemi ellittici con soluzioni in spazi di Sobolev S( ) (con o senza peso) definiti su un aperto di Rn, non necessariamente limitato o regolare, spesso risulta necessario stabilire risultati di regolarit`a e stime a priori per le soluzioni di tali problemi. Questi risultati si basano molte volte sulla limitatezza e l’eventuale compattezza dell’operatore di moltiplicazione u −! g u (i) definito su uno spazio di Sobolev S( ) e a valori in uno spazio di Lebesgue Lp( ) con un opportuno p 2 [1,+1[ e dove g `e un’assegnata funzione definita in uno spazio normato V . `E necessario, quindi, ottenere una stima del tipo kg ukLp( ) c · kgkV · kukS( ) , (ii) dove la costante c 2 R+ dipende dalle propriet`a di regolarit`a di , dagli esponenti di sommabilit`a e la funzione g soddisfa opportune condizioni. Se L `e l’operatore differenziale associato al problema ellittico, stime del tipo (ii) permettono, ad esempio, di provare immediatamente la limitatezza dell’operatore, dove 1 2 Abstract g rappresenta uno dei coefficienti dell’operatore stesso. Tuttavia, altri tipi di risultati non si riescono ad ottenere direttamente per l’operatore L, a causa della natura non necessariamente regolare dei suoi coefficienti. Risulta dunque necessario introdurre una classe di operatori Lh, i cui coefficienti, pi`u regolari, approssimano i coefficienti dell’operatore L. Questa “ deviazione ” dei coefficienti di Lh da quelli di L, deve essere fatta controllando le norme dei coefficienti approssimanti con quelle dei coefficienti dati. Dunque, `e necessario ottenere stime dove la dipendenza dai coefficienti `e espressa solo in termini delle loro norme (in tal caso, per esempio, non ci sono problemi nel passaggio a limite). In altre parole, se g rappresenta un coefficiente di L e gh un coefficiente pi`u regolare della classe approssimante, `e necessario avere un “ buon controllo ” sulla differenza g − gh. L’introduzione delle decomposizioni per funzioni appartenenti ad opportuni spazi funzionali, che rappresentano l’ambiente dei coefficienti dell’operatore differenziale L, gioca un ruolo molto rilevante in questo processo di approssimazione. Nel presente lavoro, si costruiscono decomposizioni per funzioni appartenenti ad opportuni spazi funzionali, la cui introduzione `e legata alla risolubilit`a di alcuni problemi ellittici del tipo sopra menzionato. Come applicazione, si ottengono risultati di limitatezza e compattezza per un operatore di moltiplicazione definito in uno spazio di Sobolev (con o senza peso) . L’idea della decomposizione consiste nello scrivere una funzione g, appartenente ad un opportuno spazio funzionale, come somma di una funzione gh, pi`u regolare, e di una rimanente funzione g − gh, la cui norma `e controllata dal modulo di continuit`a della funzione g. Nella prima parte del lavoro si approfondisce lo studio di alcuni spazi Abstract 3 funzionali pesati, la cui introduzione `e legata alla risolubilit`a di problemi di Dirichlet per equazioni differenziali lineari del secondo ordine di tipo ellittico, in domini non regolari, con soluzioni in spazi di Sobolev con peso.Come applicazione, usando le decomposizioni per funzioni appartenenti a tali spazi funzionali pesati, si provano risultati di immersione e compattezza sull’operatore (i), definito in uno spazio di Sobolev con peso. La struttura espositiva del Capitolo 1 e del Capitolo 2 rispecchia la progressione delle considerazioni svolte. Nel Capitolo 1 si studiano alcune propriet`a e applicazioni degli spazi di Sobolev con peso. Siano un dominio di Rn, k 2 N, 1 p < +1 e il vettore peso le cui componenti sono funzioni misurabili su . Lo spazio di Sobolev con peso Wk,p( ; ) `e l’insieme delle funzioni u = u(x) definite a.e. su , le cui derivate (nel senso delle distribuzioni) @ u, di ordine | | k, sono tali che: Z |@ u(x)|p (x) dx < +1. Nel Capitolo 2, si considera una classe di funzioni peso, denotata con A( ), e si definiscono i corrispondenti spazi di Sobolev con pesoWk,p s ( ) su aperti di Rn. Precisamente, una funzione peso : ! R+ appartiene alla classe A( ) se e solo se esiste una costante 2 R+, indipendente da x and y, tale che : −1 (y) (x) (y) , 8 y 2 , 8 x 2 \ B(y, (y)), 4 Abstract Per k 2 N0, s 2 R e 1 p +1, si denota con Wk,p s ( ) lo spazio delle distribuzioni u su tali che s+| |−k @ u 2 Lp( ) per | | k, munito della seguente norma : kukWk,p s ( ) = X | | k k s+| |−k @ ukLp( ) , dove la funzione peso appartiene alla classe A( ). Nel Capitolo 2 si approfondisce, inoltre, lo studio degli spazi funzionali pesati Kr t (r 2 [1,+1[, t 2 R) e di alcuni suoi sottospazi. Sia r 2 [1,+1[ e t 2 R, si denota con Kr t ( ) la classe delle funzioni g, appartenenti a Lrl oc( ), tali che : sup t−n r (x) kgkLr( \B(x, (x))) < +1, dove la funzione peso appartiene alla classe A( ). Si prova, facilmente, che gli spazi L1 t ( ) e C1 o ( ) sono sottoinsiemi di Kr t ( ) (lo spazio L1 t ( ) `e costituito dalle funzioni g tali che t g 2 L1( )). Si possono, pertanto, definire le chiusure di L1 t ( ) e di C1 o ( ) in Kr t ( ) (denotate rispettivamente con Krt( ) e Krt ( )). Si costruiscono, inoltre, opportune decomposizioni per funzioni g 2 Krt ( ) e per funzioni g 2 Krt ( ), da cui si ottengono risultati di immersione sull’operatore di moltiplicazione (i), definito su uno spazio di Sobolev con peso Wk,p s ( ) e a valori in Lq( ) e dove il fattore moltiplicativo g appartiene ad un opportuno sottospazio di Kr t ( ). L’utilizzo delle decomposizioni in tali risultati consente di evidenziare come la parte meno regolare (g−gh) della funzione g in Krt ( ) o in Krt ( ), influenzi la stima. Infine, uno studio approfondito degli spazi Krt ( ) ha condotto all’introduzione di Abstract 5 un nuovo sottospazio di Kr t ( ), denotato con Krt ( ) . Si sono esaminate le relazione che intercorrono tra Krt ( ), Krt ( ) e Krt ( ) ed in particolare si sono individuate opportune condizioni sulla funzione peso 2 A( ) affinch`e si abbia Krt ( ) = Krt ( ). Nel Capitolo 3 si approfondisce lo studio degli spazi di tipo Morrey. Anche in questo caso, utilizzando le decomposizioni per funzioni appartenenti ad opportuni sottospazi di tipo Morrey, si ottiene un risultato di compattezza per l’operatore (i), definito su un classico spazio di Sobolev. Sia un aperto non limitato di Rn, n 2.Per p 2 [1,+1[ e 2 [0, n[, si considera lo spazio Mp, ( ) costituito dalle funzioni g in Lp loc( ) tali che: kgkp Mp, ( ) = sup 2]0,1] x2 − Z \B(x, ) |g(y)|p dy < +1, dove B(x, ) `e la sfera aperta di Rn di centro x e raggio . Lo spazio di tipo Morrey Mp, ( ) rappresenta una generalizzazione del classico spazio di Morrey Lp, e contiene strettamente lo spazio Lp, (Rn) se = Rn. La sua introduzione `e legata alla risolubilit`a di problemi di tipo ellittico con coefficienti discontinui su domini non limitati. Nella prima parte del Capitolo 3, si rivolge l’attenzione alle propriet`a di densit`a degli spazi di tipo Morrey. Si forniscono, infatti, utili lemmi di caratterizzazione per funzioni appartenenti alle chiusure di L1( ) e C1 o ( ) in Mp, ( ) ( denotate rispettivamente con fMp, ( ) e Mp, 0 ( )). Utilizzando tali lemmi di caratterizzazione, si costruiscono decomposizioni per funzioni in fMp, ( ) e in Mp, 0 ( ) che consentono di provare un 6 Abstract risultato di compattezza sul seguente operatore di moltiplicazione u 2 Wk,p( ) ! g u 2 Lq( ) con q 2 [p,+1[ e g appartenente ad un opportuno sottospazio di Mp, ( ). Infine, un’attenta disamina degli spazi Mp, ( ) e dei suoi sottospazi conduce all’introduzione di un nuovo spazio funzionale pesato di tipo Morrey Mp, ( ), dove il peso appartiene ad una classe di funzioni peso, denotata con G( ). Precisamente, fissato d 2 R+, una funzione peso : ! R+ appartiene alla classe G( , d) se e solo se esiste una costante 2 R+, indipendente da x and y, tale che −1 (y) (x) (y) , 8 y 2 , 8 x 2 (y, d). Si pone G( ) = [ d>0 G( , d). Siano 2 G( ) \ L1( ) e d un numero reale positivo tale che 2 G( , d). Fissato un sottoinsieme misurabile secondo Lebesgue E di , per p 2 [1,+1[ e 2 [0, n[ si denota con Mp, ( ) lo spazio delle funzioni g 2 Mp, ( ) tali che lim h!+1 sup E2 ( ) sup x2 2]0,d] − (x)|E(x, )| 1h kg EkMp, ( ) = 0, Abstract 7 Un’attenta analisi delle relazioni che intercorrono tra Mp, ( ), fMp, ( ) e Mp, 0 ( ), ha consentito di provare le seguenti inclusioni Mp, 0 ( ) Mp, ( ) fMp, ( ) . In particolare si sono individuate opportune condizioni sulla funzione peso affich`e si abbia Mp, 0 ( ) = Mp, ( ). Si precisa che i risultati ottenuti nel Capitolo 2 possono trovare applicazione nello studio di problemi al contorno per equazioni ellittiche su domini non regolari (ad esempio, domini con frontiera singolare), con soluzioni in spazi di Sobolev pesati Wk,p s , per provare che gli operatori differenziali associati al corrispondente problema ellittico (i cui coefficienti di ordine inferiore appartengono ad opportuni spazi Kr t ) hanno rango chiuso o sono semi-fredholmiani. I risultati contenuti nel Capitolo 3, invece, possono essere utili, per esempio, nello studio di problemi di Dirichlet per equazioni ellittiche su domini non limitati (la cui frontiera `e sufficientemente regolare), con soluzioni in classici spazi di Sobolev, per stabilire stime a priori sul corrispondente operatore differenziale associato al problema ellittico, i cui coefficienti di ordine inferiore appartengono a spazi di tipo Morrey Mp, . Si precisa, inoltre, che gli spazi Krt ( ) e Mp, ( ) possono essere utilizzati nello studio di alcuni problemi al contorno per equazioni di tipo ellittico con coefficienti discontinui appartenenti a tali spazi. [a cura dell'autore]
IX n.s.
Pu, Jianping. "Use of Stiffness for Evaluating Compactness of Cohesive Geomaterials." Thesis, University of Hawaii at Manoa, 2002. http://hdl.handle.net/10125/6958.
Full textx, 87 leaves
Burnell, Kevin. "Compactness of convex hulls in nonpositively curved 2-complexes." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97916.
Full textYoung, Carmen M. "Compactness results for pseudo-holomorphic curves in symplectic cobordisms." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/106044.
Full textSouza, Diego Ferraz de. "Concentration-compactness principle and applications to nonlocal elliptic problems." Universidade Federal da Paraíba, 2016. http://tede.biblioteca.ufpb.br:8080/handle/tede/9308.
Full textMade available in DSpace on 2017-08-23T16:14:54Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1030469 bytes, checksum: fd75dc32951ccd2147ed562db94af22a (MD5) Previous issue date: 2016-12-13
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The main goal of this work is to analyze concentration-compactness principles for fractional Sobolev spaces based on the concentration compactness principle of P.-L. Lions and in the pro le decomposition for weak convergence in Hilbert spaces due to K. Tintarev and K.-H Fieseler. As application, we address questions on compactness of the associated energy functional to the following nonlocal elliptic problems, $' ''''''&' ''''''% p qsu fpx; uq in RN; p qsu apxqu fpx; uq in RN; $&% p qsu V pxqu Kpxq u fpx; uq gpx; uq in R3; p q Kpxqu2 in R3; where 0 s 1; 0 1; 2 4s ¥ 3; ¡ 0 and Kpxq ¥ 0 belongs to a suitable Lebesgue space. We obtain existence results for a wide class of possible singular potentials apxq; not necessarily bounded away from zero and for oscillatory nonlinearities in both subcritical and critical growth range that may not satisfy the Ambrosetti-Rabinowitz condition.
O objetivo principal deste trabalho é analisar princípios de concentração de compacidade para espaços de Sobolev fracionários baseados na concentração de compacidade de P.-L. Lions e no per l de decomposição para convergência fraca em espaços de Hilbert devido a K. Tintarev e K.-H Fieseler. Como aplicação, abordamos questões sobre a compacidade do funcional energia associado aos seguintes problems elípticos não locais, $' ''''''&' ''''''% p qsu fpx; uq em RN; p qsu apxqu fpx; uq em RN; $&% p qsu V pxqu Kpxq u fpx; uq gpx; uq em R3; p q Kpxqu2 em R3; onde 0 s 1; 0 1; 2 4s ¥ 3; ¡ 0 e Kpxq ¥ 0 pertence a um espaço de Lebesgue adequado. Obtemos resultados de existência para uma vasta classe de potenciais apxq possivelmente singulares, não necessariamente limitados por baixo por uma constante positiva e para não linearidades oscilatórias em ambos os crescimentos subcríticos e críticos que podem não satisfazer a condição de Ambrosetti-Rabinowitz.
Monterde, Pérez Ignacio. "Some compactness criteria in locally convex and banach spaces." Doctoral thesis, Universitat Politècnica de València, 2012. http://hdl.handle.net/10251/14569.
Full textMonterde Pérez, I. (2009). Some compactness criteria in locally convex and banach spaces [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/14569
Palancia
Gursky, Matthew J. "Compactness of Conformal Metrics with Integral Bounds on Curvature." Diss., Pasadena, Calif. : California Institute of Technology, 1991. http://resolver.caltech.edu/CaltechETD:etd-06192007-145905.
Full textSahutoglu, Sonmez. "Compactness of the dbar-Neumann problem and Stein neighborhood bases." Texas A&M University, 2003. http://hdl.handle.net/1969.1/3879.
Full textDelbaen, Freddy, and Walter Schachermayer. "A compactness principle for bounded sequences of martingales with applications." SFB Adaptive Information Systems and Modelling in Economics and Management Science, WU Vienna University of Economics and Business, 1999. http://epub.wu.ac.at/1604/1/document.pdf.
Full textSeries: Report Series SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
Maad, Sara. "Critical point theory with applications to semilinear problems without compactness." Doctoral thesis, Uppsala : Matematiska institutionen, Univ. [distributör], 2002. http://publications.uu.se/theses/91-506-1557-2/.
Full textKalajdzievski, Damjan. "Measurability Aspects of the Compactness Theorem for Sample Compression Schemes." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23133.
Full textBento, Antonio Jorge Gomes. "Interpolation, measures of non-compactness, entropy numbers and s-numbers." Thesis, University of Sussex, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.344067.
Full textBurdick, Bruce Stanley. "Local compactness and the cofine uniformity with applications to hyperspaces /." The Ohio State University, 1985. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487261553058871.
Full textBjorkman, Kaitlin. "A Weak Groethendieck Compactness Principle for Infinite Dimensional Banach Spaces." VCU Scholars Compass, 2013. http://scholarscompass.vcu.edu/etd/3042.
Full textCorbeil, Antoine. "Study of Small Hydraulic Diameter Media for Improved Heat Exchanger Compactness." Thesis, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/19837.
Full textDean, Brian Jeffrey. "Drawing Better Lines| Comparing Commissions to Legislatures on Compactness and Coterminosity." Thesis, University of Southern California, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10014563.
Full textElectoral districts drawn by independent commissions are seen by political reformers to be preferable to those drawn by state legislatures. The overtly partisan interests of elected officials, say the reformers, lead to oddly-shaped, and gerrymandered districts. To test this, shapes of districts in states with commissions are compared to those within the same state prior to the commission’s establishment. Additionally, shapes of districts in states with commissions are compared to those in a selected group of states without commissions. This study tests hypotheses on two methods of measuring compactness, Reock and Polsby-Popper, and coterminosity, the congruence of district lines and pre-existing political boundaries. The study finds that each state with a commission shows no significant difference in mean compactness compared to its pre-commission form. However, in aggregate, all post-commission districts show a significant increase in mean Reock compactness compared to all pre-commission districts, and all districts in states with commissions show significantly less Polsby-Popper compactness than districts in non-commission states. The study also finds no significant difference in coterminosity between commission states and non-commission states. Though the true effect of commissions may not be discernible from averages, other redistricting criteria also need to be controlled for and evaluated over time.
Morapeli, E. Z. "Comparison of different notions of compactness in the fuzzy topological space." Thesis, Rhodes University, 1989. http://hdl.handle.net/10962/d1001982.
Full textDoicu, Alexandru [Verfasser], and Kai [Akademischer Betreuer] Cieliebak. "Compactness Results for H-holomorphic Curves in Symplectizations / Alexandru Doicu ; Betreuer: Kai Cieliebak." Augsburg : Universität Augsburg, 2018. http://d-nb.info/1170582966/34.
Full textMillerand, Gaëtan. "Enhancing decision tree accuracy and compactness with improved categorical split and sampling techniques." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279454.
Full textBeslutsträd är en av de mest populära algoritmerna i den förklarbara AI-domänen. I själva verket är det från dess struktur verkligen enkelt att framställa en uppsättning beslutsregler som är helt förståeliga för en vanlig användare. Därför forskas det för närvarande på att förbättra beslut eller kartlägga andra modeller i ett träd. Beslutsträd genererat av C4.5 eller ID3-träd lider av två huvudproblem. Den första är att de ofta har lägre prestanda när det gäller noggrannhet för klassificeringsuppgifter eller medelkvadratfel för regressionsuppgiftens noggrannhet jämfört med modernaste modeller som XGBoost eller djupa neurala nätverk. I nästan varje uppgift finns det faktiskt ett viktigt gap mellan toppmodeller som XGboost och beslutsträd. Detta examensarbete tar upp detta problem genom att tillhandahålla en ny metod baserad på dataförstärkning med hjälp av modernaste modeller som överträffar de gamla när det gäller utvärderingsmätningar. Det andra problemet är beslutsträdets kompakthet, allteftersom djupet ökar, blir uppsättningen av regler exponentiellt stor, särskilt när det delade attributet är kategoriskt. Standardlösning för att hantera kategoriska värden är att förvandla dem till dummiesvariabler eller dela på varje värde som producerar komplexa modeller. En jämförande studie av nuvarande metoder för att dela kategoriska värden i klassificeringsproblem görs i detta examensarbete, en ny metod studeras också i fallet med regression.
Temirkhanova, Ainur. "Some new boundedness and compactness results for discrete Hardy type operators with kernels." Licentiate thesis, Luleå : Luleå University of Technology, 2009. http://pure.ltu.se/ws/fbspretrieve/2727426.
Full textSinyakova, Evgenia. "Fedorchuk's compacts in topology : Cardinal characteristics of Fedorchuk's compacts." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-62551.
Full textChen, Haiyan, and 陳海燕. "Neighbourhood compactness and residential built environmental performance: a study of contemporary housingin Guangzhou, China." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B36833782.
Full textAbdikalikova, Zamira. "Some new results concerning boundedness and compactness for embeddings between spaces with multiweighted derivatives." Doctoral thesis, Luleå, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-25800.
Full textGodkänd; 2009; 20090429 (zamira); DISPUTATION Ämnesområde: Matematik/Mathematics Opponent: Professor Victor Burenkov, Cardiff University, United Kingdom Ordförande: Professor Lars-Erik Persson, Luleå tekniska universitet Tid: Fredag den 12 juni 2009, kl 10.00 Plats: D 2214, Luleå tekniska universitet
Abylayeva, Akbota. "Inequalities for some classes of Hardy type operators and compactness in weighted Lebesgue spaces." Doctoral thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-59667.
Full textMoyo, Thandeka. "Role of envelope compactness and glycosylation in HIV-1 resistance to neutralising antibody responses." Doctoral thesis, University of Cape Town, 2017. http://hdl.handle.net/11427/26866.
Full textClos, Timothy George. "Compactness of Hankel Operators with Continuous Symbols on Domains in ℂ2." University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1492445282323501.
Full textAbdikalikova, Zamira T. "Some new results concerning boundedness and compactness for embeddings between spaces with multiweighted derivates /." Luleå : Department of Mathematics, Luleå University of Technology, 2009. http://pure.ltu.se/ws/fbspretrieve/2745822.
Full textChen, Haiyan. "Neighbourhood compactness and residential built environmental performance a study of contemporary housing in Guangzhou, China /." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B36833782.
Full textDasser, Abdellatif. "THE USE OF FILTERS IN TOPOLOGY." Master's thesis, University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3873.
Full textM.S.
Department of Mathematics
Arts and Sciences
Mathematics
Heger, Dominic [Verfasser], and T. [Akademischer Betreuer] Schultz. "Advancing Pattern Recognition Techniques for Brain-Computer Interfaces: Optimizing Discriminability, Compactness, and Robustness / Dominic Heger. Betreuer: T. Schultz." Karlsruhe : KIT-Bibliothek, 2015. http://d-nb.info/1102250163/34.
Full textGim, Tae-Hyoung. "Utility-based approaches to understanding the effects of urban compactness on travel behavior: a case of Seoul, Korea." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50331.
Full textEichenauer, Florian. "Analysis for dissipative Maxwell-Bloch type models." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17661.
Full textThis thesis deals with the mathematical modeling of semi-classical matter-light interaction. In the semi-classical picture, matter is described by a density matrix "rho", a quantum mechanical concept. Light on the other hand, is described by a classical electromagnetic field "(E,H)". We give a short overview of the physical background, introduce the usual coupling mechanism and derive the classical Maxwell-Bloch equations which have intensively been studied in the literature. Moreover, We introduce a mathematical framework in which we state a systematic approach to include dissipative effects in the Liouville-von-Neumann equation. The striking advantage of our approach is the intrinsic existence of a Liapunov function for solutions to the resulting evolution equation. Next, we couple the resulting equation to the Maxwell equations and arrive at a new self-consistent dissipative Maxwell-Bloch type model for semi-classical matter-light interaction. The main focus of this work lies on the intensive mathematical study of the dissipative Maxwell-Bloch type model. Since our model lacks Lipschitz continuity, we create a regularized version of the model that is Lipschitz continuous. We mostly restrict our analysis to the Lipschitz continuous regularization. For regularized versions of the dissipative Maxwell-Bloch type model, we prove existence of solutions to the corresponding Cauchy problem. The core of the proof is based on results from compensated compactness due to P. Gérard and a Rellich type lemma. In parts, this proof closely follows the lines of an earlier work due to J.-L. Joly, G. Métivier and J. Rauch.
Silva, Danilo Dias da. "Produtividade da compacidade enumerável em grupos topológicos." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-21082009-134056/.
Full textThe main aim of this thesis is to study the productivity of coutable compactness in topological groups. Several counterexamples were described.