To see the other types of publications on this topic, follow the link: Compact groups.

Journal articles on the topic 'Compact groups'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Compact groups.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hofmann, Karl Heinrich, and Sidney A. Morris. "Free compact groups I: Free compact abelian groups." Topology and its Applications 23, no. 1 (June 1986): 41–64. http://dx.doi.org/10.1016/0166-8641(86)90016-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hofmann, Karl Heinrich, and Sidney A. Morris. "Free compact groups I: Free compact abelian groups." Topology and its Applications 28, no. 1 (February 1988): 101–2. http://dx.doi.org/10.1016/0166-8641(88)90040-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tovmassian, H. M., and V. H. Chavushyan. "Compact Groups: Local Groups?" Astronomical Journal 119, no. 4 (April 2000): 1687–90. http://dx.doi.org/10.1086/301296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arhangel'skiǐ, A. V. "On countably compact topologies on compact groups and on dyadic compacta." Topology and its Applications 57, no. 2-3 (May 1994): 163–81. http://dx.doi.org/10.1016/0166-8641(94)90048-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hofmann, Karl H., and Christian Terp. "Compact subgroups of Lie groups and locally compact groups." Proceedings of the American Mathematical Society 120, no. 2 (February 1, 1994): 623. http://dx.doi.org/10.1090/s0002-9939-1994-1166357-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bagley, R. W., T. S. Wu, and J. S. Yang. "Locally compact groups: maximal compact subgroups and N-groups." Mathematical Proceedings of the Cambridge Philosophical Society 104, no. 1 (July 1988): 47–64. http://dx.doi.org/10.1017/s0305004100065233.

Full text
Abstract:
AbstractIf G is a locally compact group such thatG/G0contains a uniform compactly generated nilpotent subgroup, thenGhas a maximal compact normal subgroupKsuch thatG/Gis a Lie group. A topological groupGis an N-group if, for each neighbourhoodUof the identity and each compact setC⊂G, there is a neighbourhoodVof the identity such thatfor eachg∈G. Several results on N-groups are obtained and it is shown that a related weaker condition is equivalent to local finiteness for certain totally disconnected groups.
APA, Harvard, Vancouver, ISO, and other styles
7

Priwitzer, Barbara. "Compact groups on compact projective planes." Geometriae Dedicata 58, no. 3 (December 1995): 245–58. http://dx.doi.org/10.1007/bf01263456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

ENOCHS, EDGAR E., J. R. GARCÍA ROZAS, LUIS OYONARTE, and OVERTOUN M. G. JENDA. "Compact coGalois groups." Mathematical Proceedings of the Cambridge Philosophical Society 128, no. 2 (March 2000): 233–44. http://dx.doi.org/10.1017/s0305004199004156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fay, Temple H., and Gary L. Walls. "Compact nilpotent groups." Communications in Algebra 17, no. 9 (January 1989): 2255–68. http://dx.doi.org/10.1080/00927878908823846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Melleray, Julien. "Compact metrizable groups are isometry groups of compact metric spaces." Proceedings of the American Mathematical Society 136, no. 04 (December 28, 2007): 1451–55. http://dx.doi.org/10.1090/s0002-9939-07-08727-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kalantar, Mehrdad, and Matthias Neufang. "From Quantum Groups to Groups." Canadian Journal of Mathematics 65, no. 5 (October 1, 2013): 1073–94. http://dx.doi.org/10.4153/cjm-2012-047-x.

Full text
Abstract:
AbstractIn this paper we use the recent developments in the representation theory of locally compact quantum groups, to assign to each locally compact quantum group 𝔾 a locally compact group 𝔾˜ that is the quantum version of point-masses and is an invariant for the latter. We show that “quantum point-masses” can be identified with several other locally compact groups that can be naturally assigned to the quantum group 𝔾. This assignment preserves compactness as well as discreteness (hence also finiteness), and for large classes of quantum groups, amenability. We calculate this invariant for some of the most well-known examples of non-classical quantum groups. Also, we show that several structural properties of 𝔾 are encoded by 𝔾˜; the latter, despite being a simpler object, can carry very important information about 𝔾.
APA, Harvard, Vancouver, ISO, and other styles
12

Mirotin, A. "Compact Hankel operators on compact Abelian groups." St. Petersburg Mathematical Journal 33, no. 3 (May 5, 2022): 569–84. http://dx.doi.org/10.1090/spmj/1715.

Full text
Abstract:
The classical theorems of Kronecker, Hartman, Peller, and Adamyan–Arov–Krein are extended to the context of a connected compact Abelian group G G with linearly ordered group of characters, on the basis of a description of the structure of compact Hankel operators on G G . Beurling’s theorem on invariant subspaces is also generalized. Some applications to Hankel operators on discrete groups are given.
APA, Harvard, Vancouver, ISO, and other styles
13

Baker, J. W., and A. T. Lau. "Compact left ideal groups in semigroup compactification of locally compact groups." Mathematical Proceedings of the Cambridge Philosophical Society 113, no. 3 (May 1993): 507–17. http://dx.doi.org/10.1017/s0305004100076167.

Full text
Abstract:
Let G be a locally compact group and let UG denote the spectrum of the C*-algebra LUC(G) of bounded left uniformly continuous complex-valued functions on G, with the Gelfand topology. Then there is a multiplication on UG extending the multiplication on G (when naturally embedded in UG) such that UG is a semigroup and for each x ∈ UG, the map y ↦ yx from UG into UG is continuous, i.e. UG is a compact right topological semigroup. Consequently UG has a unique minimal ideal K which is the union of minimal (closed) left ideals UG. Furthermore K is the union of the set of maximal subgroups of K (see [3], theorem 3·ll).
APA, Harvard, Vancouver, ISO, and other styles
14

Medghalchi, Alireza, and Ahmad Mollakhalili. "Compact and Weakly Compact Multipliers of Locally Compact Quantum Groups." Bulletin of the Iranian Mathematical Society 44, no. 1 (February 2018): 101–36. http://dx.doi.org/10.1007/s41980-018-0008-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Caspers, Martijn. "Locally compact quantum groups." Banach Center Publications 111 (2017): 153–84. http://dx.doi.org/10.4064/bc111-0-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Tovmassian, H. M., H. Tiersch, S. G. Navarro, V. H. Chavushyan, G. H. Tovmassian, and S. Neizvestny. "Shakhbazian compact galaxy groups." Astronomy & Astrophysics 415, no. 3 (February 13, 2004): 803–11. http://dx.doi.org/10.1051/0004-6361:20034627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Tovmassian, H., H. Tiersch, V. H. Chavushyan, G. H. Tovmassian, S. G. Navarro, S. Neizvestny, and J. P. Torres-Papaqui. "Shakhbazian compact galaxy groups." Astronomy & Astrophysics 439, no. 3 (August 12, 2005): 973–79. http://dx.doi.org/10.1051/0004-6361:20042053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hernquist, Lars, Neal Katz, and David H. Weinberg. "Physically detached 'compact groups'." Astrophysical Journal 442 (March 1995): 57. http://dx.doi.org/10.1086/175421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Hickson, Paul. "COMPACT GROUPS OF GALAXIES." Annual Review of Astronomy and Astrophysics 35, no. 1 (September 1997): 357–88. http://dx.doi.org/10.1146/annurev.astro.35.1.357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Liber, S. A. "Absolutes of compact groups." Russian Mathematical Surveys 40, no. 2 (April 30, 1985): 217–18. http://dx.doi.org/10.1070/rm1985v040n02abeh003567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Lim, Arthur, and Chen-Bo Zhu. "Multiresolution on compact groups." Linear Algebra and its Applications 293, no. 1-3 (May 1999): 15–38. http://dx.doi.org/10.1016/s0024-3795(99)00018-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

de Oliveira, Claudia Mendes, and Philippe Amram. "Compact and Fossil Groups." Proceedings of the International Astronomical Union 2, S235 (August 2006): 160–64. http://dx.doi.org/10.1017/s1743921306005850.

Full text
Abstract:
AbstractWe present a short review on poor groups of galaxies focusing on the evolution of compact groups and formation of fossil groups. Fossil groups are systems with one dominant luminous elliptical galaxy surrounded by faint companions, in an extended X-ray halo. We will briefly discuss the possibility of fossil groups being the end-products of the merging of compact groups.
APA, Harvard, Vancouver, ISO, and other styles
23

Pildis, Rachel. "Compact Groups of Galaxies." Publications of the Astronomical Society of the Pacific 107 (December 1995): 1259. http://dx.doi.org/10.1086/133685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

KUSTERMANS, J., and S. VAES. "Locally compact quantum groups." Annales Scientifiques de l’École Normale Supérieure 33, no. 6 (November 2000): 837–934. http://dx.doi.org/10.1016/s0012-9593(00)01055-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kitchens, Bruce, and Klaus Schmidt. "Automorphisms of compact groups." Ergodic Theory and Dynamical Systems 9, no. 4 (December 1989): 691–735. http://dx.doi.org/10.1017/s0143385700005290.

Full text
Abstract:
AbstractWe study finitely generated, abelian groups Γ of continuous automorphisms of a compact, metrizable group X and introduce the descending chain condition for such pairs (X, Γ). If Γ acts expansively on X then (X, Γ) satisfies the descending chain condition, and (X, Γ) satisfies the descending chain condition if and only if it is algebraically and topologically isomorphic to a closed, shift-invariant subgroup of GΓ, where G is a compact Lie group. Furthermore every such subgroup of GΓ is a (higher dimensional) Markov shift whose alphabet is a compact Lie group. By using the descending chain condition we prove, for example, that the set of Γ-periodic points is dense in X whenever Γ acts expansively on X. Furthermore, if X is a compact group and (X, Γ) satisfies the descending chain condition, then every ergodic element of Γ has a dense set of periodic points. Finally we give an algebraic description of pairs (X, Γ) satisfying the descending chain condition under the assumption that X is abelian.
APA, Harvard, Vancouver, ISO, and other styles
26

Sanchis, Manuel, and Artur Hideyuki Tomita. "Almost p-compact groups." Topology and its Applications 159, no. 9 (June 2012): 2513–27. http://dx.doi.org/10.1016/j.topol.2011.12.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Dikranjan, Dikran N., and V. V. Uspenskij. "Categorically compact topological groups." Journal of Pure and Applied Algebra 126, no. 1-3 (April 1998): 149–68. http://dx.doi.org/10.1016/s0022-4049(96)00139-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hickson, P. "Compact Groups of Galaxies." Symposium - International Astronomical Union 186 (1999): 367–73. http://dx.doi.org/10.1017/s0074180900113130.

Full text
Abstract:
This paper reviews some of the outstanding questions concerning compact groups of galaxies. These relate to the physical nature and dynamical status of the groups, their formation and evolution, and their role in galaxy evolution. The picture that emerges is that compact groups are generally physically dense systems, although often contaminated by optical projections. Their evolution is likely a continuous process of infall, interaction and merging. As new galaxies are added, and previous ones merge, the membership of the group evolves. I suggest that while the size of the group changes little, other physical properties such as total mass, gas mass, velocity dispersion, fraction of early-type galaxies increase with time. This picture is at least qualitatively consistent with observations and provides a natural explanation for the strongest correlations found in compact group samples.
APA, Harvard, Vancouver, ISO, and other styles
29

Khukhro, E. I., and P. Shumyatsky. "Almost Engel compact groups." Journal of Algebra 500 (April 2018): 439–56. http://dx.doi.org/10.1016/j.jalgebra.2017.04.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Rudin, Walter. "Autohomeomorphisms of compact groups." Topology and its Applications 52, no. 1 (August 1993): 69–70. http://dx.doi.org/10.1016/0166-8641(93)90091-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Alas, O. T., and M. Sanchis. "Countably Compact Paratopological Groups." Semigroup Forum 74, no. 3 (May 1, 2007): 423–38. http://dx.doi.org/10.1007/s00233-006-0637-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Tiersch, H., H. M. Tovmassian, D. Stoll, A. S. Amirkhanian, S. Neizvestny, H. Böhringer, and H. T. MacGillivray. "Shakhbazian compact galaxy groups." Astronomy & Astrophysics 392, no. 1 (August 22, 2002): 33–52. http://dx.doi.org/10.1051/0004-6361:20020877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Tovmassian, H. M., H. Tiersch, V. H. Chavushyan, and G. H. Tovmassian. "Shakhbazian compact galaxy groups." Astronomy & Astrophysics 401, no. 2 (March 21, 2003): 463–70. http://dx.doi.org/10.1051/0004-6361:20030129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Zelenyuk, E. G., and I. V. Protasov. "POTENTIALLY COMPACT ABELIAN GROUPS." Mathematics of the USSR-Sbornik 69, no. 1 (February 28, 1991): 299–305. http://dx.doi.org/10.1070/sm1991v069n01abeh001239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

EDMUNDO, MÁRIO J., and MARGARITA OTERO. "DEFINABLY COMPACT ABELIAN GROUPS." Journal of Mathematical Logic 04, no. 02 (December 2004): 163–80. http://dx.doi.org/10.1142/s0219061304000358.

Full text
Abstract:
Let M be an o-minimal expansion of a real closed field. Let G be a definably compact definably connected abelian n-dimensional group definable in M. We show the following: the o-minimal fundamental group of G is isomorphic to ℤn; for each k>0, the k-torsion subgroup of G is isomorphic to (ℤ/kℤ)n, and the o-minimal cohomology algebra over ℚ of G is isomorphic to the exterior algebra over ℚ with n generators of degree one.
APA, Harvard, Vancouver, ISO, and other styles
36

Tovmassian, H. M., J. P. Torres-Papaqui, and H. Tiersch. "Isolated Shakhbazian compact groups." Astrophysics 53, no. 3 (July 2010): 320–28. http://dx.doi.org/10.1007/s10511-010-9123-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kubiś, Wieslaw. "Valdivia compact Abelian groups." Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 102, no. 2 (September 2008): 193–97. http://dx.doi.org/10.1007/bf03191818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

De Commer, Kenny, and Thomas Timmermann. "Partial compact quantum groups." Journal of Algebra 438 (September 2015): 283–324. http://dx.doi.org/10.1016/j.jalgebra.2015.04.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Medvedev, Yuri. "On compact engel groups." Israel Journal of Mathematics 135, no. 1 (December 2003): 147–56. http://dx.doi.org/10.1007/bf02776054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Zelmanov, E. I. "On periodic compact groups." Israel Journal of Mathematics 77, no. 1-2 (February 1992): 83–95. http://dx.doi.org/10.1007/bf02808012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Stroppel, Markus. "Homogeneous Locally Compact Groups." Journal of Algebra 199, no. 2 (January 1998): 528–43. http://dx.doi.org/10.1006/jabr.1997.7202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Bowen, Lewis, and Peter Burton. "Locally compact sofic groups." Israel Journal of Mathematics 251, no. 1 (December 2022): 239–70. http://dx.doi.org/10.1007/s11856-022-2431-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Shtern, Alexander I. "The structure of homomorphisms of connected locally compact groups into compact groups." Izvestiya: Mathematics 75, no. 6 (December 20, 2011): 1279–304. http://dx.doi.org/10.1070/im2011v075n06abeh002572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Dikranjan, Dikran N., and Dmitrii B. Shakhmatov. "Compact-like totally dense subgroups of compact groups." Proceedings of the American Mathematical Society 114, no. 4 (April 1, 1992): 1119. http://dx.doi.org/10.1090/s0002-9939-1992-1081694-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kachi, Hideyuki, and Mamoru Mimura. "Homotopy groups of compact exceptional Lie groups." Proceedings of the Japan Academy, Series A, Mathematical Sciences 75, no. 4 (April 1999): 47–49. http://dx.doi.org/10.3792/pjaa.75.47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wu, T. S. "Automorphism groups of locally compact reductive groups." Proceedings of the American Mathematical Society 106, no. 2 (February 1, 1989): 537. http://dx.doi.org/10.1090/s0002-9939-1989-0968626-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Carderi, A., and F. Le Maître. "Orbit full groups for locally compact groups." Transactions of the American Mathematical Society 370, no. 4 (November 30, 2017): 2321–49. http://dx.doi.org/10.1090/tran/6985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Chirvasitu, Alexandru, and Issan Patri. "Topological automorphism groups of compact quantum groups." Mathematische Zeitschrift 290, no. 1-2 (January 11, 2018): 577–98. http://dx.doi.org/10.1007/s00209-017-2032-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Jones, John, Dmitriy Rumynin, and Adam Thomas. "Compact Lie groups and complex reductive groups." Homology, Homotopy and Applications 26, no. 1 (2024): 177–88. http://dx.doi.org/10.4310/hha.2024.v26.n1.a12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Bavuma, Yanga, and Francesco G. Russo. "Embeddings of locally compact abelian p-groups in Hawaiian groups." Forum Mathematicum 34, no. 1 (December 1, 2021): 97–114. http://dx.doi.org/10.1515/forum-2021-0085.

Full text
Abstract:
Abstract We show that locally compact abelian p-groups can be embedded in the first Hawaiian group on a compact path connected subspace of the Euclidean space of dimension four. This result gives a new geometric interpretation for the classification of locally compact abelian groups which are rich in commuting closed subgroups. It is then possible to introduce the idea of an algebraic topology for topologically modular locally compact groups via the geometry of the Hawaiian earring. Among other things, we find applications for locally compact groups which are just noncompact.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography