Academic literature on the topic 'Compact binary coalescence'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Compact binary coalescence.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Compact binary coalescence"

1

Kalogera, V. "Close Binaries with Two Compact Objects." International Astronomical Union Colloquium 177 (2000): 579–84. http://dx.doi.org/10.1017/s0252921100060668.

Full text
Abstract:
AbstractThe coalescence of close binary systems with two compact objects (neutron stars and black holes) are considered to be promising sources of gravitational waves for the currently built laser interferometers. Here, I review the current Galactic coalescence estimates derived both theoretically and empirically. I discuss the uncertainties involved as well as ways of obtaining an upper limit to the coalescence rate of two neutron stars.
APA, Harvard, Vancouver, ISO, and other styles
2

Graziani, Luca. "Hunting for Dwarf Galaxies Hosting the Formation and Coalescence of Compact Binaries." Physics 1, no. 3 (December 6, 2019): 412–29. http://dx.doi.org/10.3390/physics1030030.

Full text
Abstract:
Here we introduce the latest version of the GAMESH model, capable to consistently account for the formation and evolution of compact binary systems along the cosmic assembly of a Milky Way (MW)-like galaxy, centered on a local group volume resolving a large population of dwarf satellites. After describing the galaxy assembly process and how the formation of binary systems is accounted for, we summarize some recent findings on the properties and evolution of low-metallicity dwarf galaxies hosting the birth/coalescence of stellar/compact binaries generating GW150914-like signals. Finally, we focus on the mass and orbital properties of the above compact binary candidates assessing their impact on the resulting coalescence times and on selecting suitable galaxy hosts.
APA, Harvard, Vancouver, ISO, and other styles
3

Spera, Mario, Alessandro Alberto Trani, and Mattia Mencagli. "Compact Binary Coalescences: Astrophysical Processes and Lessons Learned." Galaxies 10, no. 4 (June 25, 2022): 76. http://dx.doi.org/10.3390/galaxies10040076.

Full text
Abstract:
On 11 February 2016, the LIGO and Virgo scientific collaborations announced the first direct detection of gravitational waves, a signal caught by the LIGO interferometers on 14 September 2015, and produced by the coalescence of two stellar-mass black holes. The discovery represented the beginning of an entirely new way to investigate the Universe. The latest gravitational-wave catalog by LIGO, Virgo and KAGRA brings the total number of gravitational-wave events to 90, and the count is expected to significantly increase in the next years, when additional ground-based and space-born interferometers will be operational. From the theoretical point of view, we have only fuzzy ideas about where the detected events came from, and the answers to most of the five Ws and How for the astrophysics of compact binary coalescences are still unknown. In this work, we review our current knowledge and uncertainties on the astrophysical processes behind merging compact-object binaries. Furthermore, we discuss the astrophysical lessons learned through the latest gravitational-wave detections, paying specific attention to the theoretical challenges coming from exceptional events (e.g., GW190521 and GW190814).
APA, Harvard, Vancouver, ISO, and other styles
4

Piccinni, Ornella Juliana. "Status and Perspectives of Continuous Gravitational Wave Searches." Galaxies 10, no. 3 (May 25, 2022): 72. http://dx.doi.org/10.3390/galaxies10030072.

Full text
Abstract:
The birth of gravitational wave astronomy was triggered by the first detection of a signal produced by the merger of two compact objects (also known as a compact binary coalescence event). The following detections made by the Earth-based network of advanced interferometers had a significant impact in many fields of science: astrophysics, cosmology, nuclear physics and fundamental physics. However, compact binary coalescence signals are not the only type of gravitational waves potentially detectable by LIGO, Virgo, and KAGRA. An interesting family of still undetected signals, and the ones that are considered in this review, are the so-called continuous waves, paradigmatically exemplified by the gravitational radiation emitted by galactic, fast-spinning isolated neutron stars with a certain degree of asymmetry in their mass distribution. In this work, I will review the status and the latest results from the analyses of advanced detector data.
APA, Harvard, Vancouver, ISO, and other styles
5

O'Shaughnessy, R., V. Kalogera, and Krzysztof Belczynski. "BINARY COMPACT OBJECT COALESCENCE RATES: THE ROLE OF ELLIPTICAL GALAXIES." Astrophysical Journal 716, no. 1 (May 20, 2010): 615–33. http://dx.doi.org/10.1088/0004-637x/716/1/615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Usman, Samantha A., Alexander H. Nitz, Ian W. Harry, Christopher M. Biwer, Duncan A. Brown, Miriam Cabero, Collin D. Capano, et al. "The PyCBC search for gravitational waves from compact binary coalescence." Classical and Quantum Gravity 33, no. 21 (October 10, 2016): 215004. http://dx.doi.org/10.1088/0264-9381/33/21/215004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rasio, Frederic A., and Stuart L. Shapiro. "Hydrodynamic Evolution of Coalescing Compact Binaries." Symposium - International Astronomical Union 165 (1996): 17–28. http://dx.doi.org/10.1017/s0074180900055522.

Full text
Abstract:
In addition to their possible relevance to gamma-ray bursts, coalescing binary neutron stars have long been recognized as important sources of gravitational radiation that should become detectable with the new generation of laser interferometers such as LIGO. Hydrodynamics plays an essential role near the end of the coalescence when the two stars finally merge into a single object. The shape of the corresponding burst of gravitational waves provides a direct probe into the interior structure of a neutron star and the nuclear equation of state. The interpretation of the gravitational waveform data will require detailed theoretical models of the complicated three-dimensional hydrodynamic processes involved. Here we review the results of our recent work on this problem, using both approximate quasi-analytic methods and large-scale numerical hydrodynamics calculations on supercomputers. We also discuss briefly the coalescence of white-dwarf binaries, which are also associated with a variety of interesting astrophysical phenomena.
APA, Harvard, Vancouver, ISO, and other styles
8

Mozzon, S., L. K. Nuttall, A. Lundgren, T. Dent, S. Kumar, and A. H. Nitz. "Dynamic normalization for compact binary coalescence searches in non-stationary noise." Classical and Quantum Gravity 37, no. 21 (October 20, 2020): 215014. http://dx.doi.org/10.1088/1361-6382/abac6c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cannon, Kipp, Romain Cariou, Adrian Chapman, Mireia Crispin-Ortuzar, Nickolas Fotopoulos, Melissa Frei, Chad Hanna, et al. "TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE." Astrophysical Journal 748, no. 2 (March 15, 2012): 136. http://dx.doi.org/10.1088/0004-637x/748/2/136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

WEN, LINQING, and QI CHU. "EARLY DETECTION AND LOCALIZATION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCES." International Journal of Modern Physics D 22, no. 11 (September 2013): 1360011. http://dx.doi.org/10.1142/s0218271813600110.

Full text
Abstract:
With the first detection of gravitational waves expected in the next decade, increasing efforts are made toward the electromagnetic follow-up observations of gravitational wave events. In this paper, I discuss the prospect of real-time detection and source localization for gravitational waves from neutron star–neutron star binary or neutron star–black hole binary coalescences before their merger. I show that several low-latency search pipelines are already under intensive development with the aim to provide real-time detections of these events. There will also be fast responding and/or wide-field electromagnetic telescopes available to help catch the electromagnetic or particle flashes possibly occurring during or immediately after their merger. It has been shown that a few coalescence events per year can be detected by advanced LIGO-VIRGO detector network tens of seconds before their merger. However, most of these events will have poor sky direction localization for the existing gravitational-wave detector network, making it extremely challenging for follow up observations by astronomical telescopes aiming at catching events around the merger time. A larger detector network including the planned detectors in Japan and in India will play an important role in improving the angular resolution and making prompt follow up observations much more realistic. A new detector at the Southern Hemisphere AIGO will further contribute significantly to this aspect.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Compact binary coalescence"

1

Grover, Katherine L. "Physics and astrophysics with gravitational waves from compact binary coalescence in ground based interferometers." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/6410/.

Full text
Abstract:
Advanced ground based laser interferometer gravitational wave detectors are due to come online in late 2015 and are expected to make the first direct detections of gravitational waves, with compact binary coalescence widely regarded as one of the most promising sources for detection. In Chapter I I compare two techniques for predicting the uncertainty of sky localization of these sources with full Bayesian inference. I find that timing triangulation alone tends to over-estimate the uncertainty and that average predictions can be brought to better agreement by the inclusion of phase consistency information in timing-triangulation techniques. Gravitational wave signals will provide a testing ground for the strong field dynamics of GR. Bayesian data analysis pipelines are being developed to test GR in this new regime, as presented in Chapter 3 Appendix B. In Chapter II and Appendix C I compare the predicted from of the Bayes factor, presented by Cornish et al. and Vallisneri, with full Bayesian inference. I find that the approximate scheme predicts exact results with good accuracy above fitting factors of ~ 0.9. The expected rate of detection of Compact Binary Coalescence signals has large associated uncertainties due to unknown merger rates. The tool presented in Chapter III provides a way to estimate the expected rate of specified CBC systems in a selected detector.
APA, Harvard, Vancouver, ISO, and other styles
2

Andres, Nicolas. "Optimisation de la chaîne d'analyse MBTA et développement d'une méthode d'étalonnage de la réponse fréquentielle du détecteur d'onde gravitationnelle Virgo." Electronic Thesis or Diss., Chambéry, 2023. http://www.theses.fr/2023CHAMA029.

Full text
Abstract:
La collaboration LIGO Virgo a marqué les débuts de l'astronomie gravitationnelle en apportant une preuve directe de leur existence en Septembre 2015. Ce domaine connaît depuis un bel essor dont chaque découverte permet une avancée dans les disciplines telles que l'astrophysique, la cosmologie et la physique fondamentale. À l'issue de chaque période d'observation, les détecteurs sont arrêtés et de nombreux aspects sont améliorés. Ce travail s'inscrit durant la phase de préparation entre la période O3 et O4 débutant en mai 2024 visant à configurer les interféromètres dans leurs états avancés en optimisant leurs sensibilités. L'étalonnage devient alors crucial afin de reconstruire avec précision le signal contenant l'information sur les ondes gravitationnelles, permettant les détections et la production de résultats scientifiques comme la mesure de la constante de Hubble, etc. Un travail d'instrumentation a été mené, permettant une mesure précise et régulière de l'horodatage du signal de l'interféromètre, qui doit être maitrisé à mieux que 0.01 ms près dans le but d'une analyse conjointe des données du réseau de détecteurs.De nombreux dispositifs permettant l'étalonnage de l'interféromètre reposent sur la lecture de signaux de contrôles par des photo-détecteurs dont la réponse fréquentielle a été supposée constante. Afin d'éviter tout biais introduit dans la reconstruction du signal, une méthode de mesure se doit d'être développée en vue d'une calibration en fréquence de chaque photo-détecteur impliqué. Deux méthodes sont ici comparées en vue d'une utilisation pour la période O5.Par ailleurs, la sensibilité accrue des détecteurs est synonyme de détections plus nombreuses. Les chaînes d'analyse de la collaboration se doivent de suivre les améliorations instrumentales en développant de nouveaux outils afin d'optimiser la recherche de signal en temps réel. La chaîne d'analyse à faible latence MBTA est un des 4 pipelines d'analyse de la collaboration se concentrant sur la recherche de coalescences de binaires compactes en combinant une analyse indépendante des données des 3 détecteurs. Elle dispose de nombreux outils de réjection de bruit performants, mais ne prend en compte aucune information astrophysique à priori. Grâce à l'accumulation de données dans les périodes d'observation précédentes, la collaboration a pu établir des modèles de distribution de masses plus précis pour les populations de coalescences de binaires compactes. Durant ma thèse un nouvel outil a été développé par l'équipe MBTA en utilisant ces nouvelles informations, visant à estimer la probabilité d'origine des événements (astrophysique ou non) ainsi qu'à en classifier la nature de la source astrophysique. Cet outil a finalement permis de restructurer la chaîne d'analyse globale en l'utilisant comme paramètre principal pour classer les événements selon leur niveau de significativité. La collaboration produit des alertes publiques à faible latences pour l'astronomie multi-messager, dans lesquelles sont fournies des informations liées aux signaux détectés communes aux différents pipelines d'analyses. Ne sachant pas à l'avance les préférences des différentes expériences partenaires de la collaboration LIGO Virgo pour définir les paramètres optimaux permettant un suivi multi-messagers, il a été décidé de tester une autre méthode permettant l'implémentation d'information astrophysique similaires dans la chaîne d'analyse MBTA. Une technique permettant d'inclure l'information astrophysique directement dans le paramètre définissant le classement par niveau de significativité des événements candidats est présentée. Cette méthode permet d'améliorer la recherche en fournissant une meilleure discrimination entre les événements astrophysiques et ceux provenant du bruit d'arrière-plan. En considérant la période d'observation O3 cette méthode permet d'augmenter le nombre de détection de 10% avec MBTA , détections qui ont été confirmés par les autres chaînes d'analyses
The LIGO Virgo collaboration marked the beginnings of gravitational astronomy by providing direct evidence of their existence in September 2015. The detection of gravitationnal wave coming from a binary black holes merger led to the physic's Nobel price. This field has since experienced a great growth, each discovery of which allows an advance in disciplines such as astrophysics, cosmology and fundamental physics. At the end of each observation period, the detectors are stopped and many aspects are improved. This work is part of the preparation phase between period O3 and O4 beginning in May 2024 to configure interferometers in their advanced states in order to optimize their sensitivities. Calibration then becomes crucial in order to accurately reconstruct the signal containing gravitational wave information, allowing detection and the production of scientific results such as the measurement of the Hubble constant, etc. An instrumentation work has been carried out, allowing an accurate and regular measurement of the time stamp (timing) of the readout sensing chain of the interferometer signal, which must be mastered better than 0.01 ms for the purpose of a joint analysis of the detectors network data.Many devices for the calibration of the interferometer rely on the reading of control signals by photodetectors whose frequency response has been assumed to be flat. In order to avoid any bias introduced in the reconstruction of the signal, a measurement method must be developed for a frequency calibration of each photo detector involved. Two methods are compared for use in the O5 period.In addition, the increasing sensitivity of the detectors means more detections. Collaboration analysis chains need to follow instrumental improvements by developing new tools to optimize real-time and off-ligne signal search. The MBTA Low Latency Analysis Chain is one of 4 collaboration analysis pipelines focusing on the search for compact binary coalescences by combining independent data analysis from all 3 detectors. It has many powerful noise rejection tools, but does not take into account any astrophysical information a priori. Through the accumulation of data in previous observation periods, the collaboration was able to establish more accurate mass distribution models for compact binary coalescence populations. During my thesis, a new tool was developed by the MBTA team using this new information, aimed at estimating the probability of origin of events (astrophysics or not) and at classifying the nature of the astrophysical source. This tool finally made it possible to restructure the global analysis chain by using it as the main parameter for classifying events according to their level of significance. The collaboration produces low-latency public alerts for multi-messenger astronomy, providing information related to detected signals common to the different analytical pipelines. Not knowing in advance the preferences of the different experiences partners of the LIGO Virgo collaboration to define the optimal parameters allowing multi-messenger detections, it was decided to test another method to implement similar astrophysical information in the MBTA analysis chain. A technique for including astrophysical information directly in the parameter defining the ranking by significance level of candidate events is presented. This method makes it possible to improve research by providing better discrimination between astrophysical and background noise events. By considering the observation period O3 this method makes it possible to increase the number of detection by 10% with MBTA , detections that have been confirmed by the other chains of analysis
APA, Harvard, Vancouver, ISO, and other styles
3

MacLeod, Duncan. "Improving the sensitivity of searches for gravitational waves from compact binary coalescences." Thesis, Cardiff University, 2013. http://orca.cf.ac.uk/50885/.

Full text
Abstract:
The detection of gravitational waves from the coalescence of two compact objects has been brought to within touching distance by the construction and operation of a global network of laser-interferometer detectors. However, the amplitude of the radiation from these events is so low that direct detection will require the combined innovations of advanced interferometry and detector characterisation, along with powerful methods of extracting weak, but modelled, signals from the background detector noise. This work focuses on enhancing the probability of such detection through improved identi�cation of noise artefacts in the instrumental data, and improved signal processing and extraction. We begin with a recap of the theory of gravitational waves as derived from Einstein's theory of gravity, and the mechanisms that allow propagation of this radiation away from a source. We also catalogue a number of promising astrophysical progenitors, with a focus on compact binary coalescences. We detail the interactions between gravitational waves and an observer, and describe the layout of the large-scale laser interferometers that have been built to enable direct detection. A description of the operation of these detectors during the last science run is given, focusing on their stability and sensitivity, isolating a number of key instrumental noise mechanisms and how they a�ected astrophysical searches over the data. Additionally, we illustrate a new method to improve the identi�cation of seismic noise bursts, allowing their removal from search data, improving search sensitivity. The LIGO and Virgo gravitational-wave detectors operated as a network during the last joint science run. A summary is given of the analysis pipeline used to search for gravitational waves signals from compact binary coalescences using a coincidence-based method, including details of the results of that analysis. Details are also given of the pipeline used to search for gravitational waves associated with short, hard gamma-ray bursts, in which a new coherent method was tuned to search over the reduced parameter space constrained by the electromagnetic counterpart. Finally, we present a new pipeline adapting the coherent method to the blind, all-sky, all-time search, allowing for a more sensitive analysis, as demonstrated by direct comparison.
APA, Harvard, Vancouver, ISO, and other styles
4

Indik, Nathaniel [Verfasser]. "Optimal Template Placement for Searches of Gravitational Waves from Precessing Compact Binary Coalescences / Nathaniel Indik." Hannover : Gottfried Wilhelm Leibniz Universität, 2018. http://d-nb.info/1160378878/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chan, Man Leong. "Optimization of electromagnetic follow up observations and localization of gravitational wave signals from compact binary coalescences." Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/31007/.

Full text
Abstract:
Many gravitational wave sources will produce electromagnetic signals as they emit gravitational waves. An important example is binary neutron star mergers. The joint observations and discoveries of the electromagnetic signatures of these gravitational wave sources can produce substantial scientific benefits in physics, astrophysics and cosmology. To maximize the scientific outcomes of such gravitational events as much as possible, the detections of their electromagnetic signatures are necessary. The first detection of the inspiral signals from binary neutron stars by LIGO and VIRGO, and the observations of the associated electromagnetic counterparts throughout the electromagnetic spectrum have served an excellent example. These detections and discoveries have also ushered in a new era of both gravitational wave astronomy and multi-messenger astronomy. However, using gravitational wave interferometric detectors, the sky location estimates of the gravitational wave signals from binary neutron star can span a few hundreds square degrees, unless there are three or more detectors observing the event simultaneously. The large sky localization error poses a challenge for astronomers scanning the localization error to look for the electromagnetic signals of these gravitational wave events. The electromagnetic counterparts may also not be readily detectable depending on the distance and orientation of the sources, which presents further difficulties in detecting their signals. To alleviate the situation, we develop an algorithm to maximize the detection probability of the electromagnetic counterparts of gravitational wave events. The algorithm we develop is able to generate an observing strategy that optimizes the probability of successful electromagnetic follow-up observations given limited observational resources. This is achieved by using a greedy algorithm for tiling the sky location error and Lagrange multiplier for assigning observation times to observation fields. The analysis with the algorithm also allows an estimate of the detection probability. In Chapter 3, we present a proof-of-concept demonstration of this algorithm to four telescopes Subaru-HyperSuprimeCam, CTIO-Dark Energy Camera, Palomar Transient Factory and Pan-Starrs, for three different simulated binary neutron star events, assuming kilonova to be the target electromagnetic counterpart. By applying the algorithm to telescopes with arbitrary field of view and sensitivity within a range, we provide an insight into the potential of future telescopes and other telescopes not directly included in our analysis. Moreover, the algorithm is applied to the design of a space based mission, the Einstein Probe, to find the optimal combination of the size of field of view and the sensitivity. The localization of gravitational wave sources, which is determined both by the gravitational wave signals and the detectors, is an important factor to the success of electromagnetic follow-up observations. We investigate the localization of binary neutron star mergers detected with the Einstein Telescope and Cosmic Explorer. Compared to the existing detectors, the improvement in the sensitivity of the Einstein Telescope and Cosmic Explorer in the low frequency band has many important implications. One of them is the considerable increase in the length of the in-band of the signals from binary neutron stars, which is useful in localizing the sources. In Chapter 4, using a Fisher matrix approach, we estimate the sky localization error of binary neutron stars as a population and distributed at various distances. As the extended in-band duration of signals also increases the possibility of identifying and releasing the presence of a signal prior to merger, known as early warning, we investigate the prospect for early warning of binary neutron star merger events with these detectors. While the Einstein Telescope and Cosmic Explorer hold promising future for gravitational wave astronomy, they are not likely to be operative until the 2030s. In the literature, detectors designed with more advanced technologies than LIGO and VIRGO are proposed to fill the gap in time. We estimate the localization of binary black holes with two such detectors in Australia and China and seconds generation detectors such as LIGO, LIGO India, VIRGO and KAGRA. In chapter 5, we study electromagnetic observations of binary neutron star mergers with the Large Synoptic Survey Telescope. The Large Synoptic Survey Telescope is a telescope designed with large size of field of view and excellent sensitivity in its observing bands. Such a telescope provides a promising prospect for multimessenger astronomy with gravitational waves. With its sensitivity and field of view, the telescope is expected to enable electromagnetic follow-up observations with shorter exposure time and fewer observation fields than many existing telescopes. We define a simple procedure for electromagnetic follow-up observations triggered by gravitational waves using the telescope. Taking advantages of the Fisher matrix approach in Chapter 4 for the sky location estimates, we quantify the observation time necessary for the telescope to perform electromagnetic follow-up observation of binary neutron star mergers detected with different networks of gravitational wave detectors.
APA, Harvard, Vancouver, ISO, and other styles
6

McKechan, David J. A. "On the use of higher order wave forms in the search for gravitational waves emitted by compact binary coalescences." Thesis, Cardiff University, 2010. http://orca.cf.ac.uk/54982/.

Full text
Abstract:
This thesis concerns the use, in gravitational wave data analysis, of higher order wave form models of the gravitational radiation emitted by compact binary coalescences. We begin with an introductory chapter that includes an overview of the theory of general relativity, gravitational radiation and ground-based interferometric gravitational wave detectors. We then discuss, in Chapter 2, the gravitational waves emitted by compact binary coalescences, with an explanation of higher order waveforms and how they differ from leading order waveforms we also introduce the post-Newtonian formalism. In Chapter 3 the method and results of a gravitational wave search for low mass compact binary coalescences using a subset of LIGO's 5th science run data are presented and in the subsequent chapter we examine how one could use higher order waveforms in such analyses. We follow the development of a new search algorithm that incorporates higher order waveforms with promising results for detection efficiency and parameter estimation. In Chapter 5, a new method of windowing time-domain waveforms that offers benefit to gravitational wave searches is presented. The final chapter covers the development of a game designed as an outreach project to raise public awareness and understanding of the search for gravitational waves.
APA, Harvard, Vancouver, ISO, and other styles
7

Cabero, Müller Miriam Anabel [Verfasser]. "Gravitational-wave astronomy with compact binary coalescences : from blip glitches to the black hole area increase law / Miriam Anabel Cabero Müller." Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2018. http://d-nb.info/1165251078/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cabero, Müller Miriam [Verfasser]. "Gravitational-wave astronomy with compact binary coalescences : from blip glitches to the black hole area increase law / Miriam Anabel Cabero Müller." Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2018. http://d-nb.info/1165251078/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Simakov, Dmitry [Verfasser]. "Dynamical tuning of a signal recycled gravitational wave detector : dynamical effects and sensitivity gain of dynamical tuning during detection of a chirp signal from compact binary coalescences / Dmitry Simakov." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2014. http://d-nb.info/1051038081/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Frei, Melissa Anne. "Comparative efficiency and parameter recovery of spin aligned templates for compact binary coalescence detection." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-08-4170.

Full text
Abstract:
Compact binary coalescing systems: binary neutron stars, neutron star black hole pairs and binary black hole systems, represent promising candidates for gravitational wave first detection and have the potential to provide precise tests of the strong-field predictions of general relativity. Observations of binary black hole (BBH) systems will provide a wealth of information relevant to fundamental physics, astrophysics and cosmology. The search for such systems is a major priority of the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations. A major area of research within LIGO-Virgo analysis groups is incorporation of spin into the search template banks used for binary black hole systems. In this dissertation, I compare the injection efficiency and parameter recovery from three binary black hole searches. One of the searches presented here uses non-spinning templates and represents the standard LIGO search for binary black holes with total masses between 35 and 100M[circle with dot]. The other two use spin aligned and anti-aligned templates representing a future search for black hole binary systems with total masses between 35-100M[circle with dot]. One of the two spinning searches has the spin parameter set to zero, nonspinning, as a check of the spinning method. (Additionally the (anti-)aligned spin searches use a retooling of the standard pipeline taking advantage of a code base designed specifically to handle Advanced LIGO data.) All three searches were run on artificial data created by the Numerical Injection Analysis 2 collaboration (NINJA2) containing Gaussian noise and numerically generated signals modeling aligned and anti-aligned spinning binary black holes. I found that for the analyzed two weeks of data the three searches recover injections with nearly equal efficiency; however, the spinning search recovers the parameters of the injections more accurately than the non-spinning search. Specifically, the parameter recovery of the spins shows a correlation between the injected and recovered spins, and the addition of spin to the template bank improves the recovery of the signal-to-noise ratio and the chirp mass for an injected signal. While spin aligned situations are geometrically low probability configurations, there are plausible astrophysical effects that lead to alignment of spins prior to merger. Therefore my results show that the spin-aligned template bank search represents an improvement on the standard non-spinning search in the highmass region and should be pursued on real data.
text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Compact binary coalescence"

1

Pretorius, Frans. "Binary Black Hole Coalescence." In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 305–69. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Israel, Gian Luca, and Simone Dall'Osso. "White Dwarfs in Ultrashort Binary Systems." In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 281–304. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Damour, Thibault. "Binary Systems as Test-Beds of Gravity Theories." In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 1–41. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kramer, Michael. "Exploiting Binary Pulsars as Laboratories of Gravity Theories." In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 43–75. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stella, L. "Strong Gravitational Field Diagnostics in Binary Systems Containing a Compact Object." In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 265–80. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Coalescence of binary compact objects." In Numerical Relativity, 447–590. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814699730_0008.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Compact binary coalescence"

1

Buonanno, Alessandra, Ye-Fei Yuan, Xiang-Dong Li, and Dong Lai. "Binary Black Hole Coalescence." In ASTROPHYSICS OF COMPACT OBJECTS: International Conference on Astrophysics of Compact Objects. AIP, 2008. http://dx.doi.org/10.1063/1.2840417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Caudill, Sarah. "Techniques for gravitational-wave detection of compact binary coalescence." In 2018 26th European Signal Processing Conference (EUSIPCO). IEEE, 2018. http://dx.doi.org/10.23919/eusipco.2018.8553549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

DEN BROECK, CHRIS VAN. "COMPACT BINARY COALESCENCE AND THE SCIENCE CASE FOR EINSTEIN TELESCOPE." In Proceedings of the MG12 Meeting on General Relativity. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814374552_0302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Takeda, Hiroki, Yuta Michimura, Kentaro Komori, Masaki Ando, Atsushi Nishizawa, Koji Nagano, and Kazuhiro Hayama. "Polarization test of gravitational waves from compact binary coalescences." In Proceedings of the MG15 Meeting on General Relativity. WORLD SCIENTIFIC, 2022. http://dx.doi.org/10.1142/9789811258251_0247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Verma, Chetan, Amit Reza, Dilip Krishnaswamy, Sarah Caudill, and Gurudatt Gaur. "Employing deep learning for detection of gravitational waves from compact binary coalescences." In INNOVATIONS IN COMPUTATIONAL AND COMPUTER TECHNIQUES: ICACCT-2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0108682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Marion, F., Vicky Kologera, and Marc van der Sluys. "Searches for Gravitational Waves from Compact Binary Coalescences with the LIGO and Virgo Detectors." In INTERNATIONAL CONFERENCE ON BINARIES: In celebration of Ron Webbink’s 65th Birthday. AIP, 2010. http://dx.doi.org/10.1063/1.3536398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sasaoka, Seiya, Yilun Hou, Diego Sebastian Dominguez, Suyog Garg, Naoki Koyama, Yuto Omae, Kentaro Somiya, and Hirotaka Takahashi. "Deep Learning for Detecting Gravitational Waves from Compact Binary Coalescences and Its Visualization by Grad-CAM." In 38th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2023. http://dx.doi.org/10.22323/1.444.1498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography