Journal articles on the topic 'Commutant Lifting Theorem'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 39 journal articles for your research on the topic 'Commutant Lifting Theorem.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bercovici, Hari, Ciprian Foias, and Allen Tannenbaum. "A spectral commutant lifting theorem." Transactions of the American Mathematical Society 325, no. 2 (February 1, 1991): 741–63. http://dx.doi.org/10.1090/s0002-9947-1991-1000144-9.
Full textSzehr, Oleg, and Rachid Zarouf. "Interpolation without commutants." Journal of Operator Theory 84, no. 1 (May 15, 2020): 239–56. http://dx.doi.org/10.7900/jot.2019may21.2264.
Full textPopescu, Gelu. "Andô dilations and inequalities on non-commutative domains." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 148, no. 6 (July 6, 2018): 1239–67. http://dx.doi.org/10.1017/s030821051800015x.
Full textPopescu, Gelu. "!COMMUTANT LIFTING, TENSOR ALGEBRAS, AND FUNCTIONAL CALCULUS." Proceedings of the Edinburgh Mathematical Society 44, no. 2 (June 2001): 389–406. http://dx.doi.org/10.1017/s0013091598001059.
Full textBall, J. A., W. S. Li, D. Timotin, and T. T. Trent. "A commutant lifting theorem on the polydisc." Indiana University Mathematics Journal 48, no. 2 (1999): 0. http://dx.doi.org/10.1512/iumj.1999.48.1708.
Full textSultanic, Saida. "Commutant Lifting Theorem for the Bergman Space." Integral Equations and Operator Theory 55, no. 4 (May 3, 2006): 573–95. http://dx.doi.org/10.1007/s00020-006-1442-4.
Full textGu, Caixing. "On causality in commutant lifting theorem. I." Integral Equations and Operator Theory 16, no. 1 (March 1993): 82–97. http://dx.doi.org/10.1007/bf01196603.
Full textTimotin, Dan. "Completions of matrices and the commutant lifting theorem." Journal of Functional Analysis 104, no. 2 (March 1992): 291–98. http://dx.doi.org/10.1016/0022-1236(92)90002-z.
Full textFreydin, Boris. "Commutant lifting theorem and interpolation in discrete nest algebras." Integral Equations and Operator Theory 29, no. 2 (June 1997): 211–30. http://dx.doi.org/10.1007/bf01191431.
Full textTimotin, Dan. "The weighted commutant lifting theorem in the coupling approach." Integral Equations and Operator Theory 42, no. 4 (December 2002): 493–97. http://dx.doi.org/10.1007/bf01270926.
Full textBall, Joseph A., and Israel Gohberg. "A commutant lifting theorem for triangular matrices with diverse applications." Integral Equations and Operator Theory 8, no. 2 (March 1985): 205–67. http://dx.doi.org/10.1007/bf01202814.
Full textAgler, J., and N. J. Young. "A Commutant Lifting Theorem for a Domain in C2and Spectral Interpolation." Journal of Functional Analysis 161, no. 2 (February 1999): 452–77. http://dx.doi.org/10.1006/jfan.1998.3362.
Full textFrazho, Arthur E. "A note on the commutant lifting theorem and a Generalized four block problem." Integral Equations and Operator Theory 14, no. 2 (March 1991): 299–303. http://dx.doi.org/10.1007/bf01199910.
Full textFoias, C., A. E. Frazho, I. Gohberg, and M. A. Kaashoek. "A time-variant version of the commutant lifting theorem and nonstationary interpolation problems." Integral Equations and Operator Theory 28, no. 2 (June 1997): 158–90. http://dx.doi.org/10.1007/bf01191816.
Full textFoias, Ciprian, Caixing Gu, and Allen Tannenbaum. "Nonlinearity inH ?-control theory, causality in the commutant lifting theorem, and extension of intertwining operators." Integral Equations and Operator Theory 23, no. 1 (March 1995): 89–100. http://dx.doi.org/10.1007/bf01261204.
Full textMarcantognini, S. A. M., and M. D. Morán. "A Schur Analysis of the Minimal Weak Unitary Dilations of a Contraction Operator and the Relaxed Commutant Lifting Theorem." Integral Equations and Operator Theory 64, no. 2 (June 2009): 273–99. http://dx.doi.org/10.1007/s00020-009-1686-x.
Full textBruzual, Ramon, and Marisela Dominguez. "Equivalence between the dilation and lifting properties of an ordered group through multiplicative families of isometries. A version of the commutant lifting theorem on some lexicographic groups." Integral Equations and Operator Theory 40, no. 1 (March 2001): 1–15. http://dx.doi.org/10.1007/bf01202951.
Full textBurdak, Zbigniew, and Wiesław Grygierzec. "On dilation and commuting liftings of n-tuples of commuting Hilbert space contractions." Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 19, no. 1 (December 1, 2020): 121–39. http://dx.doi.org/10.2478/aupcsm-2020-0010.
Full textMarcantognini, S. A. M., and M. D. Morán. "A Schur type analysis of the minimal weak unitary Hilbert space dilations of a Kreĭn space bicontraction and the Relaxed Commutant Lifting Theorem in a Kreĭn space setting." Journal of Functional Analysis 259, no. 10 (November 2010): 2557–86. http://dx.doi.org/10.1016/j.jfa.2010.07.008.
Full textGu, C. X. "On Causal Commutant Lifting Theorems." Journal of Mathematical Analysis and Applications 178, no. 2 (September 1993): 404–17. http://dx.doi.org/10.1006/jmaa.1993.1315.
Full textPopescu, Gelu. "A lifting theorem for symmetric commutants." Proceedings of the American Mathematical Society 129, no. 6 (October 31, 2000): 1705–11. http://dx.doi.org/10.1090/s0002-9939-00-05750-6.
Full textFrazho, A. E., S. ter Horst, and M. A. Kaashoek. "Coupling and Relaxed Commutant Lifting." Integral Equations and Operator Theory 54, no. 1 (October 1, 2005): 33–67. http://dx.doi.org/10.1007/s00020-005-1365-5.
Full textMcCullough, Scott, and Saida Sultanic. "Ersatz Commutant Lifting with Test Functions." Complex Analysis and Operator Theory 1, no. 4 (June 25, 2007): 581–620. http://dx.doi.org/10.1007/s11785-007-0022-1.
Full textter Horst, S. "Redheffer Representations and Relaxed Commutant Lifting." Complex Analysis and Operator Theory 5, no. 4 (February 9, 2010): 1051–72. http://dx.doi.org/10.1007/s11785-010-0046-9.
Full textMcCullough, Scott. "Commutant lifting on a two holed domain." Integral Equations and Operator Theory 35, no. 1 (March 1999): 65–84. http://dx.doi.org/10.1007/bf01225528.
Full textRusso, Benjamin. "Lifting commuting 3-isometric tuples." Operators and Matrices, no. 2 (2017): 397–433. http://dx.doi.org/10.7153/oam-11-28.
Full textRusso, Benjamin. "Lifting commuting 3-isometric tuples." Operators and Matrices, no. 2 (2017): 397–433. http://dx.doi.org/10.7153/oam-2017-11-28.
Full textBall, Joseph A. "Commutant lifting and interpolation: The time-varying case." Integral Equations and Operator Theory 25, no. 4 (December 1996): 377–405. http://dx.doi.org/10.1007/bf01203025.
Full textBiswas, Animikh. "A harmonic-type maximal principle in commutant lifting." Integral Equations and Operator Theory 28, no. 4 (December 1997): 373–81. http://dx.doi.org/10.1007/bf01309154.
Full textStochel, Jan. "Lifting strong commutants of unbounded subnormal operators." Integral Equations and Operator Theory 43, no. 2 (June 2002): 189–214. http://dx.doi.org/10.1007/bf01200253.
Full textBall, Joseph A., and Alexander Kheifets. "The Inverse Commutant Lifting Problem. I: Coordinate-Free Formalism." Integral Equations and Operator Theory 70, no. 1 (March 25, 2011): 17–62. http://dx.doi.org/10.1007/s00020-011-1873-4.
Full textLee, Sang Hoon, Woo Young Lee, and Jasang Yoon. "Subnormality of Powers of Multivariable Weighted Shifts." Journal of Function Spaces 2020 (November 27, 2020): 1–11. http://dx.doi.org/10.1155/2020/5678795.
Full textMüller, Vladimir. "Liftings and dilations of commuting systems of linear mappings on vector spaces." Operators and Matrices, no. 2 (2023): 567–72. http://dx.doi.org/10.7153/oam-2023-17-37.
Full textBhattacharyya, Tirthankar, B. Krishna Das, and Haripada Sau. "Toeplitz Operators on the Symmetrized Bidisc." International Mathematics Research Notices, January 11, 2020. http://dx.doi.org/10.1093/imrn/rnz333.
Full textDidas, Michael. "A-Isometries and Hilbert-A-Modules Over Product Domains." Complex Analysis and Operator Theory 16, no. 5 (June 18, 2022). http://dx.doi.org/10.1007/s11785-022-01243-6.
Full textBisai, Bappa, Sourav Pal, and Prajakta Sahasrabuddhe. "On q-commuting co-extensions and q-commutant lifting." Linear Algebra and its Applications, November 2022. http://dx.doi.org/10.1016/j.laa.2022.11.003.
Full textDeepak, K. D., Deepak Kumar Pradhan, Jaydeb Sarkar, and Dan Timotin. "Commutant Lifting and Nevanlinna–Pick Interpolation in Several Variables." Integral Equations and Operator Theory 92, no. 3 (June 2020). http://dx.doi.org/10.1007/s00020-020-02582-9.
Full textDolžan, David. "Invertible matrices over a class of semirings." Journal of Algebra and Its Applications, December 30, 2021. http://dx.doi.org/10.1142/s0219498823500792.
Full textFrazho, A. E., M. A. Kaashoek, and F. van Schagen. "Solving Continuous Time Leech Problems for Rational Operator Functions." Integral Equations and Operator Theory 94, no. 3 (August 18, 2022). http://dx.doi.org/10.1007/s00020-022-02710-7.
Full text