Academic literature on the topic 'Commutant Lifting Theorem'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Commutant Lifting Theorem.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Commutant Lifting Theorem"
Bercovici, Hari, Ciprian Foias, and Allen Tannenbaum. "A spectral commutant lifting theorem." Transactions of the American Mathematical Society 325, no. 2 (February 1, 1991): 741–63. http://dx.doi.org/10.1090/s0002-9947-1991-1000144-9.
Full textSzehr, Oleg, and Rachid Zarouf. "Interpolation without commutants." Journal of Operator Theory 84, no. 1 (May 15, 2020): 239–56. http://dx.doi.org/10.7900/jot.2019may21.2264.
Full textPopescu, Gelu. "Andô dilations and inequalities on non-commutative domains." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 148, no. 6 (July 6, 2018): 1239–67. http://dx.doi.org/10.1017/s030821051800015x.
Full textPopescu, Gelu. "!COMMUTANT LIFTING, TENSOR ALGEBRAS, AND FUNCTIONAL CALCULUS." Proceedings of the Edinburgh Mathematical Society 44, no. 2 (June 2001): 389–406. http://dx.doi.org/10.1017/s0013091598001059.
Full textBall, J. A., W. S. Li, D. Timotin, and T. T. Trent. "A commutant lifting theorem on the polydisc." Indiana University Mathematics Journal 48, no. 2 (1999): 0. http://dx.doi.org/10.1512/iumj.1999.48.1708.
Full textSultanic, Saida. "Commutant Lifting Theorem for the Bergman Space." Integral Equations and Operator Theory 55, no. 4 (May 3, 2006): 573–95. http://dx.doi.org/10.1007/s00020-006-1442-4.
Full textGu, Caixing. "On causality in commutant lifting theorem. I." Integral Equations and Operator Theory 16, no. 1 (March 1993): 82–97. http://dx.doi.org/10.1007/bf01196603.
Full textTimotin, Dan. "Completions of matrices and the commutant lifting theorem." Journal of Functional Analysis 104, no. 2 (March 1992): 291–98. http://dx.doi.org/10.1016/0022-1236(92)90002-z.
Full textFreydin, Boris. "Commutant lifting theorem and interpolation in discrete nest algebras." Integral Equations and Operator Theory 29, no. 2 (June 1997): 211–30. http://dx.doi.org/10.1007/bf01191431.
Full textTimotin, Dan. "The weighted commutant lifting theorem in the coupling approach." Integral Equations and Operator Theory 42, no. 4 (December 2002): 493–97. http://dx.doi.org/10.1007/bf01270926.
Full textDissertations / Theses on the topic "Commutant Lifting Theorem"
Mandal, Samir Ch. "Dilation Theory of Contractions and Nevanlinna-Pick Interpolation Problem." Thesis, 2014. http://etd.iisc.ac.in/handle/2005/4110.
Full textBooks on the topic "Commutant Lifting Theorem"
Foiaş, Ciprian. The commutant lifting approach to interpolation problems. Basel: Birkhäuser, 1990.
Find full textCiprian, Foiaş, ed. Metric constrained interpolation, commutant lifting, and systems. Basel: Birkhäuser, 1998.
Find full textThe Commutant Lifting Approach to Interpolation Problems. Springer, 2013.
Find full textBook chapters on the topic "Commutant Lifting Theorem"
Foias, Ciprian, and Arthur E. Frazho. "The Commutant Lifting Theorem." In The Commutant Lifting Approach to Interpolation Problems, 153–90. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-7712-1_7.
Full textFoias, C., A. E. Frazho, I. Gohberg, and M. A. Kaashoek. "Proofs Using the Commutant Lifting Theorem." In Metric Constrained Interpolation, Commutant Lifting and Systems, 51–72. Basel: Birkhäuser Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-8791-5_3.
Full textFoias, C., A. E. Frazho, I. Gohberg, and M. A. Kaashoek. "A General Completion Theorem." In Metric Constrained Interpolation, Commutant Lifting and Systems, 423–67. Basel: Birkhäuser Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-8791-5_13.
Full textFoias, Ciprian, and Arthur E. Frazho. "Geometric Applications of the Commutant Lifting Theorem." In The Commutant Lifting Approach to Interpolation Problems, 191–232. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-7712-1_8.
Full textGu, Caixing. "On a Nonlinear Causal Commutant Lifting Theorem." In Operator Theory and Interpolation, 195–212. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8422-8_9.
Full textFoias, Ciprian, and Arthur E. Frazho. "Inverse Scattering Algorithms for the Commutant Lifting Theorem." In The Commutant Lifting Approach to Interpolation Problems, 367–426. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-7712-1_13.
Full textFoias, C., A. E. Frazho, I. Gohberg, and M. A. Kaashoek. "Applications of the Three Chains Completion Theorem to Interpolation." In Metric Constrained Interpolation, Commutant Lifting and Systems, 469–95. Basel: Birkhäuser Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-8791-5_14.
Full textBruzual, Ramon, and Marisela Dominguez. "A Proof of the Continuous Commutant Lifting Theorem." In Operator Theory and Related Topics, 83–89. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8413-6_6.
Full textGadidov, Radu. "On the Commutant Lifting Theorem and Hankel Operators." In Algebraic Methods in Operator Theory, 3–9. Boston, MA: Birkhäuser Boston, 1994. http://dx.doi.org/10.1007/978-1-4612-0255-4_1.
Full textDijksma, Aad, Michael Dritschel, Stefania Marcantognini, and Henk de Snoo. "The Commutant Lifting Theorem for Contractions on Kreĭn Spaces." In Operator Extensions, Interpolation of Functions and Related Topics, 65–83. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-8575-1_4.
Full textConference papers on the topic "Commutant Lifting Theorem"
Ambrozie, Calin, and Jörg Eschmeier. "A commutant lifting theorem on analytic polyhedra." In Topological Algebras, their Applications, and Related Topics. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2005. http://dx.doi.org/10.4064/bc67-0-7.
Full text