Academic literature on the topic 'Community microgrid'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Community microgrid.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Community microgrid"
Samanta, Hiranmay, Abhijit Das, Indrajt Bose, Joydip Jana, Ankur Bhattacharjee, Konika Das Bhattacharya, Samarjit Sengupta, and Hiranmay Saha. "Field-Validated Communication Systems for Smart Microgrid Energy Management in a Rural Microgrid Cluster." Energies 14, no. 19 (October 4, 2021): 6329. http://dx.doi.org/10.3390/en14196329.
Full textKarystinos, Christos, Athanasios Vasilakis, Panos Kotsampopoulos, and Nikos Hatziargyriou. "Local Energy Exchange Market for Community Off-Grid Microgrids: Case Study Los Molinos del Rio Aguas." Energies 15, no. 3 (January 19, 2022): 703. http://dx.doi.org/10.3390/en15030703.
Full textZareein, Mohammad, Jalal Sahebkar Farkhani, Amirhossein Nikoofard, and Turaj Amraee. "Optimizing Energy Management in Microgrids Based on Different Load Types in Smart Buildings." Energies 16, no. 1 (December 21, 2022): 73. http://dx.doi.org/10.3390/en16010073.
Full textHo, Hai N., Tony Bui, Hau Do, Eliud Rojas, Omar Ojeda, Hien Tran, Tommy Hoang, Edwin Hernandez, Loc Nguyen, and Ha Thu Le. "Design and Simulation of an Autonomous Smart Microgrid for Energy Independence." WSEAS TRANSACTIONS ON ENVIRONMENT AND DEVELOPMENT 17 (August 23, 2021): 911–28. http://dx.doi.org/10.37394/232015.2021.17.85.
Full textRahimian, Mina, Lisa D. Iulo, and Jose M. Pinto Duarte. "A Review of Predictive Software for the Design of Community Microgrids." Journal of Engineering 2018 (2018): 1–13. http://dx.doi.org/10.1155/2018/5350981.
Full textLi, Rui, and Peng Li. "Community Based of CHP Microgrid Optimal Operation." Advanced Materials Research 981 (July 2014): 673–76. http://dx.doi.org/10.4028/www.scientific.net/amr.981.673.
Full textChe, Liang, Mohammad Shahidehpour, Ahmed Alabdulwahab, and Yusuf Al-Turki. "Hierarchical Coordination of a Community Microgrid With AC and DC Microgrids." IEEE Transactions on Smart Grid 6, no. 6 (November 2015): 3042–51. http://dx.doi.org/10.1109/tsg.2015.2398853.
Full textMina-Casaran, Juan David, Diego Fernando Echeverry, Carlos Arturo Lozano, and Alejandro Navarro-Espinosa. "On the Value of Community Association for Microgrid Development: Learnings from Multiple Deterministic and Stochastic Planning Designs." Applied Sciences 11, no. 14 (July 7, 2021): 6257. http://dx.doi.org/10.3390/app11146257.
Full textVivas, Francisco José, Francisca Segura, José Manuel Andújar, Adriana Palacio, Jaime Luis Saenz, Fernando Isorna, and Eduardo López. "Multi-Objective Fuzzy Logic-Based Energy Management System for Microgrids with Battery and Hydrogen Energy Storage System." Electronics 9, no. 7 (June 30, 2020): 1074. http://dx.doi.org/10.3390/electronics9071074.
Full textSolano, Javier, Diego Jimenez, and Adrian Ilinca. "A Modular Simulation Testbed for Energy Management in AC/DC Microgrids." Energies 13, no. 16 (August 5, 2020): 4049. http://dx.doi.org/10.3390/en13164049.
Full textDissertations / Theses on the topic "Community microgrid"
Krovvidi, Sai S. "Competitive Microgrid Electricity Market Design." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/32964.
Full textMaster of Science
Vosloo, Arno. "Agent-based energy management system for remote community microgrid." Thesis, Cape Peninsula University of Technology, 2015. http://hdl.handle.net/20.500.11838/1188.
Full textRural communities are often unable to access electrical energy due to their distant location away from the national grid. Renewable energy sources (RESs) make it possible to provide electrical energy to these isolated areas. Sustainable generation is possible at a local level and is not dependant on connection to a national power grid. Microgrids are small scale, stand-alone electricity networks that harness energy at its geographical location, from natural resources. These small scale power grids are either connected to a national grid or operate separately by obtaining their power from an RES. Microgrids are becoming increasingly popular because they can provide electricity, independently of the national grid. The size of microgrid systems are dependent on the amount of energy that needs to be drawn and the amount of energy that has to be stored. Mechanical and electrical system component sizes become bigger due to increased operational energy requirements. Increases in component sizes are required on growing power networks when higher current levels are drawn. Energy management of microgrids must thus be introduced to prevent overloading the power grid network and to extend the operational life of the storage batteries. Energy management systems consist of different components which are seen as operational units. Operational units are responsible for measurement, communication, decision–making and power supply switching control, to manipulate the power output to meet the energy demands. Due to the increasing popularity of DC home appliances, it is important to explore the possibility of keeping these microgrids on a DC voltage basis. Electrical generation equipment such as photovoltaic panels can be used to generate DC at designed voltage levels. The energy management system connects the user loads and generation units together to form the microgrid. The aim of this study was to carry out the design of an agent–based energy management system for rural and under-developed communities. It investigates how the control of the output of the energy management system can be carried out to service the loads. The simulations were done using the following software packages: Simulink, Matlab, and SimPowerSystems. PV sources, energy management system (EMS) and user load parameters are varied in the simulation software to observe how the control algorithm executes load shedding. A stokvel-type charge share concept is dealt with where the state-of-charge (SOC) of batteries and user consumption will determine how grid loads are managed. Load shedding within the grid is executed by monitoring energy flow and calculating how much energy is allowed to be used by each consumer. The energy management system is programmed to always provide the largest amount of energy to the consumer with the lowest energy consumption for each day. The batteries store surplus electrical energy during the day. Load shedding starts at 18:00 each day. Users will be disconnected from the grid whenever their allotted energy capacity were depleted.
Zhang, Fan. "Operation of Networked Microgrids in the Electrical Distribution System." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1467974481.
Full textsavelli, iacopo. "Towards the Integration of Electricity Markets: System-wide and Local Solutions." Doctoral thesis, Università di Siena, 2019. http://hdl.handle.net/11365/1068717.
Full textYuan, Chen. "RESILIENT DISTRIBUTION SYSTEMS WITH COMMUNITY MICROGRIDS." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1480478081556766.
Full textRavindra, Kumudhini. "Community Microgrids for Decentralized Energy Demand-Supply Matching : An Inregrated Decision Framework." Thesis, 2011. http://etd.iisc.ernet.in/2005/3911.
Full textVafaei, Mehdi. "Optimally-Sized Design of a Wind/Diesel/Fuel Cell Hybrid System for a Remote Community." Thesis, 2011. http://hdl.handle.net/10012/6303.
Full textIldefonso, Maria Beatriz Piedade Moreira de Moura Ildefonso. "Community energy microgrids: the role of energy exchange between prosumers." Master's thesis, 2018. http://hdl.handle.net/10451/36343.
Full textIn the European Union, the current energy paradigm promotes the deployment and integration of renewables, particularly of the distributed kind, as a way to increase the share of clean energy in the global energy mix. Investments made in this sense have simultaneously been allowing and leading towards the integration of energy produced at the local level on the distribution grid. Recent price drops in small and micro scale energy generation systems have allowed residential consumers to invest in small scale units for self-production. Due to its low maintenance requirements and modularity, photovoltaic panels are the preferred choice when it comes to small energy generation. However, as solar energy alone cannot match all daily consumption needs, only by investments in energy storage units one can further decrease the dependency on the main grid. In this dissertation a second option is suggested – energy exchange between local prosumers in a smart microgrid. The hypothesis was studied through the simulation, in AIMMS software, of an energy system intended to reproduce a typical urban neighborhood, composed by six prosumers of different activity sectors and, hence, having different daily load profiles. Considering that at least some of those will have an energy surplus during a part of the day, the idea of a local energy market for trading such surplus is introduced. For the management of this virtual energy market, two models were proposed: a centralized management model, which is intended to simulate a microgrid controlled by a single entity holding access to all data regarding production and demand of the microgrid participants, and a decentralized management model, simulating a scenario where prosumers individually manage their energy trades. Both models were optimized with mixed integer linear programming for cost minimization and simulated for four day-types, with hourly time intervals: winter week- and weekend-days and summer week- and weekend-days. A base scenario with no energy exchange between the prosumers, only with the main grid, serves as a reference for comparison. The results were quantified in terms of self-consumed power and financial balance analyses. Finally, a contextualization for the Portuguese legislation regarding self-consumption was made, in order to determine if this case-study and corresponding results could be adequate for the national legal situation. The results show that very similar outcomes of self-consumption are obtained for both management approaches, with a maximum daily divergence of 2,3%. Considering the overall average for the daily self-consumption values obtained, the difference between the two models is below 1%. When comparing with the base scenario it was verified that, on average, an overall 10% increase in self-consumption is obtained for the micro-grid as a whole. Regarding the financial outcomes, the application of a local energy market for energy exchange between microgrid prosumers resulted in an energy surplus valorization of 135%, on average for the day types simulated, compared to the value stipulated by the Portuguese legislation for self-consumption units. As a logical consequence of this result, an average of 21,6% increase in overall revenues for the prosumers was verified, compared with the revenues in the base scenario. The highest increases on the revenues are verified in the winter week-day scenario, in particular for the office. On average, the individual costs’ reduction is 1,2%, mostly due to savings during the summer. An overall economic analysis on the expected electricity bill of each prosumer and for the microgrid as a whole, revealed that the local energy market can cause a bill reduction of 3,3% for the winter week, and 5,3% for the summer. It can be concluded that, when considering the whole microgrid, the overall economic benefits in terms of economic savings are not so relevant as the results obtained in terms of self-consumed energy, for this particular case-study, although a more profound economic evaluation would be interesting to fully acknowledge the impacts of the observed financial benefits on the overall implied investment. When analyzing the results under the Portuguese legal framework it was concluded that 3 of the production units were oversized in terms of resulting connection power.
No atual contexto de descarbonização da rede energética e da sua transição para um modelo de funcionamento mais distribuído e flexível, tem sido dado uma ênfase crescente ao papel que as micro redes poderão desempenhar na integração de fontes de energia descentralizadas e de pequena escala nas redes nacionais. Por outro lado, o paradigma atual é de desruralização e crescimento e densificação das cidades, criando necessidade de fomentar a produção de energia próxima do consumo em ambiente urbano, mesmo com todas as limitações associadas, e.g. de espaço. Uma das formas de aproveitamento descentralizado de energia mais utilizadas na atualidade é a conversão de energia solar em energia elétrica através de painéis solares fotovoltaicos. A nível global tem-se assistido a uma grande adesão a esta tecnologia, que pode ser explicada pelas políticas económicas de incentivo à sua utilização e constantes desenvolvimentos na tecnologia que levaram a uma queda no seu preço de mercado, tornando-a competitiva mesmo sem subsídios. Isto levou a que utilizadores e investidores de pequena escala apostassem em unidades para autoconsumo ou pequena produção, com ou sem ligação à rede elétrica nacional. As pequenas unidades urbanas de produção de energia solar fotovoltaica têm vindo portanto a ganhar destaque, embora a sua curva de produção coincida com a da radiação solar disponível a cada instante, tornando indispensável o recurso a sistemas de armazenamento de energia, como baterias, ou a esquemas de venda de energia à rede em horas de produção excessiva, eventualmente beneficiando de tarifas subsidiadas, e à compra em horas de défice. Uma terceira alternativa é exposta nesta dissertação – a da troca de energia entre consumidores-produtores (para os quais foi criada a designação de ‘prosumers’) de uma micro-rede. Neste trabalho analisa-se um caso em que dado conjunto de prosumers com painéis fotovoltaicos instalados no espaço disponível da cobertura dos respetivos edifícios consumem em primeira instância a energia que produzem, sendo o excesso disponibilizado num mercado local de energia para venda aos restantes prosumers. Para demonstrar os hipotéticos benefícios desta alternativa, dois cenários com modos diferentes de gestão de micro-redes, com troca de energia, foram comparados com um cenário base, sem troca de energia. Os cenários foram montados para o mesmo sistema energético, constituído por seis prosumers (dois prédios residenciais, um restaurante, uma escola, um pequeno escritório, e um banco). Os dois diferentes modelos de gestão são: (1) gestão centralizada , que pretende simular um cenário em que existe uma unidade central gestora que tem total conhecimento e acesso aos perfis de produção e consumo dos participantes da micro-rede durante o dia todo, e com essa informação gere os recursos; (2) gestão descentralizada, que simula uma situação em que cada prosumer gere a energia que compra no mercado energético consoante o preço desta em comparação com a da rede nacional. Os dois modelos incluem uma otimização matemática do balanço entre custos e receitas, com vista à minimização da conta da energia para os prosumers da micro rede em estudo. Para fins de simulação, os consumidores foram considerados clientes da EDP, e divididos em escalões de potência contratada, de maneira a definir os preços a pagar pela energia da rede nacional. Os dados de consumo dos consumidores residenciais (dois prédios com vários apartamentos) e do banco foram cedidos pela Intelligent Sensing Anywhere, referentes a consumidores de Lisboa, com formatação de intervalos de quinze em quinze minutos. Os restantes perfis foram retirados de uma base de dados de perfis padrão criada pelo Departamento de Energia dos Estados Unidos da América, com intervalos de tempo horários. Assim dos perfis anuais foram escolhidas semanas representativas da época de Verão e Inverno para cada consumidor, e destas foram selecionados dois dias representativos, um dia de semana e um dia de fim-de-semana. Referentemente à produção fotovoltaica, foram feitos dimensionamentos dos sistemas fotovoltaicos com base na média do consumo diário para os dias considerados, permitindo, de acordo com as áreas consideradas como sendo utilizáveis para o efeito, determinar o número de painéis a instalar e a capacidade instalada para cada um. De acordo com os resultados das simulações foi possível verificar as diferenças entre os modelos de gestão do mercado local e o cenário base sem troca de energia, em termos de autoconsumo, individual e coletivo, e balanço financeiro, bem como uma análise detalhada aos custos e receitas obtidos por cada um. A análise das simulações permitiu verificar que as diferenças obtidas entre os modelos centralizado e descentralizado são pouco significativas– uma análise comparativa dos valores de autoconsumo do sistema para os dois casos demonstra uma diferença máxima de 2,3 %, no dia de semana de Inverno, sendo que para o dia de verão de fim-de-semana a diferença era inexistente. Para os restantes dias, o nível de autoconsumo no sistema estudado foi superior sob gestão centralizada. Assumindo uma relação entre o aumento da diferença entre o autoconsumo para cada modelo e a quantidade de energia disponível no mercado local (no Inverno há menos produção pelos painéis fotovoltaicos e os consumos são superiores nos dias de semana), procurou-se demonstrar que estas diferenças podem ser explicadas como uma resposta aos preços praticados. Por outras palavras, no modelo descentralizado havendo menos energia disponível para venda no mercado local da micro-rede, a tendência será para os preços subirem, o que eu comparação com o preço de comprar à rede nacional pode tornar o mercado local uma fonte de energia menos atrativa. Já para o modelo centralizado, onde uma entidade gestora tem informação plena, terá presumivelmente capacidade para atribuir preços mais baixos à energia no mercado local, mesmo quando há pouca energia disponível, de maneira a aumentar o rendimento do sistema no seu todo. Comparativamente ao cenário base, verificou-se que em termos diários se atingiram aumentos em média de 10% na quantidade de energia autoconsumida pela totalidade do sistema. Uma análise às trocas de energia entre prosumers da micro-rede permitiu determinar que o restaurante é o que mais beneficia do mercado local de energia em termos de quantidade comprada, seguido pelos edifícios residenciais. Em média as poupanças nos custos rondaram os 1,2% para cada, e o aumento das receitas foi em média 21,6%. Uma análise financeira revelou que a aplicação de um mercado local de energia resultou numa valorização média de 135% do excedente de energia, em comparação com o valor a este atribuído em linha com a legislação portuguesa referente. Já para a micro rede como unidade, os balanços financeiros estimados para uma semana inteira de cada estação revelaram que a conta da eletricidade poderia ser reduzida em 3,3% no Inverno e 5,3% no Verão. Embora estes valores não sejam muito elevados, permitem apoiar a ideia defendida nesta dissertação, e quantificar os seus benefícios, na medida em que a implementação de um modelo de troca de energia, quer centralizada quer descentralizada, permite benefícios económicos para os prosumers envolvidos e um maior grau de autoconsumo da energia produzida na micro-rede. Considerou-se importante frisar que para a atual legislação em vigor em Portugal para o que diz respeito a autoconsumo, esta seria uma maneira de conseguir valorizar o excedente de energia produzida. De maneira geral um mercado local como o sugerido beneficiaria tanto consumidores como produtores, dando opção aos primeiros de comprar energia mais barata do que a vendida na rede nacional, e aos produtores uma opção viável de venda do excedente. Uma análise crítica aos valores considerados de potência instalada e máximas potências injetadas na rede em comparação com os limites estipulados pelo Decreto-Lei 2014 referente a unidades de autoconsumo permitiu concluir que: 1) no que toca à potência instalada, os valores considerados constituem sobredimensionamentos em 3 casos; 2) relativamente à potência injetada na rede nacional, esta excedeu o limite estipulado apenas nos casos de sobredimensionamento. Com isto se conclui que os benefícios obtidos, em termos de autoconsumo e redução nos custos da eletricidade, poderão ter interesse no contexto nacional, uma vez que para alguns dos participantes da micro rede, não se verificando sobredimensionamento ou excedente de energia injetada na rede, foi possível beneficiar de melhorias no autoconsumo e redução dos custos. A ter em consideração há que várias simplificações foram feitas neste estudo, tal como a atribuição de uma eficiência de 100% para o sistema de transmissão da micro-rede, ou a assunção de que não existem perdas no inversor e cablagem dos sistemas fotovoltaicos. É também de referir que a utilização de intervalos de tempo com dimensão de uma hora implica maiores erros que numa simulação de escala mais fina, uma vez que não retrata com tão grande aproximação uma situação real de produção e consumo de energia.
CHEN, SHANG-YI, and 陳尚毅. "Development of the models and controls of community microgrids with PV and battery energy storage for the assessment of residential-type users’ electric power consumption." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/z2e56v.
Full text國立中正大學
電機工程研究所
105
Domestic energy consumption is mainly divided into industrial power, agricultural power, commercial power and residential power, etc. Economic development, climatic factors and population size are common factors which influence the energy consumption and bring on gradual increase of energy consumption. In the economy, the development of heavy industry is required to consume so much energy that the energy consumption increases as well. People's daily life is also closely related to energy consumption. For the general residential users, the gradual increase in load demand will lead to power outage crisis. Therefore, the above problems can be reduced after the community-based micro-grid which is composed of renewable energy generation, storage and control system incorporated into the system. Furthermore, the community-based micro-grid not only can monitor the load demand and power supply but also it can save customers money and utilize energy more efficiently at the same time. To save the cost of testing on physical system, we could verify the feasibility of the proposed method through the system simulations. This thesis analyzes the cases based on actual community-based micro-grid system with construction of renewable energy sources, storage system and controller models and proposes some controlling strategies. Moreover, real-time simulation techniques are used to resolve limitations of off-line simulations and simulation analysis is implemented in condition of grid mode and island mode and limiting power, etc. In the thesis, load forecasting is also executed to extend the functions of simulation system. With the implementation of system simulations, the results show that it not only brings economic benefit for customers but also validate the efficiency of the proposed methods and controlling strategies.
Book chapters on the topic "Community microgrid"
Mathur, Divya, Neeraj Kanwar, and Sunil Kumar Goyal. "Battery Energy Management for Community Microgrid." In Intelligent Computing Techniques for Smart Energy Systems, 723–31. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0252-9_65.
Full textMagadum, Seema, N. V. Archana, and Santoshkumar Hampannavar. "Control and Coordination Issues in Community Microgrid: A Review." In Control Applications in Modern Power System, 217–28. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8815-0_19.
Full textGarg, Vijay Kumar, and Sudhir Sharma. "Techno-Economic Analysis of a Microgrid for a Small Community." In Soft Computing for Intelligent Systems, 505–17. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1048-6_40.
Full textGarg, Vijay Kumar, and Sudhir Sharma. "Techno-economic Design and Evaluation of a Small Community-Based Microgrid." In Algorithms for Intelligent Systems, 775–84. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6307-6_80.
Full textShafiullah, Md, Md Ershadul Haque, Shorab Hossain, Md Sanower Hossain, and Md Juel Rana. "Community Microgrid Energy Scheduling Based on the Grey Wolf Optimization Algorithm." In Artificial Intelligence-Based Energy Management Systems for Smart Microgrids, 47–73. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/b22884-3.
Full textBoddapati, Venkatesh, and S. Arul Daniel. "Optimal Design and Techno-Economic Analysis of a Microgrid for Community Load Applications." In Springer Proceedings in Energy, 361–74. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0235-1_29.
Full textAguilar-Jiménez, Jesús Armando, Nicolás Velázquez, Ricardo Beltrán, Luis Hernández-Callejo, Ricardo López-Zavala, and Edgar González-San Pedro. "Potential for Thermal Water Desalination Using Microgrid and Solar Thermal Field Energy Surpluses in an Isolated Community." In Smart Cities, 162–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38889-8_13.
Full textSeetharam, Deva P., Harshad Khadilkar, and Tanuja Ganu. "Circular Economy Enabled by Community Microgrids." In An Introduction to Circular Economy, 179–99. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8510-4_10.
Full textEzziyyani, Mostafa, and Loubna Cherrat. "Optimal Regulation of Energy Delivery for Community Microgrids Based on Constraint Satisfaction and Multi-agent System." In Lecture Notes in Networks and Systems, 162–78. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69137-4_16.
Full text"Effective Improvement in Generation Efficiency of a Fuel Cell Microgrid." In Advances in Environmental Engineering and Green Technologies, 72–102. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-5796-0.ch003.
Full textConference papers on the topic "Community microgrid"
Hammonds, James S. "Cost Competitive Implementation of Community Shared Microgrids." In ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/es2008-54155.
Full textOdonkor, Philip. "Exploring How the Heterogeneity of Building Types in Community Microgrids Impact Their Value Proposition." In ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-90705.
Full textSuk, Hailie, Abhishek Yadav, and John Hall. "Scalability Considerations in the Design of Microgrids to Support Socioeconomic Development in Rural Communities." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88441.
Full textCabrera, Wellington, Driss Benhaddou, and Carlos Ordonez. "Solar Power Prediction for Smart Community Microgrid." In 2016 IEEE International Conference on Smart Computing (SMARTCOMP). IEEE, 2016. http://dx.doi.org/10.1109/smartcomp.2016.7501718.
Full textKhodaei, A., and M. Shahidehpour. "Optimal operation of a community-based microgrid." In 2011 IEEE PES Innovative Smart Grid Technologies (ISGT Australia). IEEE, 2011. http://dx.doi.org/10.1109/isgt-asia.2011.6167129.
Full textZimmerle, D. "A community-scale microgrid demonstration: FortZED/RDSI." In 2012 IEEE Power & Energy Society General Meeting. New Energy Horizons - Opportunities and Challenges. IEEE, 2012. http://dx.doi.org/10.1109/pesgm.2012.6344854.
Full textMathur, Divya, Neeraj Kanwar, and Sunil Kumar Goyal. "Impact of electric vehicles on community microgrid." In A TWO-DAY CONFERENCE ON FLEXIBLE ELECTRONICS FOR ELECTRIC VEHICLES. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0031793.
Full textGui, Emi Minghui, Iain MacGill, and Regina Betz. "Community Microgrid Investment Planning: A Conceptual Framework." In 2018 IEEE International Smart Cities Conference (ISC2). IEEE, 2018. http://dx.doi.org/10.1109/isc2.2018.8656707.
Full textLiu, Guodong, Michael Starke, Bailu Xiao, Xiaohu Zhang, and Kevin Tomsovic. "Community microgrid scheduling considering building thermal dynamics." In 2017 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2017. http://dx.doi.org/10.1109/pesgm.2017.8274336.
Full textJordan, Isaac L., Efrain O'Neill-Carrillo, and Naysy Lopez. "Towards a zero net energy community microgrid." In 2016 IEEE Conference on Technologies for Sustainability (SusTech). IEEE, 2016. http://dx.doi.org/10.1109/sustech.2016.7897144.
Full textReports on the topic "Community microgrid"
Jeffers, Robert Fredric, Andrea Staid, Michael J. Baca, Frank M. Currie, William Ernest Fogleman, Sean DeRosa, Amanda Wachtel, and Alexander V. Outkin. Analysis of Microgrid Locations Benefitting Community Resilience for Puerto Rico. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1481633.
Full textJeffers, Robert Fredric, Michael J. Baca, Amanda Wachtel, Sean DeRosa, Andrea Staid, William Ernest Fogleman, Alexander V. Outkin, and Frank M. Currie. Analysis of Microgrid Locations Benefitting Community Resilience for Puerto Rico. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1530167.
Full textCu, Khanh Nguyen, and Allison Moe. Energy Efficiency Assessment for a Microgrid in the Community of Castaner, Puerto Rico. Office of Scientific and Technical Information (OSTI), February 2022. http://dx.doi.org/10.2172/1845681.
Full textJimenez, Antonio. Generic Community System Specification: A Proposed Format for Reporting the Results of Microgrid Optimization Analysis. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1427357.
Full textBahramirad, Shay, Farid Katiraei, Amin Khodaei, Sri Raghavan Kothandaraman, Muhidin Lelic, Zuyi Li, Ahmadreza Malekpour, Aleksi Paaso, and Amin Zamani. Research, Development, and Testing of a Master Controller with Applications to the Bronzeville Community Microgrid System. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1476642.
Full textDu, Yuhua, Yuxi Men, Xiaonan Lu, Jianzhe Liu, Feng Qiu, and Bo Chen. Coastal Community Resiliency Enhancement Using Marine Hydrokinetic (MHK) Resources and Networked Microgrids. Office of Scientific and Technical Information (OSTI), January 2021. http://dx.doi.org/10.2172/1767164.
Full text