Academic literature on the topic 'Communications cellules'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Communications cellules.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Communications cellules"
Després, Merlin, and Simon Gaudin. "Le monoxyde d’azote: Une arme du système immunitaire pour brouiller les communications entre bactéries." médecine/sciences 36, no. 11 (November 2020): 1074–77. http://dx.doi.org/10.1051/medsci/2020214.
Full textJANIS, Pekka, Chia-Hao YU, Klaus DOPPLER, Cassio RIBEIRO, Carl WIJTING, Klaus HUGL, Olav TIRKKONEN, and Visa KOIVUNEN. "Device-to-Device Communication Underlaying Cellular Communications Systems." International Journal of Communications, Network and System Sciences 02, no. 03 (2009): 169–78. http://dx.doi.org/10.4236/ijcns.2009.23019.
Full textY.S.V.Raman, Y. S. V. Raman, Dr S. Sri Gowri Dr S.Sri Gowri, and Dr B. Prabharkara Rao. "Performance Enhancement of Dynamic Channel Allocation in Cellular Communication System." Indian Journal of Applied Research 3, no. 7 (October 1, 2011): 322–25. http://dx.doi.org/10.15373/2249555x/july2013/99.
Full textM.P., Haripriya, and Venkadesh P. "Investigation Study on Secured Data Communication on 5G Cellular Networks." Journal of Advanced Research in Dynamical and Control Systems 11, no. 11-SPECIAL ISSUE (November 20, 2019): 323–30. http://dx.doi.org/10.5373/jardcs/v11sp11/20193038.
Full textDoh, Inshil, Jiyoung Lim, Shi Li, and Kijoon Chae. "Pairwise and group key setup mechanism for secure machine-to-machine communication." Computer Science and Information Systems 11, no. 3 (2014): 1071–90. http://dx.doi.org/10.2298/csis130922065d.
Full textCombarnous, Yves, and Thi Mong Diep Nguyen. "Cell Communications among Microorganisms, Plants, and Animals: Origin, Evolution, and Interplays." International Journal of Molecular Sciences 21, no. 21 (October 28, 2020): 8052. http://dx.doi.org/10.3390/ijms21218052.
Full textArmstrong, John. "Cellular communication." Nature 359, no. 6394 (October 1992): 441. http://dx.doi.org/10.1038/359441a0.
Full textDas, Sree Krishna, and Md Farhad Hossain. "A Distance Based Communication Mode Selection Mechanism for M2M Communications Over Cellular Networks." Wireless Personal Communications 115, no. 3 (October 7, 2020): 2501–14. http://dx.doi.org/10.1007/s11277-020-07693-5.
Full textCollins, Hugh. "Cellular radio communications." Facilities 3, no. 3 (March 1985): 10–14. http://dx.doi.org/10.1108/eb006332.
Full textGoodman, D. J. "Cellular packet communications." IEEE Transactions on Communications 38, no. 8 (1990): 1272–80. http://dx.doi.org/10.1109/26.58761.
Full textDissertations / Theses on the topic "Communications cellules"
Sigillo, Francesco. "Importance des cytokines dans les communications entre les cellules de Sertoli et les cellules germinales dans le testicule de rat." Lyon 1, 1999. http://www.theses.fr/1999LYO1T136.
Full textMesnil, Marc. "Rôle possible des communications jonctionnelles intercellulaires dans la cancérogénèse." Lyon 1, 1989. http://www.theses.fr/1989LYO1T050.
Full textHoueto, Fabien. "Affectation de cellules à des commutateurs dans les réseaux de communications personnelles." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0017/MQ48857.pdf.
Full textLaffont, Benoit. "Étude du rôle extra-plaquettaire des microARN : implication des microparticules de plaquettes dans les communications intercellulaires." Doctoral thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/26138.
Full textLes plaquettes sanguines contiennent une quantité abondante et diversifiée de microARN, qui sont de petits ARN non-codants d’une vingtaine de nucléotides de long capables de réguler l’expression des gènes de manière post-transcriptionnelle et séquence spécifique. Suite à leur activation, les plaquettes libèrent des microparticules (MPs), qui contiennent du matériel génétique issu de leur cellule d’origine et susceptible d’être transmis à une autre cellule afin d’y exécuter une fonction biologique. Durant mes travaux de thèse, j’ai étudié le rôle extra-plaquettaire des microARN et la capacité des MPs de plaquettes à participer aux communications intercellulaires. Les résultats que j’ai obtenus démontrent que les plaquettes activées à la thrombine libèrent la majorité de leur contenu en microARN dans les MPs, notamment miR-223. Les MPs sont internalisées par les cellules endothéliales HUVEC, et y délivrent leur contenu en miR-223. De plus, les MPs contiennent des complexes effecteurs Argonaute 2 (Ago2)•miR-223 fonctionnels et capables de réguler l’expression d’un gène rapporteur dans les cellules cibles endothéliales. Enfin, miR-223 provenant des MPs est capable de réguler l’expression de deux gènes endogènes prédits pour être ciblés par miR-223 et présents dans les HUVEC, à la fois au niveau de l’ARN messager (ARNm) et de la protéine. Dans une deuxième étude, j’ai démontré que ce phénomène n’est pas exclusif aux cellules endothéliales et qu’il peut également se produire avec les macrophages primaires humains. Les MPs sont effectivement internalisées par les macrophages et y délivrent leur contenu en miR-126-3p, qui y est fonctionnel et y régule l’expression d’un gène rapporteur et de gènes endogènes. De plus, l’internalisation des MPs induit une modification du transcriptome des macrophages receveurs, avec 66 microARN et 653 ARN codants ou non codants dont les profils d’expression sont modifiés. Ces changements sont accompagnés d’une diminution de la sécrétion de cytokines et de chimiokines, et d’une augmentation de la capacité de phagocytose par les macrophages. Mes travaux de doctorat démontrent que les microARN véhiculés par les MPs plaquettaires sont impliqués dans la reprogrammation de l’expression des gènes et des fonctions des cellules les internalisant, reflétant ainsi la complexité des communications intercellulaires.
Blood platelets contain an abundant and diverse array of microRNAs, which are small non-coding RNAs of ~20 nucleotides involved in post-transcriptional regulation of gene expression in a sequence-specific manner. Upon activation, platelets release microparticles (MPs) containing genetic materials from their parental cells that may be transferred to, and exert potent biological effects in, recipient cells. During my PhD thesis, I studied the extra-platelet role of microRNAs, and the ability of platelet-derived MPs to mediate cell-to-cell communications. The results that I obtained demonstrate that thrombin-activated platelets preferentially release their microRNA content in MPs, including miR-223. MPs can be internalized by human umbilical vein endothelial cells (HUVEC), to which they transfer their miR-223 content. Moreover, platelet MPs contain functional effector Argonaute 2 (Ago2)•miR-223 complexes that are capable of regulating expression of a reporter gene in recipient HUVEC. Finally, platelet MP-derived miR-223 could regulate expression of two endogenous genes in recipient HUVEC, both at the mRNA and protein levels. In a second study, I demonstrated that this process is not exclusive to endothelial cells, and could take place also in primary human macrophages. Following their internalization by macrophages, MPs deliver functional miR-126-3p, which regulated expression of both a reporter gene and endogenous genes. Furthermore, MP internalization modified the transcriptome of recipient macrophages, with 66 microRNAs and 464 coding and non-coding RNAs that are differentially expressed. These changes are associated with a reduced secretion of cytokines and chemokines, and a marked increase in the phagocytic capacity of macrophages. My doctoral work demonstrate that platelet-derived microRNAs transfered by MPs are involved in reprograming recipient cells’ gene expression and functions, which illustrate the growing complexity of cell-to-cell communications.
BOURDON, VERONIQUE. "Etablissement et caracterisation d'une lignee de cellules de sertoli pour l'etude des communications intercellulaires dans le testicule." Nice, 1997. http://www.theses.fr/1997NICE5206.
Full textJaffredo, Manon. "Communications intercellulaires dynamiques au sein des îlots pancréatiques analysées par multi-electrode arrays : rôles physiologiques et applications biotechnologiques en diabétologie." Thesis, Bordeaux, 2021. http://www.theses.fr/2021BORD0120.
Full textPancreatic islets are the main sensor of glycaemia and they integrate all the metabolic and hormonal inputs to adapt in real time the secretion of hormones such as insulin by β cells and glucagon by α cells. In type 1 diabetes (T1D) β cells are destroyed by immune attack, and in T2D, β cell mass, function and the intra-islet network are altered. The islet micro-organs are highly reactive due to their electrical properties encoding rapid information and due to intercellular communications between β cells and β/non-β cells. Nevertheless, non-invasive, high resolution and long-term approaches for analysis are still lacking. Extracellular electrophysiology with multi-electrode arrays (MEAs) allows this analysis of islets by measuring both cellular as well as multicellular signals (SPs) due to β cell coupling. During my PhD, I used MEAs (i) to explore islet physiology/pathophysiology and (ii) for biotechnological applications in diabetology. I have shown that biphasic kinetics of insulin secretion are encoded by SPs through dynamic changes in β cell coupling. An important intestinal hormone (GLP-1) increases the 2nd phase of β-cell activity while diabetic conditions (glucotoxicity) reduce the 1st phase. Islet responses to nutrients also require α/β cell cooperation since α cell ablation in the inducible GluDTR mice model reduced both the basal and 2nd phase of β cell activity generated by glucose and a physiological mix of amino acids. I have also performed the electrophysiological characterization of human β cells derived from induced pluripotent stem cells (iPSC), determined their coupling, established their quality control and shown the functional impact of a mutation of interest (ZnT8) edited by CRISPR/Cas9. A functional quality control of human islets prior to transplantation in T1D patients was also performed for correlations with clinical data. Finally, my SP recordings analyzed in real time by microelectronics has contributed to validate an in silico model of biosensor in a FDA-approved simulator of T1D patients. In conclusion, my work demonstrates (i) the role of intra-islet communications in the dynamic physiological adaptation of these micro-organs, (ii) and that detailed characterization of SPs opens new applications from artificial pancreas to personalized cell therapy
Milon, Marie-Anne. "Modélisation de cellules déphaseuses environnées : Application à l'analyse de réseaux réflecteurs imprimés." Rennes, INSA, 2001. http://www.theses.fr/2007ISAR0022.
Full textThis study is focusing on flat passive microstrip reflectarrays with brodadside and directive radiation. This thesis is dedicated to both analyse and modelize the unitary cell behaviour of existing reflectarrays. New simulation tools are proposed to study mutual coupling and specualr reflection effects. The FDTD analysis of a unitary reflectarray cell is appllied to take into account environment effects. A new approcah to analyse reflectarray cell is presented and validated. This approach considers the actual mutual coupling for a realistic configuration with non identical cells and also characterise the specular reflection effect. Moreover , this work provides an improvement of the whole reflectarray simlulation, which accounts for the real illumination of the primary source
Fauquier, Teddy. "LES CELLULES FOLLICULOSTELLAIRES : UNITES FONCTIONNELLES D'UNE VOIE DE COMMUNICATION A LONGUE DISTANCE DANS L'HYPOPHYSE ANTERIEURE." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2001. http://tel.archives-ouvertes.fr/tel-00770829.
Full textAdane, Yacine. "Caractérisation inverse de sources pour l'évaluation de l'exposition humaine aux ondes électromagnétiques émises par les antennes de station de base." Paris 6, 2004. http://www.theses.fr/2004PA066348.
Full textCaicedo, Andrès. "Communication cellule-cellule : transfert de mitochondries provenant des cellules souches/stromales mesenchymateuses (CSM) vers des cellules cancereuses." Thesis, Montpellier 1, 2013. http://www.theses.fr/2013MON1T036.
Full textAt the beginning of my thesis, I was interested in the process involved in cell communication, more specifically in cell-to-cell interactions. Why does a cell specifically establish contacts with another one, how do cells respond to these interactions and what are the effects? As a model to answer these questions, I studied the interactions between MSCs and two breast cancer cell lines. The study of the communications between MSCs and tumor cells is an alternative to explore and understand tumor progression. MSC recruitment to the tumor is shown to favor the progression of the disease. The mechanisms of this dialogue are multiple and are the object of a great number of studies that aim at finding new therapeutic approaches. The objective of this work was to analyze the interactions between MSCs and cancer cells and evaluate the potential effects of this communication in tumor progression. First, I developed an experimental system of real time confocal microscopy in order to observe the interaction produced between MSCs and the breast carcinoma MDA-MB-231 and MCF-7 cells. I noticed the dynamic formation of tubular structures between the two different cell types and, surprisingly, the passage of mitochondria from MSCs to the cancer cells. Second, we used a 3D system of cell invasion in a collagen matrix, which we adapted for the coculture, in order to observe the effects of the interactions between the MDA-MB-231 and MSCs. In agreement with the literature, we observed an increase in the migratory potential of the cancer cells, an effect that could be linked to the transfer of mitochondria from MSCs to the cancer cells. To answer this question, I set up a protocol to specifically transfer to the cancer cells mitochondria isolated from the MSCs and test directly the functional consequences for the cancer cells. This protocol can be used to transfer mitochondria, not only from MSCs but also from other cells. This method is currently submitted to a patent process. Our results show that the transfer of MSC mitochondria to the cancer cells modifies cancer cells functional properties and increase their invasive and proliferative capacities. Concerning the metabolic activity, we noticed an increase in mitochondrial respiration and ATP production. We also observed an increase in the transcription level of enzymes related to the lipid synthesis and fatty acid oxidation. The results generated with this new protocol of mitochondria transfer show, for the first time, that mitochondria originating from MSCs can improve cellular capacities linked to the tumor progression. The role proposed by the scientific community for the interactions of MSCs with the tumor cells fits with the data generated in our work. Several questions remain open. In particular, could the transfer of mitochondria from MSCs to the cancer cells contribute to the acquisition of resistance to anti-cancer agents observed in patients? The protocol of transfer of mitochondria that we developed in the laboratory is a technique of choice and offers many advantages over other techniques such as microinjection and cytoplasmic hybrids; its implementation is simple and reproducible and can target large numbers of cells. This method opens numerous perspectives and potential applications such as the study of metabolic reprogramming. Thus, we could consider restoring the activity of dysfunctional cells by transferring mitochondria from “metabolically active” or healthy cells. In the long term, one of the applications could be transferring healthy or genetically modified mitochondria to zygotes carrying mitochondrial DNA mutations, in order to treat pathologies like infertility, neuro-degenerative diseases, cancer and premature aging
Books on the topic "Communications cellules"
Combarnous, Yves. Biochimie des communications cellulaires: Hormones, neuromédiateurs, cytokines, facteurs de croissance. 2nd ed. Paris: Technique et Documentation-Lavoisier, 1996.
Find full textLeibowitz, Dennis. The cellular communications industry. New York, N.Y. (140 Broadway, New York 10005): Donaldson, Lufkin & Jenrette, 1985.
Find full textAmasino, Richard M., ed. Cellular Communication in Plants. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4757-9607-0.
Full textA, García-Martín Miguel, ed. The 3G multimedia subsystem (IMS): Merging the internet and the cellular worlds. Chichester, West Sussex: J. Wiley, 2004.
Find full textGarrard, Garry A. Cellular communications: Worldwide market development. Boston, MA: Artech House, 1998.
Find full textPattan, Bruno. Satellite-based global cellular communications. New York: McGraw-Hill, 1998.
Find full textHuang, Howard, Constantinos B. Papadias, and Sivarama Venkatesan. MIMO Communication for Cellular Networks. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-0-387-77523-4.
Full textCDMA cellular mobile communications & network security. Upper Saddle River, NJ: Prentice Hall PTR, 1998.
Find full textGhorbanzadeh, Mo, Ahmed Abdelhadi, and Charles Clancy. Cellular Communications Systems in Congested Environments. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46267-7.
Full textWashington (State). Dept. of Revenue. Cellular communications study: Report to the Legislature on taxation of cellular communications in Washington State. [Olympia, Wash.]: The Dept., 1993.
Find full textBook chapters on the topic "Communications cellules"
Tzianabos, Arthur O., and Lee M. Wetzler. "Cellular Communication." In Immunology, Infection, and Immunity, 343–69. Washington, DC, USA: ASM Press, 2015. http://dx.doi.org/10.1128/9781555816148.ch15.
Full textSun, Xiaojuan. "Cellular Communication." In Encyclopedia of Systems Biology, 385–86. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_548.
Full textMämmelä, Aarne, and Risto Wichman. "Cellular Communications Channels." In Handbook of Computer Networks, 577–90. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118256114.ch38.
Full textJagoda, A., and M. de Villepin. "The Cellular Radiotelephone." In Mobile Communications, 79–103. Wiesbaden: Vieweg+Teubner Verlag, 1993. http://dx.doi.org/10.1007/978-3-322-99269-7_6.
Full textGhosh, R. K. "Cellular Wireless Communication." In Wireless Networking and Mobile Data Management, 21–54. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3941-6_2.
Full textEgan, Manus. "Cellular Telephones and Racal Vodafone." In Communications, 9–10. London: Macmillan Education UK, 1986. http://dx.doi.org/10.1007/978-1-349-07816-5_3.
Full textSheikh, Asrar U. H. "Mobile Wireless Cellular Systems." In Wireless Communications, 549–641. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9152-2_12.
Full textAlencar, Marcelo S., and Valdemar C. da Rocha. "Mobile Cellular Telephony." In Communication Systems, 257–81. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25462-9_9.
Full textRaith, Krister, Erik Lissakers, Jan Uddenfeldt, and Jan Swerup. "Cellular For Personal Communications." In The Kluwer International Series in Engineering and Computer Science, 1–20. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3162-3_1.
Full textZhang, Hongliang, Lingyang Song, and Zhu Han. "UAV Assisted Cellular Communications." In Wireless Networks, 61–100. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33039-2_3.
Full textConference papers on the topic "Communications cellules"
Wang, Yuhang, Zhiyong Chen, Yao Yao, Manyuan Shen, and Bin Xia. "Secure communications of cellular users in device-to-device communication underlaying cellular networks." In 2014 Sixth International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2014. http://dx.doi.org/10.1109/wcsp.2014.6992171.
Full textRonny Yongho Kim. "Snoop based group communication scheme in cellular Machine-to-Machine communications." In 2010 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2010. http://dx.doi.org/10.1109/ictc.2010.5674824.
Full textNematy, Hoda. "Secure Protocol for Four D2D Scenarios." In 2nd International Conference on Machine Learning &Trends (MLT 2021). AIRCC Publishing Corporation, 2021. http://dx.doi.org/10.5121/csit.2021.111102.
Full textDas, Sree Krishna, and Md Farhad Hossain. "A Location Aware Communication Mode Selection Mechanism for M2M Communications over Cellular Networks." In 2019 5th International Conference on Advances in Electrical Engineering (ICAEE). IEEE, 2019. http://dx.doi.org/10.1109/icaee48663.2019.8975497.
Full textChen, Hualiang, Xingyu Deng, Mei Gao, Linna Yang, Lianhua Guo, and Ming Chi. "Location Related Communication Mode Selection and Spectrum Sharing for D2D Communications in Cellular Networks." In 2018 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS). IEEE, 2018. http://dx.doi.org/10.1109/icitbs.2018.00051.
Full textRoger, Sandra, Carmen Botella, Enrique E. Meza-Sãnchez, and Juan J. Pérez-Solano. "Communication cost of channel estimation interpolation for group-based vehicular communications in cellular networks." In EATIS 2020: 10th Euro American Conference on Telematics and Information Systems. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3401895.3402065.
Full textExell Enrique, Franklin J. "Secure communications using the mobile communications (cellular telephony)." In 2014 IEEE Fourth International Conference on Consumer Electronics - Berlin (ICCEBerlin). IEEE, 2014. http://dx.doi.org/10.1109/icce-berlin.2014.7034278.
Full textKilic, Gokhan, and Tolga Girici. "Clustering in cellular M2M communications." In 2014 22nd Signal Processing and Communications Applications Conference (SIU). IEEE, 2014. http://dx.doi.org/10.1109/siu.2014.6830566.
Full textAzari, M. Mahdi, Giovanni Geraci, Adrian Garcia-Rodriguez, and Sofie Pollin. "Cellular UAV-to-UAV Communications." In 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE, 2019. http://dx.doi.org/10.1109/pimrc.2019.8904448.
Full textMueck, Markus Dominik, Ingolf Karls, Reza Arefi, Thomas Haustein, and Wilhelm Keusgen. "Licensed shared access for wave cellular broadband communications." In 2014 1st International Workshop on Cognitive Cellular Systems (CCS). IEEE, 2014. http://dx.doi.org/10.1109/ccs.2014.6933805.
Full textReports on the topic "Communications cellules"
Krogmeier, J., and Darcy Bullock. Statewide Wireless Communications Project, Volume 1: Communication Field Tests for Satellite, Cellular, and Spread Spectrum Radio. West Lafayette, IN: Purdue University, 2008. http://dx.doi.org/10.5703/1288284314218.
Full textGarrity, John, and Arndt Husar. Digital Connectivity and Low Earth Orbit Satellite: Constellations Opportunities for Asia and the Pacific. Asian Development Bank, April 2021. http://dx.doi.org/10.22617/wps210156-2.
Full textDickman, Martin B., and Oded Yarden. Modulation of the Redox Climate and Phosphatase Signaling in a Necrotroph: an Axis for Inter- and Intra-cellular Communication that Regulates Development and Pathogenicity. United States Department of Agriculture, August 2011. http://dx.doi.org/10.32747/2011.7697112.bard.
Full textEl-Rayes, Khaled, and Ernest-John Ignacio. Evaluating the Benefits of Implementing Mobile Road Weather Information Sensors. Illinois Center for Transportation, February 2022. http://dx.doi.org/10.36501/0197-9191/22-004.
Full textRafaeli, Ada, Russell Jurenka, and Chris Sander. Molecular characterisation of PBAN-receptors: a basis for the development and screening of antagonists against Pheromone biosynthesis in moth pest species. United States Department of Agriculture, January 2008. http://dx.doi.org/10.32747/2008.7695862.bard.
Full textEpel, Bernard L., Roger N. Beachy, A. Katz, G. Kotlinzky, M. Erlanger, A. Yahalom, M. Erlanger, and J. Szecsi. Isolation and Characterization of Plasmodesmata Components by Association with Tobacco Mosaic Virus Movement Proteins Fused with the Green Fluorescent Protein from Aequorea victoria. United States Department of Agriculture, September 1999. http://dx.doi.org/10.32747/1999.7573996.bard.
Full textEpel, Bernard, and Roger Beachy. Mechanisms of intra- and intercellular targeting and movement of tobacco mosaic virus. United States Department of Agriculture, November 2005. http://dx.doi.org/10.32747/2005.7695874.bard.
Full text