Academic literature on the topic 'Common bean'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Common bean.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Common bean"
Smith, T. H., T. E. Michaels, A. M. Lindsay, and K. P. Pauls. "Lightning common bean." Canadian Journal of Plant Science 89, no. 2 (March 1, 2009): 303–5. http://dx.doi.org/10.4141/cjps08120.
Full textHou, A., P. Balasubramanian, R. L. Conner, S. Park, K. Yu, F. A. Kiehn, and A. Navabi. "Portage common bean." Canadian Journal of Plant Science 91, no. 3 (May 2011): 523–25. http://dx.doi.org/10.4141/cjps2010-015.
Full textSmith, T. H., T. E. Michaels, A. Navabi, and K. P. Pauls. "Rexeter common bean." Canadian Journal of Plant Science 92, no. 2 (March 2012): 351–53. http://dx.doi.org/10.4141/cjps2011-184.
Full textMündel, H. H., F. A. Kiehn, G. Saindon, H. C. Huang, and R. L. Conner. "Alert common bean." Canadian Journal of Plant Science 83, no. 1 (January 1, 2003): 75–77. http://dx.doi.org/10.4141/p02-069.
Full textPark, S. J., T. Rupert, and K. Yu. "Galley common bean." Canadian Journal of Plant Science 87, no. 2 (April 1, 2007): 309–11. http://dx.doi.org/10.4141/p06-167.
Full textPark, S. J., T. Rupert, and K. Yu. "Harohawk common bean." Canadian Journal of Plant Science 87, no. 2 (April 1, 2007): 313–15. http://dx.doi.org/10.4141/p06-168.
Full textKhanal, Raja, Terry Rupert, Alireza Navabi, Thomas H. Smith, Thomas E. Michaels, Andrew J. Burt, and Karl P. Pauls. "Bolt common bean." Canadian Journal of Plant Science 96, no. 2 (April 1, 2016): 218–21. http://dx.doi.org/10.1139/cjps-2015-0180.
Full textKhanal, Raja, Terry Rupert, Alireza Navabi, Thomas H. Smith, Andrew J. Burt, and Karl P. Pauls. "Fathom common bean." Canadian Journal of Plant Science 96, no. 2 (April 1, 2016): 276–79. http://dx.doi.org/10.1139/cjps-2015-0215.
Full textPark, S. J. "Harowood common bean." Canadian Journal of Plant Science 71, no. 4 (October 1, 1991): 1143–45. http://dx.doi.org/10.4141/cjps91-156.
Full textPark, S. J. "Shetland common bean." Canadian Journal of Plant Science 71, no. 4 (October 1, 1991): 1147–49. http://dx.doi.org/10.4141/cjps91-157.
Full textDissertations / Theses on the topic "Common bean"
Maxwell-Benson, Kelli S. "Balancing biological and chemical nitrogen in irrigated Phaseolus vulgaris (L) cropping systems." Laramie, Wyo. : University of Wyoming, 2007. http://proquest.umi.com/pqdweb?did=1313917301&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Full textMillar, Austin Walter. "Relationships between pathotypes of bean common mosaic virus." Thesis, Queen's University Belfast, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334484.
Full textSerrano, Miguel Santiago. "Probing behaviors of Empoasca kraemeri Ross & Moore (Homoptera: Cicadellidae) on common bean genotypes and the use of AC electronic feeding monitors to characterize tolerance /." free to MU campus, to others for purchase, 1997. http://wwwlib.umi.com/cr/mo/fullcit?p9841333.
Full textGómez, Oscar. "Evaluation of Nicaraguan common bean (Phaseolus vulgaris L.) landraces /." Uppsala : Dept. of Ecology and Crop Science, Swedish Univ. of Agricultural Sciences, 2004. http://epsilon.slu.se/a476.pdf.
Full textKorban, Martine. "Agrobacterium-mediated transformation of common bean (Phaseolus vulgaris L.)." Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=41644.
Full textCORTINOVIS, GAIA. "Common bean as a model to understand crop evolution." Doctoral thesis, Università Politecnica delle Marche, 2022. https://hdl.handle.net/11566/299804.
Full textOur agricultural system and hence food security is threatened by a combination of events, such as increasing population, the impacts of climate change, and the need for more sustainable development. Because of their nutritional quality, biological nitrogen fixation capacity, and broad adaptation to several agro-ecological conditions, food legumes are crucial for the key agriculture-related societal challenges. Currently, legumes represent the second most agriculturally important crop family on a global scale after cereals. Among legumes, common bean (P. vulgaris) is the most important grain legume for direct human consumption in the world. Moreover, the well-documented history of multiple domestications in P. vulgaris and its further adaptation to different environments make it a model system to study crop evolution. The meteoric increase in sequencing with high throughput next-generation sequencing technologies (NGS) has dramatically changed our understanding of genomes. Indeed, their application has provided novel approaches that have significantly advanced our understanding of new and long-standing questions in common bean evolutionary history. The emerging pangenome concept is also offering a great opportunity to discover new genes and genetic mechanisms that contribute to phenotypic adaptation associated with important agronomic traits. With the aim to better understand the genetic bases and phenotypic consequences of the parallel common bean domestications and its adaptation to novel and different agro ecosystems, we developed and analysed the first common bean pangenome. In the present study, following a not-iterative approach, we constructed the common bean pangenome by using five high-quality genomes and 339 low coverage WGS accessions. Interestingly, preliminary PAVs (i.e., presence / absence variations) analysis confirmed the population structure of the common bean species and identified the presence of genes associated with the domestication syndrome and adaptation traits, such as dormancy, flowering and defense responses to biotic and abiotic stress.
Mukoko, Olivia Zvinofa. "Breeding beans (Phaseolus vulgaris L.) for resistance to bean common mosaic virus in Zimbabwe." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240145.
Full textTar'an, Bunyamin. "Development and application of molecular markers in common bean breeding." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0015/NQ47413.pdf.
Full textDESIDERIO, FRANCESCA. "Origin and domestication of the common bean (Phaseolus vulgaris L.)." Doctoral thesis, Università Politecnica delle Marche, 2009. http://hdl.handle.net/11566/242368.
Full textBiagetti, Eleonora. "The genomic consequences of common bean (Phaseolus vulgaris l.) domestication." Doctoral thesis, Università Politecnica delle Marche, 2014. http://hdl.handle.net/11566/242840.
Full textDomestication is a fundamental evolutionary process that induced a co-dependence between crop plants and humans, resulting in genetic modifications of plants due to human selection. Common bean (Phaseolus vulgaris L.) presents a unique evolutionary history among crops, as it characterized by the presence of two main geographically and genetically distinct gene pools, Mesoamerican and Andean, where at least two independent domestication events occurred. We used RNA sequencing (RNA-Seq) strategy to investigate the whole common bean transcriptome as of 64 wild and domesticated accessions from the two gene pools. We identified a high number of single nucleotide polymorphisms that we used for population genetics inferences with the aim to scrutinize the consequences of common bean domestication. A drastic reduction in nucleotide diversity (~60%) was evident for the domesticated compared to the wild forms. In particular, as main outcome in the chapter one, we highlighted signature of selection in the 9% of genes achieved from a de novo assembling approach, sequencing 21 wild and domesticated genotypes, mainly from Mesoamerica. In parallel, the domestication process in Mesoamerica was found to influence also the expression pattern, involving a decrease in the expression diversity (18%) with a broader reduction (26%) in the portion of transcriptome under selection. In the second chapter, using the common bean genome as reference, we have compared the effects of common bean domestication on genetic diversity in both the Mesoamerican and Andean gene pools. A loss of genetic diversity three-fold lower associated with domestication was observed in the Andes compared with the Mesoamerica as result of a bottleneck occurred in this region before domestication.
Books on the topic "Common bean"
Forster, Robert L. Bean common mosaic virus. [Moscow, Idaho]: University of Idaho Cooperative Extension Service, 1991.
Find full textSchwartz, David M. Bean. Milwaukee, WI: G. Stevens, 2001.
Find full textPérez de la Vega, Marcelino, Marta Santalla, and Frédéric Marsolais, eds. The Common Bean Genome. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63526-2.
Full textD, Joshi B. French bean in India. Shimla: National Bureau of Plant Genetic Resources, 1995.
Find full textGargiulo, Carlos A. Análisis descriptivo del sector porotero del noroeste argentino: Adopción de nuevas variedades de poroto negro en Argentina y retorno social de la inversión en investigación. Tucumán, Argentina: Estación Experimental Agro-Industrial "Obispo Colombres", 1986.
Find full textNyabyenda, P. Le haricot: Fiches descriptives des variétés diffusés. Butare [Rwanda]: I.S.A.R., 1991.
Find full textP, Singh Shree, ed. Common bean improvement in the twenty-first century. Dordrecht: Kluwer Academic Publishers, 1999.
Find full textDegu, Getahun. Evaluation of farmer's preferences for haricot bean varieties, Shebedino farming systems zone Sidamo region. Addis Abeba, Ethiopia: Institute of Agricultural Research, 1994.
Find full textSingh, Shree P., ed. Common Bean Improvement in the Twenty-First Century. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9211-6.
Full textMsuku, W. A. B. Major diseases and insect pests of beans (Phaseolus Vulgaris) in Malawi: Problems and their control : study guide. Lilongwe: University of Malawi, Bunda College of Agriculture, 2000.
Find full textBook chapters on the topic "Common bean"
De Ron, Antonio M., Roberto Papa, Elena Bitocchi, Ana M. González, Daniel G. Debouck, Mark A. Brick, Deidré Fourie, et al. "Common Bean." In Grain Legumes, 1–36. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2797-5_1.
Full textMorales, Francisco J. "Common Bean." In Virus and Virus-like Diseases of Major Crops in Developing Countries, 425–45. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-007-0791-7_17.
Full textBliss, F. A. "Common Bean." In Hybridization of Crop Plants, 273–84. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, 2015. http://dx.doi.org/10.2135/1980.hybridizationofcrops.c17.
Full textPathania, Anju, Surinder Kumar Sharma, and Prem Nath Sharma. "Common Bean." In Broadening the Genetic Base of Grain Legumes, 11–50. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2023-7_2.
Full textRathna Priya, T. S., and A. Manickavasagan. "Common Bean." In Pulses, 77–97. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41376-7_5.
Full textMiklas, Phillip N., and Shree P. Singh. "Common Bean." In Pulses, Sugar and Tuber Crops, 1–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-34516-9_1.
Full textSastry, K. Subramanya, Bikash Mandal, John Hammond, S. W. Scott, and R. W. Briddon. "Phaseolus vulgaris (Common bean/French bean/Snap bean)." In Encyclopedia of Plant Viruses and Viroids, 1802–37. New Delhi: Springer India, 2019. http://dx.doi.org/10.1007/978-81-322-3912-3_692.
Full textAragão, F. J. L., and F. A. P. Campos. "Common Bean and Cowpea." In Transgenic Crops IV, 263–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-36752-9_14.
Full textMyers, James R., and Ken Kmiecik. "Common Bean: Economic Importance and Relevance to Biological Science Research." In The Common Bean Genome, 1–20. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63526-2_1.
Full textJoshi, Jaya, Sudhakar Pandurangan, Marwan Diapari, and Frédéric Marsolais. "Comparison of Gene Families: Seed Storage and Other Seed Proteins." In The Common Bean Genome, 201–17. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63526-2_10.
Full textConference papers on the topic "Common bean"
Aminian, Roghayeh, Mahmood Khodambashi, Mehrab Yadegari, Kamel Ariffin Mohd Atan, and Isthrinayagy S. Krishnarajah. "Drought Tolerance Indices Study in Common Bean." In INTERNATIONAL CONFERENCE ON MATHEMATICAL BIOLOGY 2007: ICMB07. AIP, 2008. http://dx.doi.org/10.1063/1.2883857.
Full textCooper, Bret. "The Proteomics of Resistance to Halo Blight in Common Bean." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1007156.
Full textNurhayati, Arry Y., Amalia F. Putri, Clauria F. Sukmawati, Galuh S. Anggraeni, Mohamad Hasan, Sigit Soeparjono, and Yuda C. Hariadi. "Partitioning and wellbeing indicator common bean for soilless culture system." In THE 3RD INTERNATIONAL CONFERENCE ON PHYSICAL INSTRUMENTATION AND ADVANCED MATERIALS (ICPIAM) 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0108319.
Full text"Dielectric properties of bean weevil, grain moth and their hosts (common bean and amaranth) using the resonant cavity technique." In 2015 ASABE International Meeting. American Society of Agricultural and Biological Engineers, 2015. http://dx.doi.org/10.13031/aim.20152188775.
Full textBianconi, A., M. J. Watts, Y. Huang, A. B. S. Serapiao, J. S. Govone, X. Mi, G. Habermann, and A. Ferrarini. "Applying computational intelligence methods to modeling and predicting common bean germination rates." In 2014 International Joint Conference on Neural Networks (IJCNN). IEEE, 2014. http://dx.doi.org/10.1109/ijcnn.2014.6889854.
Full textMaria Capanema Bezerra, Luiza, Ana Carolina Spatti, Vinicius Muraro, and CARLOS EDUARDO FREDO. "THE COMMON BEAN: A COMPARISON BETWEEN THE WORLD’S MAIN PRODUCERS OF SCIENTIFIC KNOWLEDGE." In 60º Congresso da SOBER. Natal, Rio Grande do Norte: Even3, 2022. http://dx.doi.org/10.29327/sober2022.486351.
Full textQuintela, Eliane Dias. "Damage of cowpea mild mottle virus and incidence ofBemisia tabacibiotype B in transgenic common bean lines resistant to bean golden mosaic virus." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.114983.
Full textRice, Marlin E., Jeffrey D. Bradshaw, and Rayda R. Krell. "Twenty Questions: The Most Common Inquiries Regarding Bean Leaf Beetle Biology, Ecology and Management." In Proceedings of the 13th Annual Integrated Crop Management Conference. Iowa State University, Digital Press, 2000. http://dx.doi.org/10.31274/icm-180809-726.
Full textSantana, Marcus Vinícius. "Damage ofBemisia tabacibiotype B in transgenic common bean resistant to theBean golden mosaic virus." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.113498.
Full textAminian, Roghayeh, Mahmood Khodambashi, Mehrab Yadegari, Kamel Ariffin Mohd Atan, and Isthrinayagy S. Krishnarajah. "Study Of Seed Yield Correlation With Different Traits Of Common Bean Under Stress Condition." In INTERNATIONAL CONFERENCE ON MATHEMATICAL BIOLOGY 2007: ICMB07. AIP, 2008. http://dx.doi.org/10.1063/1.2883856.
Full textReports on the topic "Common bean"
Gabriel, Dean, and Shulamit Manulis. Development of Specific Hybridization Probes for Diagnostic of Xanthomonads Pathogenic on Citrus, Common Bean and Pelargonium. United States Department of Agriculture, June 1994. http://dx.doi.org/10.32747/1994.7604316.bard.
Full textNisar, Mohammad, Attaullah Mian, Ajmal Iqbal, Zakia Ahmad, Nazim Hassan, Muhammad Laiq, Muhammad Salam, and Fatih Hanci. A Detailed Characterization of the Common Bean Genetic Diversity in the Hidden Gene Center of Pakistan: Malakand Division. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, June 2020. http://dx.doi.org/10.7546/crabs.2020.06.09.
Full textEshel, Amram, Jonathan P. Lynch, and Kathleen M. Brown. Physiological Regulation of Root System Architecture: The Role of Ethylene and Phosphorus. United States Department of Agriculture, December 2001. http://dx.doi.org/10.32747/2001.7585195.bard.
Full textWestgate, Mark E., Gerald Sebuwufu, and Mercy K. Kabahuma. Enhancing Yield and Biological Nitrogen Fixation of Common Beans. Ames: Iowa State University, Digital Repository, 2012. http://dx.doi.org/10.31274/farmprogressreports-180814-203.
Full textValverde, Rodrigo A., Aviv Dombrovsky, and Noa Sela. Interactions between Bell pepper endornavirus and acute viruses in bell pepper and effect to the host. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7598166.bard.
Full textMalyzhenkov, Alexander, and Nikolai Yampolsky. Optimization of Compton Source Performance through Electron Beam Shaping. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1329533.
Full textPearce, Fred. Common Ground: Securing land rights and safeguarding the earth. Rights and Resources Initiative, March 2016. http://dx.doi.org/10.53892/homt4176.
Full textLiu, Chuyu. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1057577.
Full textHuang, Y. Manual for COMSYN: A orbit integration code for the study of beam dynamics in compact synchrotrons. Office of Scientific and Technical Information (OSTI), October 1991. http://dx.doi.org/10.2172/5039788.
Full textRaitses, Y., Smirnov A., and N. J. Fisch. Comment on "Effects of Magnetic Field Gradient on Ion Beam Current in Cylindrical Hall Ion Source. Office of Scientific and Technical Information (OSTI), August 2008. http://dx.doi.org/10.2172/938977.
Full text