Academic literature on the topic 'Combustore'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Combustore.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Combustore"
Davidović, Nikola S., Nenad M. Kolarević, Miloš B. Stanković, and Marko V. Miloš. "Research of expendable turbojet tubular combustion chamber." Advances in Mechanical Engineering 14, no. 5 (May 2022): 168781322210959. http://dx.doi.org/10.1177/16878132221095999.
Full textHosseini, Seyed, Evan Owens, John Krohn, and James Leylek. "Experimental Investigation into the Effects of Thermal Recuperation on the Combustion Characteristics of a Non-Premixed Meso-Scale Vortex Combustor." Energies 11, no. 12 (December 4, 2018): 3390. http://dx.doi.org/10.3390/en11123390.
Full textWang, T., J. S. Kapat, W. R. Ryan, I. S. Diakunchak, and R. L. Bannister. "Effect of Air Extraction for Cooling and/or Gasification on Combustor Flow Uniformity." Journal of Engineering for Gas Turbines and Power 121, no. 1 (January 1, 1999): 46–54. http://dx.doi.org/10.1115/1.2816311.
Full textKhandelwal, B., A. Karakurt, V. Sethi, R. Singh, and Z. Quan. "Preliminary design and performance analysis of a low emission aero-derived gas turbine combustor." Aeronautical Journal 117, no. 1198 (December 2013): 1249–71. http://dx.doi.org/10.1017/s0001924000008848.
Full textBurunsuz, К. S., V. V. Kuklinovsky, and S. I. Serbin. "Investigations of the emission characteristics of a gas turbine combustor with water steam injection." Refrigeration Engineering and Technology 55, no. 2 (April 30, 2019): 77–83. http://dx.doi.org/10.15673/ret.v55i2.1356.
Full textKanta Mukherjee, Nalini. "Analytic description of flame intrinsic instability in one-dimensional model of open–open combustors with ideal and non-ideal end boundaries." International Journal of Spray and Combustion Dynamics 10, no. 4 (August 27, 2018): 287–314. http://dx.doi.org/10.1177/1756827718795518.
Full textFąfara, Jean-Marc. "Overview of low emission combustors of aircraft turbine drive units." Combustion Engines 183, no. 4 (December 15, 2020): 45–49. http://dx.doi.org/10.19206/ce-2020-407.
Full textSaputro, Herman, Aris Purwanto, Laila Fitriana, Danar S. Wijayanto, Valiant L. P. Sutrisno, Eka D. Ariyanto, Marshal Bima, et al. "Analysis of flame stabilization limit in a cylindrical of step micro-combustor with different material through the numerical simulation." MATEC Web of Conferences 197 (2018): 08003. http://dx.doi.org/10.1051/matecconf/201819708003.
Full textFeitelberg, A. S., V. E. Tangirala, R. A. Elliott, R. E. Pavri, and R. B. Schiefer. "Reduced NOx Diffusion Flame Combustors for Industrial Gas Turbines." Journal of Engineering for Gas Turbines and Power 123, no. 4 (October 1, 2000): 757–65. http://dx.doi.org/10.1115/1.1376722.
Full textChand, Dharmahinder Singh, Daamanjyot Barara, Gautam Ganesh, and Suraj Anand. "Comparison of Efficiency of Conventional Shaped Circular and Elliptical Shaped Combustor." MATEC Web of Conferences 151 (2018): 02002. http://dx.doi.org/10.1051/matecconf/201815102002.
Full textDissertations / Theses on the topic "Combustore"
Romanelli, Mirko. "Modellazione del comportamento di un combustore e turbina aeronautica con fogging." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12374/.
Full textGobbato, Paolo. "Studio delle instabilità termoacustiche in un combustore di turbina a gas." Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3427348.
Full textL'instabilità di combustione peggiora le prestazioni di un combustore a flusso continuo e pertanto deve essere considerata un fenomeno indesiderato. Fluttuazioni della pressione e del rilascio termico possono infatti causare vibrazioni meccaniche, rumore, formazione di punti caldi sulle pareti della camera di combustione e incremento delle emissioni inquinanti. La combustione instabile è particolarmente dannosa nei combustori per turbina a gas nei quali ampie oscillazioni di portata e di rilascio termico possono danneggiare irreparabilmente le parti fisse e rotanti della turbina. Nel lavoro che si presenta viene studiato il comportamento termoacustico di un combustore di turbina a gas. Il combustore esaminato è del tipo tubolare, con singolo bruciatore a fiamma diffusiva ed è stato modificato dal costruttore per essere alimentato non solo a gas naturale ma anche a idrogeno. Il processo di sviluppo è stato supportato da prove di combustione su scala reale eseguite su un banco prova in grado di riprodurre le condizioni di pieno carico. L’analisi termoacustica viene condotta seguendo una procedura di indagine basata sulla simulazione numerica del fenomeno mediante un codice numerico commerciale con modelli di turbolenza di tipo RANS. Nelle analisi numeriche i modelli numerici e le griglie di calcolo sono scelti in modo da minimizzare tempi e risorse di calcolo. In questo modo è possibile simulare un intervallo temporale sufficientemente ampio da consentire al sistema di evolvere liberamente fino alle condizioni di regime per poter così valutare l’eventuale presenza di instabilità termoacustiche. Le misure raccolte durante le prove sperimentali sono impiegate nei calcoli sia per l’imposizione delle condizioni al contorno sia per la valutazione dei risultati. I segnali di pressione registrati durante le simulazioni mostrano la permanenza di oscillazioni di pressione nel combustore caratterizzate da un’ampiezza piuttosto ridotta. Queste oscillazioni sono dunque ampiamente tollerabili dal sistema (la combustione è ovunque completa e non vi sono fenomeni di estinzione di fiamma e di surriscaldamento delle pareti del combustore), in accordo con quanto osservato durante le prove sperimentali. Gli spettri calcolati al termine delle simulazioni sono comparati con gli spettri acquisiti durante le prove di combustione. Dal confronto emerge una sostanziale corrispondenza tra i modi di vibrare calcolati e quelli misurati al banco prova.
Khandelwal, Bhupendra. "Development of gas turbine combustor preliminary design methodologies and preliminary assessments of advanced low emission combustor concepts." Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/9157.
Full textAslanidou, Ioanna. "Combustor and turbine aerothermal interactions in gas turbines with can combustors." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:b1527fd0-8e54-4831-8625-32722141511e.
Full textAbraham, Santosh. "Heat Transfer and Flow Measurements on a One-Scale Gas Turbine Can Combustor Model." Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/35177.
Full textMaster of Science
Carmack, Andrew Cardin. "Heat Transfer and Flow Measurements in Gas Turbine Engine Can and Annular Combustors." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/32466.
Full textMaster of Science
Jelercic, David. "Experiments in annular combustors." Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251891.
Full textAnand, Vijay G. "Rotating Detonation Combustor Mechanics." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1530798871271548.
Full textAyache, Simon Victor. "Simulations of turbulent swirl combustors." Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/243609.
Full textGray, D. T. "The control of fluidised combustors." Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373677.
Full textBooks on the topic "Combustore"
Young, Mark F. Measurements of gas turbine combustor and engine augmentor tube sooting characteristics. Monterey, Calif: Naval Postgraduate School, 1988.
Find full textLee, Richard S. L., James H. Whitelaw, and T. S. Wung, eds. Aerothermodynamics in Combustors. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84755-4.
Full textCenter, Langley Research, ed. HYPULSE combustor analysis. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Find full textCenter, Langley Research, ed. HYPULSE combustor analysis. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Find full textLieuwen, Timothy C. Unsteady combustor physics. Cambridge: Cambridge University Press, 2013.
Find full textKumar, Sanjiv. A computer model for the simulation of turbulent reacting flow in a jet assisted ram combustor. Chofu, Tokyo: National Aerospace Laboratory, 1995.
Find full textM, Mellor A., ed. Design of modern turbine combustors. London: Academic Press, 1990.
Find full textUnited States. Environmental Protection Agency. Office of Water, ed. Development document for final effluent limitations guidelines and standards for the commercial hazardous waste combustor subcategory of the waste combustors point source category. Washington, DC: U.S. Environmental Protection Agency, Office of Water, 2000.
Find full textJ, Breisacher Kevin, and United States. National Aeronautics and Space Administration., eds. 3D rocket combustor acoustics model. [Washington, DC]: National Aeronautics and Space Administration, 1992.
Find full textP, Menees Gene, and Ames Research Center, eds. Wave combustors for trans-atmospheric vehicles. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1989.
Find full textBook chapters on the topic "Combustore"
Seitz, Timo, Ansgar Lechtenberg, and Peter Gerlinger. "Rocket Combustion Chamber Simulations Using High-Order Methods." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 381–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_24.
Full textBilger, R. W. "Advanced Laser Diagnostics: Implications of Recent Results for Advanced Combustor Models." In Aerothermodynamics in Combustors, 3–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84755-4_1.
Full textLindstedt, R. P. "A Simple Reaction Mechanism for Soot Formation in Non-Premixed Flames." In Aerothermodynamics in Combustors, 145–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84755-4_10.
Full textChiu, H. H. "Droplet Vaporization Law in Non-Dilute Sprays." In Aerothermodynamics in Combustors, 159–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84755-4_11.
Full textRoth, N., K. Anders, and A. Frohn. "Experimental Investigation of the Reduction of Burning Rate Due to Finite Spacing Between Droplets." In Aerothermodynamics in Combustors, 175–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84755-4_12.
Full textHiroyasu, Hiroyuki, Masataka Arai, Kaoru Nakamori, and Shinji Nakaso. "Blue Flame Combustion in a Jet-Mixing-Type Spray Combustor." In Aerothermodynamics in Combustors, 185–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84755-4_13.
Full textLiu, Chi-Chang, and Ta-Hui Lin. "The Influence of Upstream Prevaporization on Flame Extinction of One-Dimensional Dilute Sprays." In Aerothermodynamics in Combustors, 197–211. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84755-4_14.
Full textHendricks, E. W., S. Sivasegaram, and J. H. Whitelaw. "Control of Oscillations in Ducted Premixed Flames." In Aerothermodynamics in Combustors, 215–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84755-4_15.
Full textTien, Ta-Ching, and James S. T’ien. "Catalytic Ignition Model in Monolithic Reactor with In-Depth Reaction." In Aerothermodynamics in Combustors, 231–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84755-4_16.
Full textBai, T., S. Shani, B. R. Daniel, and B. T. Zinn. "Combustion of Heavy Fuel Oils in a Rijke Type Pulse Combustor with a Tangential Injection Stream." In Aerothermodynamics in Combustors, 245–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84755-4_17.
Full textConference papers on the topic "Combustore"
Wang, T., J. S. Kapat, W. R. Ryan, I. S. Diakunchak, and R. L. Bannister. "Effect of Air Extraction for Cooling and/or Gasification on Combustor Flow Uniformity." In ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-102.
Full textWalker, A. Duncan, Jon F. Carrotte, and James J. McGuirk. "Compressor/Diffuser/Combustor Aerodynamic Interactions in Lean Module Combustors." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27872.
Full textSamarasinghe, Janith, Stephen J. Peluso, Bryan D. Quay, and Domenic A. Santavicca. "The 3-D Structure of Swirl-Stabilized Flames in a Lean Premixed Multi-Nozzle Can Combustor." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42167.
Full textZahn, Max, Michael Betz, Moritz Schulze, Christoph Hirsch, and Thomas Sattelmayer. "Predicting the Influence of Damping Devices on the Stability Margin of an Annular Combustor." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64238.
Full textLieuwen, Tim, Vince McDonell, Eric Petersen, and Domenic Santavicca. "Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition and Instability." In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90770.
Full textGarland, R. V., P. W. Pillsbury, and T. E. Dowdy. "Design and Test of a Candidate Topping Combustor for Second Generation PFB Applications." In ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/91-gt-113.
Full textLieuwen, Tim, and Andrzej Banaszuk. "Background Noise Effects on Combustor Stability." In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30062.
Full textHegde, Gajanana B., Bhupendra Khandelwal, Vishal Sethi, and Riti Singh. "Design, Evaluation and Performance Analysis of Staged Low Emission Combustors." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-69215.
Full textRida, Samir, Saugata Chakravorty, Jaydeep Basani, Stefano Orsino, and Naseem Ansari. "An Assessment of Flamelet Generated Manifold Combustion Model for Predicting Combustor Performance." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42340.
Full textHirano, Kohshi, Yoshiharu Nonaka, Yasuhiro Kinoshita, Masaya Muto, and Ryoichi Kurose. "Large-Eddy Simulation of Turbulent Combustion in Multi Combustors for L30A Gas Turbine Engine." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42545.
Full textReports on the topic "Combustore"
Bray, C. Transport in Dump Combustors. Fort Belvoir, VA: Defense Technical Information Center, August 1986. http://dx.doi.org/10.21236/ada224790.
Full textVreeland, Heidi, Christina Norris, Lauren Shum, Jaya Pokuri, Emily Shannon, Anmol Raina, Ayushman Tripathi, et al. Collaborative Efforts to Investigate Emissions From Residential and Municipal Trash Burning in India. RTI Press, September 2018. http://dx.doi.org/10.3768/rtipress.2018.rb.0019.1809.
Full textSantavicca, Domenic A. Combustion Instabilities in Lean Premixed Combustors. Fort Belvoir, VA: Defense Technical Information Center, July 2001. http://dx.doi.org/10.21236/ada400629.
Full textW. R. Laster, E. Anoshkina, and P. Szedlacsek. Catalytic Combustor for Fuel-Flexible Turbine. Office of Scientific and Technical Information (OSTI), March 2006. http://dx.doi.org/10.2172/907883.
Full textCrayon, D., A. E. Fish, E. Hyland, R. W. Messler, and jr. Coatings Evaluation Using a Vented Combustor. Fort Belvoir, VA: Defense Technical Information Center, December 2001. http://dx.doi.org/10.21236/ada397759.
Full textLaster, W. R., and E. Anoshkina. Catalytic Combustor for Fuel-Flexible Turbine. Office of Scientific and Technical Information (OSTI), January 2008. http://dx.doi.org/10.2172/1083745.
Full textW. R. Laster and E. Anoshkina. Catalytic Combustor for Fuel-Flexible Turbine. Office of Scientific and Technical Information (OSTI), January 2008. http://dx.doi.org/10.2172/973070.
Full textNational Energy Technology Laboratory. Pulse Combustor Design, A DOE Assessment. Office of Scientific and Technical Information (OSTI), July 2003. http://dx.doi.org/10.2172/812682.
Full textGidaspow, D. Predictive models of circulating fluidized bed combustors. Office of Scientific and Technical Information (OSTI), July 1992. http://dx.doi.org/10.2172/7195746.
Full textLouge, M. Y. Scale-up circulating fluidized bed coal combustors. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/5520104.
Full text