Journal articles on the topic 'Combustion Simulations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Combustion Simulations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rowan, Steven L., Ismail B. Celik, Albio D. Gutierrez, and Jose Escobar Vargas. "A Reduced Order Model for the Design of Oxy-Coal Combustion Systems." Journal of Combustion 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/943568.
Full textSikorski, K., Kwan Liu Ma, Philip J. Smith, and Bradley R. Adams. "Distributed combustion simulations." Energy & Fuels 7, no. 6 (November 1993): 902–5. http://dx.doi.org/10.1021/ef00042a029.
Full textÅkerblom, Arvid, Francesco Pignatelli, and Christer Fureby. "Numerical Simulations of Spray Combustion in Jet Engines." Aerospace 9, no. 12 (December 16, 2022): 838. http://dx.doi.org/10.3390/aerospace9120838.
Full textTamanampudi, Gowtham Manikanta Reddy, Swanand Sardeshmukh, William Anderson, and Cheng Huang. "Combustion instability modeling using multi-mode flame transfer functions and a nonlinear Euler solver." International Journal of Spray and Combustion Dynamics 12 (January 2020): 175682772095032. http://dx.doi.org/10.1177/1756827720950320.
Full textPries, Michael, Andreas Fiolitakis, and Peter Gerlinger. "Numerical Investigation of a High Momentum Jet Flame at Elevated Pressure: A Quantitative Validation with Detailed Experimental Data." Journal of the Global Power and Propulsion Society 4 (December 18, 2020): 264–73. http://dx.doi.org/10.33737/jgpps/130031.
Full textFooladgar, Ehsan, and C. K. Chan. "Large Eddy Simulation of a Swirl-Stabilized Pilot Combustor from Conventional to Flameless Mode." Journal of Combustion 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/8261560.
Full textMeng, Nan, and Feng Li. "Large-Eddy Simulations of Unsteady Reaction Flow Characteristics Using Four Geometrical Combustor Models." Aerospace 10, no. 2 (February 6, 2023): 147. http://dx.doi.org/10.3390/aerospace10020147.
Full textThelen, Bryce C., and Elisa Toulson. "A computational study on the effect of the orifice size on the performance of a turbulent jet ignition system." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 231, no. 4 (August 20, 2016): 536–54. http://dx.doi.org/10.1177/0954407016659199.
Full textZhang, Linqing, Juntao Chang, Wenxiang Cai, Hui Sun, and Yingkun Li. "A Preliminary Research on Combustion Characteristics of a Novel-Type Scramjet Combustor." International Journal of Aerospace Engineering 2022 (December 30, 2022): 1–18. http://dx.doi.org/10.1155/2022/3930440.
Full textLiu, Hao, Wen Yan Song, and Shun Hua Yang. "Large Eddy Simulation of Hydrogen-Fueled Supersonic Combustion with Strut Injection." Applied Mechanics and Materials 66-68 (July 2011): 1769–73. http://dx.doi.org/10.4028/www.scientific.net/amm.66-68.1769.
Full textMahesh, K., G. Constantinescu, S. Apte, G. Iaccarino, F. Ham, and P. Moin. "Large-Eddy Simulation of Reacting Turbulent Flows in Complex Geometries." Journal of Applied Mechanics 73, no. 3 (November 9, 2005): 374–81. http://dx.doi.org/10.1115/1.2179098.
Full textChambers, Steven, Horia Flitan, Paul Cizmas, Dennis Bachovchin, Thomas Lippert, and David Little. "The Influence of In Situ Reheat on Turbine-Combustor Performance." Journal of Engineering for Gas Turbines and Power 128, no. 3 (March 1, 2004): 560–72. http://dx.doi.org/10.1115/1.2135812.
Full textZhu, Zhouyuan, Canhua Liu, Yajing Chen, Yuning Gong, Yang Song, and Junshi Tang. "In-situ Combustion Simulation from Laboratory to Field Scale." Geofluids 2021 (December 14, 2021): 1–12. http://dx.doi.org/10.1155/2021/8153583.
Full textRashkovskiy, Sergey. "Simulation of Gasless Combustion of Mechanically Activated Solid Powder Mixtures." Advances in Science and Technology 63 (October 2010): 213–21. http://dx.doi.org/10.4028/www.scientific.net/ast.63.213.
Full textRimár, Miroslav, Ján Kizek, and Andrii Kulikov. "Numerical Modelling of Gaseous Fuel Combustion Process with the Stepwise Redistribution of Enriched Combustion Air." MATEC Web of Conferences 328 (2020): 02001. http://dx.doi.org/10.1051/matecconf/202032802001.
Full textGonzalez-Juez, Esteban. "Numerical Simulations of Combustion Instabilities in a Combustor with an Augmentor-Like Geometry." Aerospace 6, no. 7 (July 21, 2019): 82. http://dx.doi.org/10.3390/aerospace6070082.
Full textTao, Feng, Sukhin Srinivas, Rolf D. Reitz, and David E. Foster. "Current status of soot modeling applied to diesel combustion simulations(Diesel Engines, Combustion Modeling I)." Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines 2004.6 (2004): 151–57. http://dx.doi.org/10.1299/jmsesdm.2004.6.151.
Full textLipatnikov, Andrei N. "Numerical Simulations of Turbulent Combustion." Fluids 5, no. 1 (February 10, 2020): 22. http://dx.doi.org/10.3390/fluids5010022.
Full textAhmed, E., and Y. Huang. "Flame volume prediction and validation for lean blow-out of gas turbine combustor." Aeronautical Journal 121, no. 1236 (January 12, 2017): 237–62. http://dx.doi.org/10.1017/aer.2016.125.
Full textDinde, Prashant, A. Rajasekaran, and V. Babu. "3D numerical simulation of the supersonic combustion of H2." Aeronautical Journal 110, no. 1114 (December 2006): 773–82. http://dx.doi.org/10.1017/s0001924000001640.
Full textKang, Yiqin, Chenlu Wang, Gangyi Fang, Fei Xing, and Shining Chan. "Flow and Combustion Characteristics of Wave Rotor–Trapped Vortex Combustor System." Energies 16, no. 1 (December 28, 2022): 326. http://dx.doi.org/10.3390/en16010326.
Full textGuo, Kangkang, Yongjie Ren, Yiheng Tong, Wei Lin, and Wansheng Nie. "Analysis of self-excited transverse combustion instability in a rectangular model rocket combustor." Physics of Fluids 34, no. 4 (April 2022): 047104. http://dx.doi.org/10.1063/5.0086226.
Full textYuan, Yixiang, Qinghua Zeng, Jun Yao, Yongjun Zhang, Mengmeng Zhao, and Lu Zhao. "Improving Blowout Performance of the Conical Swirler Combustor by Employing Two Parts of Fuel at Low Operating Condition." Energies 14, no. 6 (March 18, 2021): 1681. http://dx.doi.org/10.3390/en14061681.
Full textKrishnamoorthy, Gautham, and Caitlyn Wolf. "Assessing the Role of Particles in Radiative Heat Transfer during Oxy-Combustion of Coal and Biomass Blends." Journal of Combustion 2015 (2015): 1–15. http://dx.doi.org/10.1155/2015/793683.
Full textAlhumairi, Mohammed, and Özgür Ertunç. "Active-grid turbulence effect on the topology and the flame location of a lean premixed combustion." Thermal Science 22, no. 6 Part A (2018): 2425–38. http://dx.doi.org/10.2298/tsci170503100a.
Full textGeigle, Klaus Peter, Wolfgang Meier, Manfred Aigner, Chris Willert, Marc Jarius, Patrick Schmitt, and Bruno Schuermans. "Phase-Resolved Laser Diagnostic Measurements of a Downscaled, Fuel-Staged Gas Turbine Combustor at Elevated Pressure and Comparison to LES Predictions." Journal of Engineering for Gas Turbines and Power 129, no. 3 (September 19, 2006): 680–87. http://dx.doi.org/10.1115/1.2718222.
Full textLi, Jun, Meilin Zhu, Chang Geng, Yingjie Yuan, Zewei Fu, Shu Yan, Rou Feng, et al. "A Molecular Understanding of the Flame Retardant Mechanism of Zinc Stannate/Polypropylene Composites via ReaxFF Simulations." Inorganics 11, no. 6 (May 27, 2023): 233. http://dx.doi.org/10.3390/inorganics11060233.
Full textWang, Xinyan, and Hua Zhao. "Modelling Study of Cycle-To-Cycle Variations (CCV) in Spark Ignition (SI)-Controlled Auto-Ignition (CAI) Hybrid Combustion Engine by Using Reynolds-Averaged Navier–Stokes (RANS) and Large Eddy Simulation (LES)." Energies 15, no. 12 (June 20, 2022): 4478. http://dx.doi.org/10.3390/en15124478.
Full textSaputro, Herman, Heri Juwantono, Husin Bugis, Danar Susilo Wijayanto, Laila Fitriana, Valiant Lukad Perdana, Aris Purwanto, et al. "Numerical simulation of flame stabilization in meso-scale vortex combustion." MATEC Web of Conferences 197 (2018): 08005. http://dx.doi.org/10.1051/matecconf/201819708005.
Full textPandey, Krishna Murari, and Sukanta Roga. "CFD Analysis of Hypersonic Combustion of H2-Fueled Scramjet Combustor with Cavity Based Fuel Injector at Flight Mach 6." Applied Mechanics and Materials 656 (October 2014): 53–63. http://dx.doi.org/10.4028/www.scientific.net/amm.656.53.
Full textChow, P. H. P., H. C. Watson, and T. Wallis. "Combustion in a high-speed rotary valve spark-ignition engine." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 221, no. 8 (August 1, 2007): 971–90. http://dx.doi.org/10.1243/09544070jauto407.
Full textMeng, Nan, and Feng Li. "Large-eddy simulation of unstable non-reactive flow in a swirler combustor." Physics of Fluids 34, no. 11 (November 2022): 114107. http://dx.doi.org/10.1063/5.0122462.
Full textHendricks, R. C., D. T. Shouse, W. M. Roquemore, D. L. Burrus, B. S. Duncan, R. C. Ryder, A. Brankovic, N. S. Liu, J. R. Gallagher, and J. A. Hendricks. "Experimental and Computational Study of Trapped Vortex Combustor Sector Rig with High-Speed Diffuser Flow." International Journal of Rotating Machinery 7, no. 6 (2001): 375–85. http://dx.doi.org/10.1155/s1023621x0100032x.
Full textKurose, Ryoichi, Hiroaki Watanabe, and Hisao Makino. "Numerical Simulations of Pulverized Coal Combustion." KONA Powder and Particle Journal 27 (2009): 144–56. http://dx.doi.org/10.14356/kona.2009014.
Full textMasri, Assaad R., Mohy Mansour, and Andrea D'Anna. "Towards Improving Simulations of Combustion Processes." Combustion Theory and Modelling 21, no. 1 (January 2, 2017): 1. http://dx.doi.org/10.1080/13647830.2017.1296683.
Full textChen, Yen-Sen, T. H. Chou, B. R. Gu, J. S. Wu, Bill Wu, Y. Y. Lian, and Luke Yang. "Multiphysics simulations of rocket engine combustion." Computers & Fluids 45, no. 1 (June 2011): 29–36. http://dx.doi.org/10.1016/j.compfluid.2010.09.010.
Full textDi Sarli, Valeria, Marco Trofa, and Almerinda Di Benedetto. "A Novel Catalytic Micro-Combustor Inspired by the Nasal Geometry of Reindeer: CFD Modeling and Simulation." Catalysts 10, no. 6 (May 31, 2020): 606. http://dx.doi.org/10.3390/catal10060606.
Full textDanaila, Sterian, and Constantin Leventiu. "On the Hybrid Combustion Instability." Applied Mechanics and Materials 555 (June 2014): 72–77. http://dx.doi.org/10.4028/www.scientific.net/amm.555.72.
Full textSui, Wenbo, and Carrie M. Hall. "Combustion phasing modeling and control for compression ignition engines with high dilution and boost levels." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 233, no. 7 (August 1, 2018): 1834–50. http://dx.doi.org/10.1177/0954407018790176.
Full textShibata, Gen, Kohei Yamamoto, Mikito Saito, Yuto Inoue, Yasumasa Amanuma, and Yoshimitsu Kobashi. "Optimization of combustion noise and thermal efficiency in diesel engines over a wide speed and load operational range." International Journal of Engine Research 21, no. 4 (August 15, 2019): 698–712. http://dx.doi.org/10.1177/1468087419866069.
Full textAshrul Ishak, Mohamad Shaiful, Mohd Amirul Amin Arizal, Mohammad Nazri Mohd Jaafar, A. R. Norwazan, and Ismail Azmi. "Numerical Investigation of Combustion Performance Utilizing Envo-Diesel Blends." Advanced Materials Research 647 (January 2013): 822–27. http://dx.doi.org/10.4028/www.scientific.net/amr.647.822.
Full textMenon, Suresh, and Wen-Huei Jou. "Large-Eddy Simulations of Combustion Instability in an Axisymmetric Ramjet Combustor." Combustion Science and Technology 75, no. 1-3 (January 1991): 53–72. http://dx.doi.org/10.1080/00102209108924078.
Full textJovanovic, Rastko, Krzysztof Strug, Bartosz Swiatkowski, Sławomir Kakietek, Krzysztof Jagiełło, and Dejan Cvetinovic. "Experimental and numerical investigation of flame characteristics during swirl burner operation under conventional and oxy-fuel conditions." Thermal Science 21, no. 3 (2017): 1463–77. http://dx.doi.org/10.2298/tsci161110325j.
Full textStęchły, Katarzyna, Gabriel Wecel, and Derek B. Ingham. "CFD modelling of air and oxy-coal combustion." International Journal of Numerical Methods for Heat & Fluid Flow 24, no. 4 (April 29, 2014): 825–44. http://dx.doi.org/10.1108/hff-02-2013-0066.
Full textJin, Xuan, Chibing Shen, Rui Zhou, and Xinxin Fang. "Effects of LOX Particle Diameter on Combustion Characteristics of a Gas-Liquid Pintle Rocket Engine." International Journal of Aerospace Engineering 2020 (September 15, 2020): 1–16. http://dx.doi.org/10.1155/2020/8867199.
Full textLiou, Tong-Miin, Po-Wen Hwang, Yi-Chen Li, and Chia-Yen Chan. "Flame Stability Analysis of Turbulent Non-Premixed Reacting Flow in a Simulated Solid-Fuel Ramjet Combustor." Journal of Mechanics 18, no. 1 (March 2002): 43–51. http://dx.doi.org/10.1017/s172771910000201x.
Full textHuang, Y. L., H. R. Shiu, S. H. Chang, W. F. Wu, and S. L. Chen. "Comparison of Combustion Models in Cleanroom Fire." Journal of Mechanics 24, no. 3 (September 2008): 267–75. http://dx.doi.org/10.1017/s172771910000232x.
Full textMenon, S. "Subgrid combustion modelling for large-eddy simulations." International Journal of Engine Research 1, no. 2 (April 1, 2000): 209–27. http://dx.doi.org/10.1243/1468087001545146.
Full textHegde, N., I. Han, T. W. Lee, and R. P. Roy. "Flow and Heat Transfer in Heat Recovery Steam Generators." Journal of Energy Resources Technology 129, no. 3 (March 24, 2007): 232–42. http://dx.doi.org/10.1115/1.2751505.
Full textGrimm, Felix, Jürgen Dierke, Roland Ewert, Berthold Noll, and Manfred Aigner. "Modelling of combustion acoustics sources and their dynamics in the PRECCINSTA burner test case." International Journal of Spray and Combustion Dynamics 9, no. 4 (July 7, 2017): 330–48. http://dx.doi.org/10.1177/1756827717717390.
Full text