Journal articles on the topic 'Combustion diagnostics; Nitrogen oxide'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Combustion diagnostics; Nitrogen oxide.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zajemska, M., H. Radomiak, and A. Poskart. "The Optimization And Diagnostics Of Combustion Process With Numerical Modelling Application." Archives of Metallurgy and Materials 60, no. 2 (June 1, 2015): 687–95. http://dx.doi.org/10.1515/amm-2015-0193.
Full textDaw, C. S., C. E. A. Finney, B. C. Kaul, K. D. Edwards, and R. M. Wagner. "Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2034 (February 13, 2015): 20140088. http://dx.doi.org/10.1098/rsta.2014.0088.
Full textSepman, Alexey, Christian Fredriksson, Yngve Ögren, and Henrik Wiinikka. "Laser-Based, Optical, and Traditional Diagnostics of NO and Temperature in 400 kW Pilot-Scale Furnace." Applied Sciences 11, no. 15 (July 30, 2021): 7048. http://dx.doi.org/10.3390/app11157048.
Full textMartinez-Boggio, S. D., S. S. Merola, P. Teixeira Lacava, A. Irimescu, and P. L. Curto-Risso. "Effect of Fuel and Air Dilution on Syngas Combustion in an Optical SI Engine." Energies 12, no. 8 (April 25, 2019): 1566. http://dx.doi.org/10.3390/en12081566.
Full textKojima, Kotaro, and Jun Kojima. "On-Board Ultrasonic Water-in-Diesel Emulsion (WiDE) Fuel System for Low-Emission Diesel Engine Combustion." Ohio Journal of Science 118, no. 2 (November 26, 2018): 43. http://dx.doi.org/10.18061/ojs.v118i2.6443.
Full textMikulandric, Robert, Drazen Loncar, Dejan Cvetinovic, Gabriel Spiridon, and Daniel Schneider. "Improvement of environmental aspects of thermal power plant operation by advanced control concepts." Thermal Science 16, no. 3 (2012): 759–72. http://dx.doi.org/10.2298/tsci120510134m.
Full textStańczyk, Krzysztof. "Nitrogen Oxide Evolution from Nitrogen-Containing Model Chars Combustion." Energy & Fuels 13, no. 1 (January 1999): 82–87. http://dx.doi.org/10.1021/ef9801017.
Full textMann, B. A., S. V. O'Leary, A. G. Astill, and D. A. Greenhalgh. "Degenerate four-wave mixing in nitrogen dioxide: Application to combustion diagnostics." Applied Physics B Photophysics and Laser Chemistry 54, no. 4 (April 1992): 271–77. http://dx.doi.org/10.1007/bf00325192.
Full textĆwikła-Bundyra, Wiesława. "Catalityc removal of nitrogen oxide from combustion gases." Polish Journal of Chemical Technology 9, no. 4 (December 1, 2007): 56–58. http://dx.doi.org/10.2478/v10026-007-0090-z.
Full textHjalmarsson, Anna-Karin. "Control of nitrogen oxide emissions from coal combustion." International Journal of Energy Research 14, no. 8 (1990): 813–20. http://dx.doi.org/10.1002/er.4440140804.
Full textRepić, B. S., Ž. G. Kostić, M. P. Martinović, and A. B. Gaiger. "Modeling of nitrogen oxide release in coal combustion." Journal of Engineering Physics and Thermophysics 72, no. 1 (January 1999): 18–23. http://dx.doi.org/10.1007/bf02699059.
Full textKymäläinen, Maritta, Mikael Forssén, Pia Kilpinen, and Mikko Hupa. "Nitrogen oxide formation in black liquor single droplet combustion." Nordic Pulp & Paper Research Journal 16, no. 4 (December 1, 2001): 346–54. http://dx.doi.org/10.3183/npprj-2001-16-04-p346-354.
Full textHouser, Thomas J., Michael E. McCarville, and Gu Zhuo-Ying. "Nitric oxide formation from fuel-nitrogen model compound combustion." Fuel 67, no. 5 (May 1988): 642–50. http://dx.doi.org/10.1016/0016-2361(88)90292-x.
Full textKrupa, R. J., T. F. Culbreth, B. W. Smith, and J. D. Winefordner. "A Flashback-Resistant Burner for Combustion Diagnostics and Analytical Spectrometry." Applied Spectroscopy 40, no. 6 (August 1986): 729–33. http://dx.doi.org/10.1366/0003702864508232.
Full textJi, Yanyan, Songsong Zhang, Kejian Wang, and Guoli Qi. "Study on combustion and nitrogen oxide emissions of gas boiler." IOP Conference Series: Materials Science and Engineering 721 (January 7, 2020): 012054. http://dx.doi.org/10.1088/1757-899x/721/1/012054.
Full textShimizu, Tadaaki, Youichi Sazawa, Tadafumi Adschiri, and Takehiko Furusawa. "Conversion of char-bound nitrogen to nitric oxide during combustion." Fuel 71, no. 4 (April 1992): 361–65. http://dx.doi.org/10.1016/0016-2361(92)90022-g.
Full textSoroka, B. S., and V. V. Horupa. "Environmental Characteristics of Modern Systems of Domestic Use of Fuel. Part 2. Pollutants Formation by Natural Gas Combustion in Atmospheric Burners: Experimental Studies." ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations 63, no. 5 (October 13, 2020): 450–61. http://dx.doi.org/10.21122/1029-7448-2020-63-5-450-461.
Full textChumakov, V. L., and S. N. Devyanin. "Oxide Emissions Reduction from Combustion Control in a Diesel Engine." Agricultural Machinery and Technologies 15, no. 1 (March 24, 2021): 48–56. http://dx.doi.org/10.22314/2073-7599-2021-15-1-48-56.
Full textJuszczak, Marek. "Correlation between air flow rate and pollutant concentrations during two-stage oak log combustion in a 25 KW residential boiler." Chemical and Process Engineering 37, no. 3 (September 1, 2016): 419–28. http://dx.doi.org/10.1515/cpe-2016-0034.
Full textJankowski, Antoni, and Mirosław Kowalski. "Alternative fuel in the combustion process of combustion engines." Journal of KONBiN 48, no. 1 (December 1, 2018): 55–81. http://dx.doi.org/10.2478/jok-2018-0047.
Full textOngar, Bulbul, Iliya K. Iliev, Vlastimir Nikolić, and Aleksandar Milašinović. "THE STUDY AND THE MECHANISM OF NITROGEN OXIDES’ FORMATION IN COMBUSTION OF FOSSIL FUELS." Facta Universitatis, Series: Mechanical Engineering 16, no. 2 (August 1, 2018): 273. http://dx.doi.org/10.22190/fume171114026o.
Full textRota, Renato, Massimo Morbidelli, and Sergio Carrà. "Combustion Kinetics of Light Hydrocarbons in the Presence of Nitrogen Oxide." Industrial & Engineering Chemistry Research 37, no. 11 (November 1998): 4241–52. http://dx.doi.org/10.1021/ie970474f.
Full textBowman, Craig T. "Control of combustion-generated nitrogen oxide emissions: Technology driven by regulation." Symposium (International) on Combustion 24, no. 1 (January 1992): 859–78. http://dx.doi.org/10.1016/s0082-0784(06)80104-9.
Full textMansurov, Z. A., S. M. Fomenko, A. N. Alipbaev, R. G. Abdulkarimova, and V. E. Zarko. "Aluminothermic combustion of chromium oxide based systems under high nitrogen pressure." Combustion, Explosion, and Shock Waves 52, no. 2 (March 2016): 184–92. http://dx.doi.org/10.1134/s0010508216020088.
Full textShatil, A. A., N. S. Klepikov, E. K. Veshnyakov, A. P. Konovalov, N. Yu Korgulin, and A. I. Gorokhov. "Suppressing nitrogen oxide emissions during staged combustion of high-reaction coals." Thermal Engineering 56, no. 1 (January 2009): 1–8. http://dx.doi.org/10.1134/s0040601509010017.
Full textMunts, V. A., Yu G. Munts, A. P. Baskakov, and E. Yu Pavlyuk. "Nitrogen Oxide Formation During Fluidized Bed Combustion of Coals and Shales." Power Technology and Engineering 48, no. 1 (May 2014): 34–41. http://dx.doi.org/10.1007/s10749-014-0479-9.
Full textBuruiana, Daniela Laura, Adrian Sachelarie, Claudiu Butnaru, and Viorica Ghisman. "Important Contributions to Reducing Nitrogen Oxide Emissions from Internal Combustion Engines." International Journal of Environmental Research and Public Health 18, no. 17 (August 27, 2021): 9075. http://dx.doi.org/10.3390/ijerph18179075.
Full textNavrodska, Raisa, Nataliia Fialko, Georgii Presich, Georgii Gnedash, Sergii Alioshko, and Svitlana Shevcuk. "Reducing nitrogen oxide emissions in boilers at moistening of blowing air in heat recovery systems." E3S Web of Conferences 100 (2019): 00055. http://dx.doi.org/10.1051/e3sconf/201910000055.
Full textStenin, Valery Alexandrovich, and Irina Valer’yevna Ershova. "Improvement of power efficiency and environmental safety of ship boilers." Vestnik of Astrakhan State Technical University. Series: Marine engineering and technologies 2020, no. 3 (August 19, 2020): 40–46. http://dx.doi.org/10.24143/2073-1574-2020-3-40-46.
Full textShimizu, Tadaaki, and Makoto Inagaki. "Decomposition of nitrogen oxide (N2O) over limestone under fluidized bed combustion conditions." Energy & Fuels 7, no. 5 (September 1993): 648–54. http://dx.doi.org/10.1021/ef00041a014.
Full textJang, D. S., and S. Acharya. "Moment Closure Model for Nitrogen Oxide Formation in Pulverized Coal Combustion Furnaces." Journal of Energy Resources Technology 113, no. 2 (June 1, 1991): 117–21. http://dx.doi.org/10.1115/1.2905784.
Full textPickens, Richie D. "Add-on control techniques for nitrogen oxide emissions during municipal waste combustion." Journal of Hazardous Materials 47, no. 1-3 (May 1996): 195–204. http://dx.doi.org/10.1016/0304-3894(95)00122-0.
Full textCvetanović, Sveta. "Overview of nitrogen oxide reactions during fossil fuel combustion in the atmosphere." Safety Engineering 10, no. 2 (2020): 103–8. http://dx.doi.org/10.5937/se2002103c.
Full textMODAN, Ecaterina–Magdalena, and Adriana-Gabriela PLAIASU. "An overview on metal-oxide catalytic converters." University of Pitesti. Scientific Bulletin - Automotive Series 30, no. 1 (November 1, 2020): 1–7. http://dx.doi.org/10.26825/bup.ar.2020.002.
Full textKong, Xianglu, Song Yang, Shoujun Liu, Kaixia Zhang, Tingting Jiao, and Ju Shangguan. "Study on Coupling Effect of Additives on NOx Control in Coal Pyrolysis-Combustion." E3S Web of Conferences 290 (2021): 03029. http://dx.doi.org/10.1051/e3sconf/202129003029.
Full textChoi, Iksoo, and Changhee Lee. "Numerical Study on Nitrogen Oxide and Black Carbon Reduction of Marine Diesel Engines Using Emulsified Marine Diesel Oil." Sustainability 11, no. 22 (November 12, 2019): 6347. http://dx.doi.org/10.3390/su11226347.
Full textWang, Chang’an, Pengqian Wang, Lin Zhao, Yongbo Du, and Defu Che. "Experimental Study on NOx Reduction in Oxy-fuel Combustion Using Synthetic Coals with Pyridinic or Pyrrolic Nitrogen." Applied Sciences 8, no. 12 (December 5, 2018): 2499. http://dx.doi.org/10.3390/app8122499.
Full textVÄHÄ-SAVO, NIKLAS, NIKOLAI DEMARTINI,, and MIKKO HUPA. "Fate of biosludge nitrogen in black liquor evaporation and combustion." September 2012 11, no. 9 (October 1, 2012): 53–59. http://dx.doi.org/10.32964/tj11.9.53.
Full textLiu, Hong, Yang Du, Guohai Yang, Guoqing Zhu, Yunji Gao, and Wei Ding. "Flame retardance of modified graphene to pure cotton fabric." Journal of Fire Sciences 36, no. 2 (December 17, 2017): 111–28. http://dx.doi.org/10.1177/0734904117748118.
Full textStone, C. R., T. R. Carden, and I. Podmore. "Analysis of the Effect of Inlet Valve Disablement on Swirl, Combustion and Emissions in a Spark Ignition Engine." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 207, no. 4 (October 1993): 295–305. http://dx.doi.org/10.1243/pime_proc_1993_207_195_02.
Full textZvar-Baskovic, Urban, Rok Vihar, Samuel Rodman-Opresnik, and Tomaz Katrasnik. "Simultaneous particulate matter and nitrogen oxide emission reduction through enhanced charge homogenization in diesel engines." Thermal Science 22, no. 5 (2018): 2039–52. http://dx.doi.org/10.2298/tsci180131259z.
Full textMladenovic, Milica, Dragoljub Dakic, Stevan Nemoda, Milijana Paprika, Mirko Komatina, Branislav Repic, and Aleksandar Eric. "The combustion of biomass - the impact of its types and combustion technologies on the emission of nitrogen oxide." Chemical Industry 70, no. 3 (2016): 287–98. http://dx.doi.org/10.2298/hemind150409033m.
Full textKnop, Vincent, Adlène Benkenida, Stéphane Jay, and Olivier Colin. "Modelling of combustion and nitrogen oxide formation in hydrogen-fuelled internal combustion engines within a 3D CFD code." International Journal of Hydrogen Energy 33, no. 19 (October 2008): 5083–97. http://dx.doi.org/10.1016/j.ijhydene.2008.06.027.
Full textRebrov, A. I., and E. G. Gorlov. "Combined technology for decreasing nitrogen oxide emissions upon the combustion of fuel oil." Solid Fuel Chemistry 45, no. 5 (October 2011): 349–52. http://dx.doi.org/10.3103/s0361521911050090.
Full textShabanov, A. V., D. V. Kondrat'ev, V. A. Solomin, and V. K. Vanin. "On the issue of reducing nitrogen oxide emissions by diesel internal combustion engines." Trudy NAMI, no. 1 (2020): 78–86. http://dx.doi.org/10.51187/0135-3152-2020-1-78-86.
Full textDe Marco, A., and G. Poncia. "A model of combustion chambers, including nitrogen oxide generation, in thermal power plants." Control Engineering Practice 7, no. 4 (April 1999): 483–92. http://dx.doi.org/10.1016/s0967-0661(99)00008-8.
Full textWen, Wei, Jin-Ming Wu, and Yu-De Wang. "Gas-sensing property of a nitrogen-doped zinc oxide fabricated by combustion synthesis." Sensors and Actuators B: Chemical 184 (July 2013): 78–84. http://dx.doi.org/10.1016/j.snb.2013.04.052.
Full textHarada, Tatsuro, Yoshio Ogura, Rikiya Abe, and Koji Sasatsu. "Indirect Detection of Nitrogen Oxide Emission on Actual PFBC (Pressurized Fluidized Bed Combustion)." IEEJ Transactions on Sensors and Micromachines 120, no. 12 (2000): 593–99. http://dx.doi.org/10.1541/ieejsmas.120.593.
Full textFutko, S. I. "Analysis of Nitrogen-Oxide Formation Mechanisms in Filtration Combustion of Methane–Air Mixtures." Combustion, Explosion, and Shock Waves 39, no. 6 (November 2003): 627–34. http://dx.doi.org/10.1023/b:cesw.0000007674.81766.e9.
Full textVolkov, D. V., S. A. Zaitsev, and V. F. Gol’tsev. "Parametric study of nitrogen oxide formation during combustion of uniform methane—Air mixtures." Combustion, Explosion, and Shock Waves 35, no. 2 (March 1999): 119–25. http://dx.doi.org/10.1007/bf02674423.
Full text