Academic literature on the topic 'Combustion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Combustion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Combustion"
Ran, Jing Yu, Li Juan Liu, Chai Zuo Li, and Li Zhang. "Numerical Study on Optimum Designing of the Air Distribution Structure of a New Cyclone Combustor." Advanced Materials Research 347-353 (October 2011): 3005–14. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.3005.
Full textLi, Shou-Zhe, Yu-Long Niu, Shu-Li Cao, Jiao Zhang, Jialiang Zhang, and Xuechen Li. "The effect of plasma discharge on methane diffusion combustion in air assisted by an atmospheric pressure microwave plasma torch." Journal of Physics D: Applied Physics 55, no. 23 (March 11, 2022): 235203. http://dx.doi.org/10.1088/1361-6463/ac50cb.
Full textYang, Xiaojian, and Guoming G. Zhu. "A control-oriented hybrid combustion model of a homogeneous charge compression ignition capable spark ignition engine." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 226, no. 10 (May 31, 2012): 1380–95. http://dx.doi.org/10.1177/0954407012443334.
Full textOzawa, Y., J. Hirano, M. Sato, M. Saiga, and S. Watanabe. "Test Results of Low NOx Catalytic Combustors for Gas Turbines." Journal of Engineering for Gas Turbines and Power 116, no. 3 (July 1, 1994): 511–16. http://dx.doi.org/10.1115/1.2906849.
Full textLi, Chaolong, Zhixun Xia, Likun Ma, Xiang Zhao, and Binbin Chen. "Numerical Study on the Solid Fuel Rocket Scramjet Combustor with Cavity." Energies 12, no. 7 (March 31, 2019): 1235. http://dx.doi.org/10.3390/en12071235.
Full textKinoshita, Y., J. Kitajima, Y. Seki, and A. Tatara. "Experimental Studies on Methane-Fuel Laboratory Scale Ram Combustor." Journal of Engineering for Gas Turbines and Power 117, no. 3 (July 1, 1995): 394–400. http://dx.doi.org/10.1115/1.2814108.
Full textChein, Reiyu, Yen-Cho Chen, Jui-Yu Chen, and J. N. Chung. "Premixed Methanol–Air Combustion Characteristics in a Mini-scale Catalytic Combustor." International Journal of Chemical Reactor Engineering 14, no. 1 (February 1, 2016): 383–93. http://dx.doi.org/10.1515/ijcre-2014-0061.
Full textDing, Shibin, Qingzhi Wang, and Weizhuo Hua. "Study on Plasma Combustion in Aeroengine Combustor." Journal of Physics: Conference Series 2483, no. 1 (May 1, 2023): 012054. http://dx.doi.org/10.1088/1742-6596/2483/1/012054.
Full textSing Mei, Sim, Aslina Anjang Ab Rahman, Mohd Shukur Zainol Abidin, and Nurul Musfirah Mazlan. "d2 Law and Penetration Length of Jatropha and Camelina Bio-Synthetic Paraffinic Kerosene Spray Characteristics at Take-Off, Top of Climb and Cruise." Aerospace 8, no. 9 (September 4, 2021): 249. http://dx.doi.org/10.3390/aerospace8090249.
Full textErdiwansyah, Mahidin, Husni Husin, Nasaruddin, Muhtadin, Muhammad Faisal, Asri Gani, Usman, and Rizalman Mamat. "Combustion Efficiency in a Fluidized-Bed Combustor with a Modified Perforated Plate for Air Distribution." Processes 9, no. 9 (August 24, 2021): 1489. http://dx.doi.org/10.3390/pr9091489.
Full textDissertations / Theses on the topic "Combustion"
Tajiri, Kazuya. "Simulations of combustion dynamics in pulse combustor." Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/12175.
Full textFernandes, Renato. "Metodologia de projeto de queimadores a jato para fornos de clínquer." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/264846.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-18T17:06:17Z (GMT). No. of bitstreams: 1 Fernandes_Renato_M.pdf: 7631607 bytes, checksum: 14334de2da1bd698c87a4fd0efbed3f4 (MD5) Previous issue date: 2011
Resumo: Os queimadores a jato são caracterizados pela elevada quantidade de movimento na direção axial e elevada potência, estes queimadores são muito empregados em fornos rotativos, principalmente na indústria do cimento e da calcinação. O projeto de queimadores a jato é realizado usualmente aproximando o escoamento de ar primário no queimador por um modelo de escoamento compressível isentrópico em um bocal, esta aproximação leva a elevada divergência entre o projeto e a performance do equipamento em operação. Nesta tese foram desenvolvidos e empregados modelos de escoamento compressível com atrito, troca de calor e variação de área de seção para o escoamento do ar primário no interior do queimador, esta modelagem permite integrar todo o projeto do queimador desde a especificação de motores, sopradores, simulação da rede de tubos que compõe queimador, incluindo o manifold, válvulas de controle, placas de orifício, mangotes etc, inclusive relacionando o escoamento do ar primário com o jato formado pelo queimador através do emprego e também do desenvolvimento de índices aerodinâmicos que representem o jato. Os pontos de inovação incluem além da modelagem proposta também o desenvolvimento de modelo para escoamento em swirlers, aplicação da lei de Crocco em escoamentos com mudança súbita de área de seção, aplicação de modelos de entrainment etc. A modelagem matemática proposta foi empregada no desenvolvimento de um sistema computacional na qual foi usado para simular diversos queimadores em escala industrial, e as simulações obtidas foram comparadas com as medições de campo realizadas nos queimadores. Os resultados das simulações foram muito representativos com divergências de no máximo 5,0 % entre as propriedades do escoamento simuladas com as propriedades mensuradas, por exemplo, pressão, temperatura, vazão etc
Abstract: Jet burners are characterized by their high power and their high momentum in the axis direction. For that reason, these burners are widely used in rotary kilns, especially in the cement and calcination industry. The project of jet burners is based on the approximation of the primary air flow in the burner, through the development of an isentropic compressible flow model for one nozzle. This approximation leads to high differences between the project and the actual performance of the equipment. For the purposes of this thesis, models of compressible flow with friction, heat exchange and variable cross section area for primary air flow inside the burner were developed and applied. The application of these models makes possible the integration of the whole burner project, i.e. specification of motors, blowers, and the simulation of the burner's tubing system, which comprises manifold, control valves, orifices flow meters, hoses, etc. These models also provides means to relate the primary air flow to the jet formed by the burner, through the application and development of aerodynamic indexes that represent the jet. Besides proposed modeling techniques, innovations in this thesis include the development of a model for representing flow in swirlers, an application of the Crocco law for flow through sudden changing cross sections, application of entrainment models, etc. Mathematical modeling was applied in the development of a computational system, which was used to simulate diverse industrial burners. Resulting simulations were compared with measures taken from actual burners. Results obtained were highly representative, showing a variance of 5.0% at the most between simulated flow properties and measured properties, i.e. pressure, temperature, flow rate, etc
Mestrado
Termica e Fluidos
Mestre em Engenharia Mecânica
Leng, Jing. "Combustion processes within a gas fired pulsed combustor." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307945.
Full textBishop, Robert Phelps. "Combustion efficiency in internal combustion engines." Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/15164.
Full textMICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING
Bibliography: leaf 26.
by Robert Phelps Bishop.
B.S.
Hossain, Abu Norman. "Combustion of solid fuel in a fluidized bed combustor." Ohio : Ohio University, 1998. http://www.ohiolink.edu/etd/view.cgi?ohiou1176492911.
Full textHossain, Abu Noman. "Combustion of solid fuel in a fluidized bed combustor." Ohio University / OhioLINK, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1176492911.
Full textLei, Yafeng. "Combustion and direct energy conversion in a micro-combustor." Texas A&M University, 2005. http://hdl.handle.net/1969.1/4311.
Full textChow, Siu-Kei. "Flow and combustion characteristics of a liquid-fuelled combustor." Thesis, Imperial College London, 1991. http://hdl.handle.net/10044/1/46714.
Full textIchihashi, Fumitaka. "Investigation of Combustion Instability in a Single Annular Combustor." University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1299617901.
Full textRibeiro, Natália da Silva [UNESP]. "Estudo termogravimétrico da combustão e oxicombustão de misturas carvão mineral-biomassa." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/149903.
Full textRejected by Luiz Galeffi (luizgaleffi@gmail.com), reason: Solicitamos que realize uma nova submissão seguindo a orientação abaixo: O arquivo submetido está sem a ficha catalográfica. A versão submetida por você é considerada a versão final da dissertação/tese, portanto não poderá ocorrer qualquer alteração em seu conteúdo após a aprovação. Corrija esta informação e realize uma nova submissão com o arquivo correto. Agradecemos a compreensão. on 2017-03-22T14:39:39Z (GMT)
Submitted by NATALIA DA SILVA RIBEIRO null (nsribeiro2@gmail.com) on 2017-03-22T17:58:52Z No. of bitstreams: 1 Defesa Natalia_Final..pdf: 3778151 bytes, checksum: 08fb9f490ae966bed7312cca924c9c9e (MD5)
Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-03-23T16:23:04Z (GMT) No. of bitstreams: 1 ribeiro_ns_me_guara.pdf: 3778151 bytes, checksum: 08fb9f490ae966bed7312cca924c9c9e (MD5)
Made available in DSpace on 2017-03-23T16:23:04Z (GMT). No. of bitstreams: 1 ribeiro_ns_me_guara.pdf: 3778151 bytes, checksum: 08fb9f490ae966bed7312cca924c9c9e (MD5) Previous issue date: 2017-03-03
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Nesta dissertação, investiga-se através da análise termogravimétrica o comportamento da combustão de amostras de carvão mineral, bagaço de cana-de-açúcar, bagaço de sorgo biomassa e das misturas de carvão-biomassa. A biomassa e o carvão possuem propriedades físico-químicas diferentes que proporcionam comportamento térmico diferente durante o processo de co-combustão, desta forma o objetivo desta pesquisa é caracterizar o comportamento térmico de misturas de carvão mineral com bagaço de cana-de-açúcar e bagaço de sorgo em atmosferas simuladas de combustão (O2/N2) e oxicombustão (O2/CO2). Os experimentos foram realizados em duplicata em um analisador termogravimétrico utilizando uma razão de aquecimento de 10 °C/min. Foi considerada uma granulometria uniforme para todos os materiais (63 µm) com a finalidade de garantir uma mistura homogênea. Foram estudadas quatro proporções de biomassa na mistura (10, 25, 50 e 75%). A partir das técnicas de termogravimetria (TG) e termogravimetria derivada (DTG) foram determinados parâmetros tais como Índice de combustão, sinergismo e energia de ativação, bem como avaliada a influência da atmosfera de combustão sobre esses parâmetros. Os resultados indicam que o bagaço de cana-de-açúcar apresenta valor de energia de ativação inferior ao registrado para o bagaço de sorgo e desempenho de combustão superior ao do bagaço de sorgo. Para as misturas, os melhores resultados foram registrados até a proporção de 25% de biomassa na mistura. Avaliando individualmente cada material, quando se substitui o N2 por CO2 pode-se observar um aumento na reatividade da reação, uma maior oxidação dos materiais e uma melhora nos parâmetros avaliados. Para ambas as misturas não foram observadas mudanças significativas no perfil de combustão quando o N2 é substituído por CO2. No entanto, a presença da biomassa na co-combustão com o carvão, além dos benefícios econômicos e ambientais, aumentou o desempenho da combustão do carvão mineral em ambas as atmosferas.
This dissertation investigates by thermogravimetric analysis the behavior of the combustion of coal, sugarcane bagasse, sorghum biomass bagasse and coal-biomass blends. The biomass and coal have different physicochemical properties that provide different thermal behavior during the process of co-combustion, thus the aim of this research is to characterize the thermal behavior of coal mixed with sugarcane bagasse and sorghum bagasse in simulated atmospheres of combustion (O2/N2) and oxycombustion (O2/CO2). The experiments were performed in duplicate in a thermogravimetric analyzer using a heating rate of 10 ° C/min. A uniform particle size for all materials (63 μm) in order to ensure a homogeneous mixture was considered. Four biomass ratios were studied in the blend (10, 25, 50 and 75%). From the techniques of Thermogravimetry (TG) and Derivative Thermogravimetry (DTG) curves were determined parameters such as: Combustion index, synergism and activation energy and evaluated the influence of combustion atmosphere on these parameters. The results indicate that the sugarcane bagasse presents a lower activation energy value than sorghum bagasse and combustion performance higher than sorghum bagasse. For mixtures, best results were recorded up to 25% proportion of biomass in the blend. Individually evaluating each material, when replacing N2 by CO2 can be seen an increase in the reactivity of the reaction, the increased oxidation of the materials and an improvement in the evaluated parameters. For both blends, no significant changes in combustion profile when N2 substituted by CO2. However, the presence of biomass in co-combustion with coal in addition to economic and environmental benefits increased the combustion performance of coal in both atmospheres.
CNPq: 134366/2015-8
Books on the topic "Combustion"
Warnatz, Jürgen, Ulrich Maas, and Robert W. Dibble. Combustion. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-98027-5.
Full textWarnatz, Jürgen, Ulrich Maas, and Robert W. Dibble. Combustion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04508-4.
Full textWarnatz, Jürgen, Ulrich Maas, and Robert W. Dibble. Combustion. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-97668-1.
Full textGlassman, Irvin. Combustion. 2nd ed. Orlando [Fla.]: Academic Press, 1987.
Find full text1952-, Yetter Richard A., ed. Combustion. 4th ed. Amsterdam: Academic Press, 2008.
Find full textCottilard, Sophie A. Catalytic combustion. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textRaghavan, Vasudevan. Combustion Technology. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-74621-6.
Full textLiberman, Michael A. Combustion Physics. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85139-2.
Full textRaghavan, Vasudevan. Combustion Technology. Chichester, UK: John Wiley &;#38; Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119241775.
Full textGupta, Aman, Shubham Sharma, and Sunny Narayan. Combustion Engines. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119284543.
Full textBook chapters on the topic "Combustion"
Zohuri, Bahman, and Patrick McDaniel. "Combustion." In Thermodynamics In Nuclear Power Plant Systems, 249–66. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13419-2_11.
Full textStruchtrup, Henning. "Combustion." In Thermodynamics and Energy Conversion, 541–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43715-5_25.
Full textSimonson, John. "Combustion." In Thermodynamics, 461–517. London: Macmillan Education UK, 1993. http://dx.doi.org/10.1007/978-1-349-12466-4_9.
Full textBasu, Prabir. "Combustion." In Circulating Fluidized Bed Boilers, 89–119. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06173-3_4.
Full textSherwin, Keith, and Michael Horsley. "Combustion." In Thermofluids, 411–31. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-4433-7_21.
Full textZohuri, Bahman, and Patrick McDaniel. "Combustion." In Thermodynamics in Nuclear Power Plant Systems, 247–64. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93919-3_11.
Full textHeckel, Pamela E. "Combustion." In SpringerBriefs in Environmental Science, 29–42. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9701-6_2.
Full textSherwin, Keith, and Michael Horsley. "Combustion." In Thermofluids, 81–83. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-6870-8_21.
Full textSherwin, Keith. "Combustion." In Introduction to Thermodynamics, 234–58. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1514-8_11.
Full textCleaves, Henderson James. "Combustion." In Encyclopedia of Astrobiology, 499–500. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_322.
Full textConference papers on the topic "Combustion"
Culick, F. "Combustion instabilities - Mating dance of chemical, combustion, and combustor dynamics." In 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-3178.
Full textInamura, Takao, Mikihiro Sei, Mamoru Takahashi, and Akinaga Kumakawa. "Combustion characteristics of ramjet combustor." In 32nd Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2665.
Full textScarinci, Thomas, and John L. Halpin. "Industrial Trent Combustor — Combustion Noise Characteristics." In ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-009.
Full textNakae, Tomoyoshi. "Combustion Control for Low NOx Combustor." In 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-3726.
Full textLemcherfi, Aaron I., Rohan Gejji, Tristan L. Fuller, William E. Anderson, and Carson D. Slabaugh. "Investigation of Combustion Instabilities in a Full Flow Staged Combustion Model Rocket Combustor." In AIAA Propulsion and Energy 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-3948.
Full textBarhaghi, Darioush G., and Daniel Lörstad. "Investigation of Combustion in a Dump Combustor Using Different Combustion and Turbulence Models." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-44095.
Full textGe*, Bing, Yuze Li, Yuliang Jia, Min Jin, and Shusheng Zang. "Study on Combustion instability of Secondary Combustion in an Axial Staged Model Combustor." In GPPS Hong Kong24. GPPS, 2023. http://dx.doi.org/10.33737/gpps23-tc-269.
Full textSingh, Kapil, Bala Varatharajan, Ertan Yilmaz, Fei Han, and Kwanwoo Kim. "Effect of Hydrogen Combustion on the Combustion Dynamics of a Natural Gas Combustor." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-51343.
Full textTAMURA, HIROSHI, FUMIEI ONO, AKINAGA KUMAKAWA, and NOBUYUKI YATSUYANAGI. "LOX/methane staged combustion rocket combustor investigation." In 23rd Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-1856.
Full textYu, Yen, Mark Pfeil, Stanford Rosen, William Anderson, and Steve Son. "Effects of NanoAluminum on Droplet Combustion and Combustion Instabilities in a Single Element Rocket Combustor." In 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-7154.
Full textReports on the topic "Combustion"
Banerjee, Subhodeep, and Robin Hughes. Biomass Combustion in a Circulating Fluidized Bed Combustor. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1659115.
Full textHughes, Robin, and Subhodeep Banerjee. Biomass Combustion in a Circulating Fluidized Bed Combustor. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1660765.
Full textParr, T., K. Wilson, K. Schadow, J. Cole, and N. Widmer. Sludge Combustor Using Swirl and Active Combustion Control. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada382663.
Full textBeshouri. PR-309-04200-R01 Modeling Methodology for Parametric Emissions Monitoring System for Combustion Turbines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2005. http://dx.doi.org/10.55274/r0010731.
Full textGutmark, Ephralm J., and Guoqiang Li. Combustion Control in Industrial Multi-Swirl Stabilized Spray Combustor. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada441269.
Full textA. Levasseur, S. Goodstine, J. Ruby, M. Nawaz, C. Senior, F. Robson, S. Lehman, et al. Combustion 2000. US: United Technologies Corp, June 2001. http://dx.doi.org/10.2172/898342.
Full textSkone, Timothy J. Distribution combustion. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1559440.
Full textSkone, Timothy J. Processing combustion. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1559827.
Full textOhlemiller, T. J. Smoldering combustion. Gaithersburg, MD: National Bureau of Standards, 1986. http://dx.doi.org/10.6028/nbs.ir.85-3294.
Full textOjeda, William de. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion. Office of Scientific and Technical Information (OSTI), July 2010. http://dx.doi.org/10.2172/1043162.
Full text