Academic literature on the topic 'Combinatorial and linear optimization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Combinatorial and linear optimization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Combinatorial and linear optimization"
Yannakakis, Mihalis. "Expressing combinatorial optimization problems by Linear Programs." Journal of Computer and System Sciences 43, no. 3 (December 1991): 441–66. http://dx.doi.org/10.1016/0022-0000(91)90024-y.
Full textDonets, Georgy, and Vasyl Biletskyi. "On Some Optimization Problems on Permutations." Cybernetics and Computer Technologies, no. 1 (June 30, 2022): 5–10. http://dx.doi.org/10.34229/2707-451x.22.1.1.
Full textDE FARIAS, I. R., E. L. JOHNSON, and G. L. NEMHAUSER. "Branch-and-cut for combinatorial optimization problems without auxiliary binary variables." Knowledge Engineering Review 16, no. 1 (March 2001): 25–39. http://dx.doi.org/10.1017/s0269888901000030.
Full textBarbolina, Tetiana. "Estimates of objective function minimum for solving linear fractional unconstrained combinatorial optimization problems on arrangements." Physico-mathematical modelling and informational technologies, no. 32 (July 6, 2021): 32–36. http://dx.doi.org/10.15407/fmmit2021.32.055.
Full textPichugina, Oksana, and Liudmyla Koliechkina. "Linear constrained combinatorial optimization on well-described sets." IOP Conference Series: Materials Science and Engineering 1099, no. 1 (March 1, 2021): 012064. http://dx.doi.org/10.1088/1757-899x/1099/1/012064.
Full textDonets, G. A., and V. I. Biletskyi. "On the Problem of a Linear Function Localization on Permutations." Cybernetics and Computer Technologies, no. 2 (July 24, 2020): 14–18. http://dx.doi.org/10.34229/2707-451x.20.2.2.
Full textEngau, Alexander, Miguel F. Anjos, and Anthony Vannelli. "On Interior-Point Warmstarts for Linear and Combinatorial Optimization." SIAM Journal on Optimization 20, no. 4 (January 2010): 1828–61. http://dx.doi.org/10.1137/080742786.
Full textChung, Sung-Jin, Horst W. Hamacher, Francesco Maffioli, and Katta G. Murty. "Note on combinatorial optimization with max-linear objective functions." Discrete Applied Mathematics 42, no. 2-3 (April 1993): 139–45. http://dx.doi.org/10.1016/0166-218x(93)90043-n.
Full textBorissova, Daniela, Ivan Mustakerov, and Lyubka Doukovska. "Predictive Maintenance Sensors Placement by Combinatorial Optimization." International Journal of Electronics and Telecommunications 58, no. 2 (June 1, 2012): 153–58. http://dx.doi.org/10.2478/v10177-012-0022-6.
Full textMandi, Jayanta, Emir Demirovi?, Peter J. Stuckey, and Tias Guns. "Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 02 (April 3, 2020): 1603–10. http://dx.doi.org/10.1609/aaai.v34i02.5521.
Full textDissertations / Theses on the topic "Combinatorial and linear optimization"
Salazar-Neumann, Martha. "Advances in robust combinatorial optimization and linear programming." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210192.
Full textUne des approches possibles pour résoudre des tels problèmes est de considérer les versions minimax regret, pour lesquelles résoudre un problème sous incertitude revient à trouver une solution qui s'écarte le moins possible de la valeur solution optimale dans tout les cas.
Dans le cas des incertitudes définies par intervalles, les versions minimax regret de nombreux problèmes combinatoires polynomiaux sont NP-difficiles, d'ou l'importance d'essayer de réduire l'espace des solutions. Dans ce contexte, savoir quand un élément du problème, représenté par une variable, fait toujours ou jamais partie d'une solution optimal pour toute réalisation des données (variables 1-persistentes et 0-persistentes respectivement), constitue une manière de réduire la taille du problème. Un des principaux objectifs de cette thèse est d'étudier ces questions pour quelques problèmes d'optimisation combinatoire sous incertitude.
Nous étudions les versions minimax regret du problème du choix de p éléments parmi m, de l'arbre couvrant minimum et des deux problèmes de plus court chemin. Pour de tels problèmes, dans le cas des incertitudes définis par intervalles, nous étudions le problème de trouver les variables 1- et 0-persistentes. Nous présentons une procédure de pre-traitement du problème, lequel réduit grandement la taille des formulations des versions de minimax regret.
Nous nous intéressons aussi à la version minimax regret du problème de programmation linéaire dans le cas où les coefficients de la fonction objectif sont incertains et l'ensemble des données incertaines est polyédral. Dans le cas où l'ensemble des incertitudes est défini par des intervalles, le problème de trouver le regret maximum est NP-difficile. Nous présentons des cas spéciaux ou les problèmes de maximum regret et de minimax regret sont polynomiaux. Dans le cas où l´ensemble des incertitudes est défini par un polytope, nous présentons un algorithme pour trouver une solution exacte au problème de minimax regret et nous discutons les résultats numériques obtenus dans un grand nombre d´instances générées aléatoirement.
Nous étudions les relations entre le problème de 1-centre continu et la version minimax regret du problème de programmation linéaire dans le cas où les coefficients de la fonction objectif sont évalués à l´aide des intervalles. En particulier, nous décrivons la géométrie de ce dernier problème, nous généralisons quelques résultats en théorie de localisation et nous donnons des conditions sous lesquelles certaines variables peuvet être éliminées du problème. Finalement, nous testons ces conditions dans un nombre d´instances générées aléatoirement et nous donnons les conclusions.
Doctorat en sciences, Orientation recherche opérationnelle
info:eu-repo/semantics/nonPublished
Iemets, O. O., and T. M. Barbolina. "Linear-fractional combinatorial optimization problems: model and solving." Thesis, Sumy State University, 2016. http://essuir.sumdu.edu.ua/handle/123456789/46962.
Full textCheng, Jianqiang. "Stochastic Combinatorial Optimization." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112261.
Full textIn this thesis, we studied three types of stochastic problems: chance constrained problems, distributionally robust problems as well as the simple recourse problems. For the stochastic programming problems, there are two main difficulties. One is that feasible sets of stochastic problems is not convex in general. The other main challenge arises from the need to calculate conditional expectation or probability both of which are involving multi-dimensional integrations. Due to the two major difficulties, for all three studied problems, we solved them with approximation approaches.We first study two types of chance constrained problems: linear program with joint chance constraints problem (LPPC) as well as maximum probability problem (MPP). For both problems, we assume that the random matrix is normally distributed and its vector rows are independent. We first dealt with LPPC which is generally not convex. We approximate it with two second-order cone programming (SOCP) problems. Furthermore under mild conditions, the optimal values of the two SOCP problems are a lower and upper bounds of the original problem respectively. For the second problem, we studied a variant of stochastic resource constrained shortest path problem (called SRCSP for short), which is to maximize probability of resource constraints. To solve the problem, we proposed to use a branch-and-bound framework to come up with the optimal solution. As its corresponding linear relaxation is generally not convex, we give a convex approximation. Finally, numerical tests on the random instances were conducted for both problems. With respect to LPPC, the numerical results showed that the approach we proposed outperforms Bonferroni and Jagannathan approximations. While for the MPP, the numerical results on generated instances substantiated that the convex approximation outperforms the individual approximation method.Then we study a distributionally robust stochastic quadratic knapsack problems, where we only know part of information about the random variables, such as its first and second moments. We proved that the single knapsack problem (SKP) is a semedefinite problem (SDP) after applying the SDP relaxation scheme to the binary constraints. Despite the fact that it is not the case for the multidimensional knapsack problem (MKP), two good approximations of the relaxed version of the problem are provided which obtain upper and lower bounds that appear numerically close to each other for a range of problem instances. Our numerical experiments also indicated that our proposed lower bounding approximation outperforms the approximations that are based on Bonferroni's inequality and the work by Zymler et al.. Besides, an extensive set of experiments were conducted to illustrate how the conservativeness of the robust solutions does pay off in terms of ensuring the chance constraint is satisfied (or nearly satisfied) under a wide range of distribution fluctuations. Moreover, our approach can be applied to a large number of stochastic optimization problems with binary variables.Finally, a stochastic version of the shortest path problem is studied. We proved that in some cases the stochastic shortest path problem can be greatly simplified by reformulating it as the classic shortest path problem, which can be solved in polynomial time. To solve the general problem, we proposed to use a branch-and-bound framework to search the set of feasible paths. Lower bounds are obtained by solving the corresponding linear relaxation which in turn is done using a Stochastic Projected Gradient algorithm involving an active set method. Meanwhile, numerical examples were conducted to illustrate the effectiveness of the obtained algorithm. Concerning the resolution of the continuous relaxation, our Stochastic Projected Gradient algorithm clearly outperforms Matlab optimization toolbox on large graphs
Burer, Samuel A. "New algorithmic approaches for semidefinite programming with applications to combinatorial optimization." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/30268.
Full textSidford, Aaron Daniel. "Iterative methods, combinatorial optimization, and linear programming beyond the universal barrier." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99848.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 256-266).
In this thesis we consider fundamental problems in continuous and combinatorial optimization that occur pervasively in practice and show how to improve upon the best known theoretical running times for solving these problems across a broad range of parameters. Using and improving techniques from diverse disciplines including spectral graph theory, numerical analysis, data structures, and convex optimization we provide the first theoretical improvements in decades for multiple classic problems ranging from linear programming to linear system solving to maximum flow. Key results in this thesis include the following: -- Linear Programming: We provide the first general improvement to both the running time and convergence rate of polynomial time algorithms for solving linear programs in over 15 years. For a linear program with constraint matrix A, with z nonzero entries, and bit complexity L our algorithm runs in time [mathematical formula] -- Directed Maximum Flow: We provide an [mathematical formula] time algorithm for solving the-maximum flow problem on directed graphs with m edges, n vertices, and capacity ratio U improving upon the running time of [mathematical formula] achieved over 15 years ago by Goldberg and Rao. -- Undirected Approximate Flow: We provide one of the first almost linear time algorithms for approximately solving undirected maximum flow improving upon the previous fastest running time by a factor of [mathematical formula] for graphs with n vertices. -- Laplacian System Solvers: We improve upon the previous best known algorithms for solving Laplacian systems in standard unit cost RAM model, achieving a running time of [mathematical formula] for solving a Laplacian system of equations. -- Linear System Solvers: We obtain a faster asymptotic running time than conjugate gradient for solving a broad class of symmetric positive definite systems of equations. * More: We improve the running time for multiple problems including regression, generalized lossy flow, multicommodity flow, and more.
by Aaron Sidford.
Ph. D.
Björklund, Henrik. "Combinatorial Optimization for Infinite Games on Graphs." Doctoral thesis, Uppsala University, Department of Information Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4751.
Full textGames on graphs have become an indispensable tool in modern computer science. They provide powerful and expressive models for numerous phenomena and are extensively used in computer- aided verification, automata theory, logic, complexity theory, computational biology, etc.
The infinite games on finite graphs we study in this thesis have their primary applications in verification, but are also of fundamental importance from the complexity-theoretic point of view. They include parity, mean payoff, and simple stochastic games.
We focus on solving graph games by using iterative strategy improvement and methods from linear programming and combinatorial optimization. To this end we consider old strategy evaluation functions, construct new ones, and show how all of them, due to their structural similarities, fit into a unifying combinatorial framework. This allows us to employ randomized optimization methods from combinatorial linear programming to solve the games in expected subexponential time.
We introduce and study the concept of a controlled optimization problem, capturing the essential features of many graph games, and provide sufficent conditions for solvability of such problems in expected subexponential time.
The discrete strategy evaluation function for mean payoff games we derive from the new controlled longest-shortest path problem, leads to improvement algorithms that are considerably more efficient than the previously known ones, and also improves the efficiency of algorithms for parity games.
We also define the controlled linear programming problem, and show how the games are translated into this setting. Subclasses of the problem, more general than the games considered, are shown to belong to NP intersection coNP, or even to be solvable by subexponential algorithms.
Finally, we take the first steps in investigating the fixed-parameter complexity of parity, Rabin, Streett, and Muller games.
Ferroni, Nicola. "Exact Combinatorial Optimization with Graph Convolutional Neural Networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17502/.
Full textWeltge, Stefan [Verfasser], and Volker [Akademischer Betreuer] Kaibel. "Sizes of linear descriptions in combinatorial optimization / Stefan Weltge. Betreuer: Volker Kaibel." Magdeburg : Universitätsbibliothek, 2015. http://d-nb.info/1082625868/34.
Full textWang, Xia. "Applications of genetic algorithms, dynamic programming, and linear programming to combinatorial optimization problems." College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/8778.
Full textThesis research directed by: Applied Mathematics & Statistics, and Scientific Computation Program. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Chakrabarty, Deeparnab. "Algorithmic aspects of connectivity, allocation and design problems." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24659.
Full textCommittee Chair: Vazirani, Vijay; Committee Member: Cook, William; Committee Member: Kalai, Adam; Committee Member: Tetali, Prasad; Committee Member: Thomas, Robin
Books on the topic "Combinatorial and linear optimization"
Pardalos, P. M. Handbook of combinatorial optimization. New York: Springer, 2013.
Find full textDingzhu, Du, and Pardalos P. M. 1954-, eds. Handbook of combinatorial optimization. Boston: Kluwer Academic Publishers, 1998.
Find full textMacGregor Smith, J. Combinatorial, Linear, Integer and Nonlinear Optimization Apps. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75801-1.
Full textDiaby, Moustapha. Advances in combinatorial optimization: Linear programming formulation of the traveling salesman and other hard combinatorial optimization problems. New Jersey: World Scientific, 2015.
Find full textPadberg, Manfred. Linear Optimization and Extensions. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999.
Find full textGerhard, Reinelt, and SpringerLink (Online service), eds. The Linear Ordering Problem: Exact and Heuristic Methods in Combinatorial Optimization. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full textStrobach, Peter. Linear Prediction Theory: A Mathematical Basis for Adaptive Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990.
Find full textJonas, Mockus, ed. Bayesian heuristic approach to discrete and global optimization: Algorithms, visualization, software, and applications. Dordrecht: Kluwer Academic Publishers, 1997.
Find full textMahjoub, A. Ridha, Vangelis Markakis, Ioannis Milis, and Vangelis Th Paschos, eds. Combinatorial Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32147-4.
Full textKorte, Bernhard, and Jens Vygen. Combinatorial Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-56039-6.
Full textBook chapters on the topic "Combinatorial and linear optimization"
Akgül, Mustafa. "The Linear Assignment Problem." In Combinatorial Optimization, 85–122. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77489-8_5.
Full textYang, Kai, and Katta G. Murty. "Surrogate Constraint Methods for Linear Inequalities." In Combinatorial Optimization, 19–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77489-8_2.
Full textDongarra, Jack, and Jerzy Waśniewski. "High Performance Linear Algebra Package - LAPACK90." In Combinatorial Optimization, 241–53. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4613-3282-4_11.
Full textNemhauser, George, and Laurence Wolsey. "Linear Programming." In Integer and Combinatorial Optimization, 27–49. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118627372.ch2.
Full textDu, Ding-Zhu, Panos Pardalos, Xiaodong Hu, and Weili Wu. "Linear Programming." In Introduction to Combinatorial Optimization, 129–74. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10596-8_6.
Full textPadberg, Manfred. "Combinatorial Optimization: An Introduction." In Linear Optimization and Extensions, 387–422. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-12273-0_10.
Full textAlevras, Dimitres, and Manfred W.Padberg. "Combinatorial Optimization: An Introduction." In Linear Optimization and Extensions, 323–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56628-8_10.
Full textPinar, Mustafa Ç., and Stavros A. Zenios. "Solving Large Scale Multicommodity Networks Using Linear—Quadratic Penalty Functions." In Combinatorial Optimization, 225–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77489-8_12.
Full textBilbao, Jesús Mario. "Linear optimization methods." In Cooperative Games on Combinatorial Structures, 27–63. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4393-0_2.
Full textden Hertog, D., C. Roos, and T. Terlaky. "The Linear Complementary Problem, Sufficient Matrices and the Criss-Cross Method." In Combinatorial Optimization, 253–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77489-8_18.
Full textConference papers on the topic "Combinatorial and linear optimization"
Ma, Hyunjun, and Q.-Han Park. "Constraint-Driven Method for Combinatorial Optimization." In 2024 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/cleo-pr60912.2024.10676554.
Full textYannakakis, Mihalis. "Expressing combinatorial optimization problems by linear programs." In the twentieth annual ACM symposium. New York, New York, USA: ACM Press, 1988. http://dx.doi.org/10.1145/62212.62232.
Full textBaioletti, Marco, Alfredo Milani, and Valentino Santucci. "Linear Ordering Optimization with a Combinatorial Differential Evolution." In 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2015. http://dx.doi.org/10.1109/smc.2015.373.
Full textJin, Chen, Qiang Fu, Huahua Wang, Ankit Agrawal, William Hendrix, Wei-keng Liao, Md Mostofa Ali Patwary, Arindam Banerjee, and Alok Choudhary. "Solving combinatorial optimization problems using relaxed linear programming." In the 2nd International Workshop. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2501221.2501227.
Full textLouchet, J., R. Mathurin, and B. Rottembourg. "Combinatorial optimization and linear prediction approaches to rain cell tracking." In 26th AIPR Workshop: Exploiting New Image Sources and Sensors, edited by J. Michael Selander. SPIE, 1998. http://dx.doi.org/10.1117/12.300045.
Full textGadallah, M. H., and H. A. ElMaraghy. "A New Algorithm for Combinatorial Optimization." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0059.
Full textBeniwal, Gautam, and Mohammad Rizwanullah. "Combinatorial Optimization of Non-linear Multicommodity Network Flow Using Pseudo Quasi-Newton Method." In 2022 International Conference on Computational Modelling, Simulation and Optimization (ICCMSO). IEEE, 2022. http://dx.doi.org/10.1109/iccmso58359.2022.00041.
Full textDrori, Iddo, Anant Kharkar, William R. Sickinger, Brandon Kates, Qiang Ma, Suwen Ge, Eden Dolev, Brenda Dietrich, David P. Williamson, and Madeleine Udell. "Learning to Solve Combinatorial Optimization Problems on Real-World Graphs in Linear Time." In 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2020. http://dx.doi.org/10.1109/icmla51294.2020.00013.
Full textQuan, Ning, and Harrison Kim. "A Tight Upper Bound for Grid-Based Wind Farm Layout Optimization." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59712.
Full textMitra, Mainak, Alparslan Emrah Bayrak, Stefano Zucca, and Bogdan I. Epureanu. "A Sensitivity Based Heuristic for Optimal Blade Arrangement in a Linear Mistuned Rotor." In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-75542.
Full textReports on the topic "Combinatorial and linear optimization"
Bixby, Robert E. Notes on Combinatorial Optimization. Fort Belvoir, VA: Defense Technical Information Center, October 1987. http://dx.doi.org/10.21236/ada455247.
Full textCoffrin, Carleton James. Combinatorial Optimization on D-Wave. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1454977.
Full textRadzik, Thomas. Newton's Method for Fractional Combinatorial Optimization,. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada323687.
Full textGEORGE MASON UNIV FAIRFAX VA. Solving Large-Scale Combinatorial Optimization Problems. Fort Belvoir, VA: Defense Technical Information Center, August 1996. http://dx.doi.org/10.21236/ada327597.
Full textHoffman, Karla L. Solution Procedures for Large-Scale Combinatorial Optimization. Fort Belvoir, VA: Defense Technical Information Center, August 1993. http://dx.doi.org/10.21236/ada278242.
Full textPlotkin, Serge. Research in Graph Algorithms and Combinatorial Optimization. Fort Belvoir, VA: Defense Technical Information Center, March 1995. http://dx.doi.org/10.21236/ada292630.
Full textWets, Roger D. Parametric and Combinatorial Problems in Constrained Optimization. Fort Belvoir, VA: Defense Technical Information Center, March 1993. http://dx.doi.org/10.21236/ada264229.
Full textShepherd, Bruce, Peter Winkler, and Chandra Chekuri. Fundamentals of Combinatorial Optimization and Algorithm Design. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada423042.
Full textParekh, Ojas, Robert D. Carr, and David Pritchard. LDRD final report : combinatorial optimization with demands. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1055603.
Full textJaillet, Patrick. Data-Driven Online and Real-Time Combinatorial Optimization. Fort Belvoir, VA: Defense Technical Information Center, October 2013. http://dx.doi.org/10.21236/ada592939.
Full text