Academic literature on the topic 'Colonisation de la cellulose'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Colonisation de la cellulose.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Colonisation de la cellulose"

1

Inceer, Huseyin. "Achene slime content in some taxa of Matricaria L. (Asteraceae)." Acta Botanica Croatica 70, no. 1 (January 1, 2011): 109–14. http://dx.doi.org/10.2478/v10184-010-0005-6.

Full text
Abstract:
Achene slime content in some taxa ofMatricariaL. (Asteraceae)The achenes ofMatricaria aureaand two varieties ofM. chamomilla(var.chamomillaand var.recutita) have slime cells on the surface and they are characterized by slime envelope formation during hydration. The slime in these taxa is composed of pectins and cellulose. The slime could play important role in the distribution and colonisation of new habitats inMatricariataxa.
APA, Harvard, Vancouver, ISO, and other styles
2

Spiers, Andrew J. "A Mechanistic Explanation Linking Adaptive Mutation, Niche Change, and Fitness Advantage for the Wrinkly Spreader." International Journal of Evolutionary Biology 2014 (January 16, 2014): 1–10. http://dx.doi.org/10.1155/2014/675432.

Full text
Abstract:
Experimental evolution studies have investigated adaptive radiation in static liquid microcosms using the environmental bacterium Pseudomonas fluorescens SBW25. In evolving populations a novel adaptive mutant known as the Wrinkly Spreader arises within days having significant fitness advantage over the ancestral strain. A molecular investigation of the Wrinkly Spreader has provided a mechanistic explanation linking mutation with fitness improvement through the production of a cellulose-based biofilm at the air-liquid interface. Colonisation of this niche provides greater access to oxygen, allowing faster growth than that possible for non-biofilm—forming competitors located in the lower anoxic region of the microcosm. Cellulose is probably normally used for attachment to plant and soil aggregate surfaces and to provide protection in dehydrating conditions. However, the evolutionary innovation of the Wrinkly Spreader in static microcosms is the use of cellulose as the matrix of a robust biofilm, and is achieved through mutations that deregulate multiple diguanylate cyclases leading to the over-production of cyclic-di-GMP and the stimulation of cellulose expression. The mechanistic explanation of the Wrinkly Spreader success is an exemplar of the modern evolutionary synthesis, linking molecular biology with evolutionary ecology, and provides an insight into the phenomenal ability of bacteria to adapt to novel environments.
APA, Harvard, Vancouver, ISO, and other styles
3

Dydak, Karolina, Adam Junka, Grzegorz Nowacki, Justyna Paleczny, Patrycja Szymczyk-Ziółkowska, Aleksandra Górzyńska, Olga Aniołek, and Marzenna Bartoszewicz. "In Vitro Cytotoxicity, Colonisation by Fibroblasts and Antimicrobial Properties of Surgical Meshes Coated with Bacterial Cellulose." International Journal of Molecular Sciences 23, no. 9 (April 27, 2022): 4835. http://dx.doi.org/10.3390/ijms23094835.

Full text
Abstract:
Hernia repairs are the most common abdominal wall elective procedures performed by general surgeons. Hernia-related postoperative infective complications occur with 10% frequency. To counteract the risk of infection emergence, the development of effective, biocompatible and antimicrobial mesh adjuvants is required. Therefore, the aim of our in vitro investigation was to evaluate the suitability of bacterial cellulose (BC) polymer coupled with gentamicin (GM) antibiotic as an absorbent layer of surgical mesh. Our research included the assessment of GM-BC-modified meshes’ cytotoxicity against fibroblasts ATCC CCL-1 and a 60-day duration cell colonisation measurement. The obtained results showed no cytotoxic effect of modified meshes. The quantified fibroblast cells levels resembled a bimodal distribution depending on the time of culturing and the type of mesh applied. The measured GM minimal inhibitory concentration was 0.47 µg/mL. Results obtained in the modified disc-diffusion method showed that GM-BC-modified meshes inhibited bacterial growth more effectively than non-coated meshes. The results of our study indicate that BC-modified hernia meshes, fortified with appropriate antimicrobial, may be applied as effective implants in hernia surgery, preventing risk of infection occurrence and providing a high level of biocompatibility with regard to fibroblast cells.
APA, Harvard, Vancouver, ISO, and other styles
4

Sahasakul, Yuraporn, Naoki Takemura, and Kei Sonoyama. "Gastric emptying is involved inLactobacilluscolonisation in mouse stomach." British Journal of Nutrition 112, no. 3 (May 22, 2014): 408–15. http://dx.doi.org/10.1017/s0007114514000968.

Full text
Abstract:
Lactobacilli are indigenous microbes of the stomach of rodents, with much lower numbers being present in mice fed a purified diet than in those fed a non-purified diet. We postulated that gastric emptying (GE) is responsible for the different colonisation levels of lactobacilli and tested this hypothesis in the present study. BALB/cCr Slc mice were fed either a non-purified diet or a purified diet for 2 weeks. The number of gastric tissue-associated lactobacilli was lower in mice fed the purified diet than in those fed the non-purified diet. GE, estimated by measuring the food recovered from the stomach, was higher in mice fed the purified diet than in those fed the non-purified diet and correlated negatively with the number of lactobacilli. Mice fed the non-purified diet exhibited lower GE rates even when lactobacilli were eliminated by ampicillin administration through the drinking-water, suggesting that GE is the cause but not the consequence of differentLactobacilluscolonisation levels. The plasma concentrations of acylated ghrelin, a gastric hormone that promotes GE, were higher in mice fed the purified diet than in those fed the non-purified diet. There was a negative correlation between GE and the number of lactobacilli in mice fed the non-purified diet, the purified diet, and the purified diet supplemented with sugarbeet fibre (200 g/kg diet) or carboxymethyl cellulose (40 g/kg diet). We propose that a higher GE rate contributes, at least in part, to lower gastric colonisation levels of lactobacilli in mice fed a purified diet.
APA, Harvard, Vancouver, ISO, and other styles
5

Bowman, AM, DM Hebb, D. Munnich, GL Rummery, and J. Brockwell. "Field persistence of Bradyrhizobium sp. (Lupinus) inoculant for serradella (Ornithopus compressus L.)." Australian Journal of Experimental Agriculture 35, no. 3 (1995): 357. http://dx.doi.org/10.1071/ea9950357.

Full text
Abstract:
Experiments were conducted, in situ in north-western New South Wales and in the laboratory, to evaluate the longevity of Bradyrhizobium sp. (Lupinus) inoculated as a peat culture onto seed of yellow serradella (Ornithopus compressus L.). Observations were made on the field persistence of the inoculant strain over 2 years. Two categories of seed were examined: seed encased in a segment of pod coat (hulled), and seed from which the pod coat had been removed (dehulled). The use of adhesive (methyl cellulose or gum arabic) ensured that the inoculant adhered to the seed. At a constant temperature of l8�C, inoculant applied to hulled seed survived for >8 months without loss of viability. Type of adhesive did not affect survival. At the 2 field sites, inoculated seed was sown into dry soil. Inoculant was sufficiently viable for 77-159 days to colonise the rhizospheres of young serradella and to form nodules on a significant (P<0.05) proportion of the plants. Rhizosphere colonisation and nodulation were better with hulled seed than with dehulled seed but were not affected by type of adhesive. Evidence is presented that the inoculant was able to establish in these soils as a permanent component of the soil microflora and to persist as a reservoir of inoculum for annually regenerating serradella.
APA, Harvard, Vancouver, ISO, and other styles
6

Focardi, Silvano. "Development and Maturation of Microbiota in Cow Rumen, Plant-Fibers Degradation and Influences on the Immune System and Cow Health." Corpus Journal of Dairy and Veterinary Science (CJDVS) 3, no. 4 (December 5, 2022): 1–2. http://dx.doi.org/10.54026/cjdvs1047.

Full text
Abstract:
Rumen is part of the forestomach of ruminants and plays a key role in the conversion of feed into metabolites that are absorbed and used by the host. The rumen is also the place of formation of proteins of microbial origin, which represent a source of energy for the host animal. From a functional point of view, ruminants are monogastric at birth as they have an undeveloped forestomach system. Microbial communities in the rumen first show colonization by bacteria, followed by that of methanogenic Archaea and then anaerobic fungi and protozoa. In newborn calves, molecular-based techniques evidenced initial rumen colonisation by facultative anaerobic bacteria, as the phyla Proteobacteria and Firmicutes, with genera Enterococcus and Streptococcus and the species Escherichia coli, followed by Archaea within a few hours after birth. These early colonizers utilize the oxygen available in the rumen, thus creating an anaerobic environment conducive to the growth of rigorous anaerobic communities, including Bifidobacterium and Bacteroides. The strict anaerobic bacterial community, including cellulolytic and proteolytic bacteria, establishes and dominates the rumen microbiome within the first two weeks of life. The entire microbial community allows ruminants to use ligno-cellulosic materials and non-protein nitrogen to produce high-quality food. Importantly, these close anaerobic bacterial communities in the rumen of newborns play an essential role in the development of the mucosal immune system. A healthy rumen leads to healthy ruminants with optimal performance. It is worth highlighting the importance of the microbiome in maintaining the health of cattle and its potential in alleviating disease. This mini-review described the development of the cow microbiome in the rumen, the degradation abilities and influence of the feed on the rumen microbiota, and the microbiota effects on the cow’s immune system and health.
APA, Harvard, Vancouver, ISO, and other styles
7

Boureau, L. Hartmann, T. Karjalaine, H. "Models to Study Colonisation and Colonisation Resistance." Microbial Ecology in Health and Disease 12, no. 2 (January 2000): 247–58. http://dx.doi.org/10.1080/08910600050216246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Boureau, H., L. Hartmann, T. Karjalainen, I. Rowland, and M. H. F. Wilkinson. "Models to Study Colonisation and Colonisation Resistance." Microbial Ecology in Health and Disease 12, no. 4 (December 20, 2000): 247–58. http://dx.doi.org/10.1080/089106000750060503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Prudhomme, Claude. "Colonisation-Évangélisation." Histoire monde et cultures religieuses 5, no. 1 (2008): 177. http://dx.doi.org/10.3917/hmc.005.0177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cawkwell, G. L. "Early Colonisation." Classical Quarterly 42, no. 2 (December 1992): 289–303. http://dx.doi.org/10.1017/s0009838800015937.

Full text
Abstract:
It is commonly supposed that in the eighth century B.c. there was a ‘population explosion’ in Greece which moved the Greeks to send out colonies. A. J. Graham in the Cambridge Ancient History iii, 3 (1982) is typical: ‘The basic active cause of the colonizing movement was overpopulation’; ‘at the very time when the Archaic colonising movement began, in the second half of the eighth century, there was a marked increase in population in Greece’ (p. 157). The presumed connection between overpopulation and colonisation is not immediately obvious. The evidence for the population explosion is found in the increased number of burials in Attica and the Argolid, but Athens sent out no colony before the very end of the seventh century and Argos probably none at all, certainly none in this period. So special explanations have to be formulated for Athens' and Argos' lack of colonies while their postulated ‘population explosion’ is presumed for Greece as a whole and called in to explain the burst of colonising in the eighth century. The hypothesis is not used for seventh-century colonisation when the number of burials declines.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Colonisation de la cellulose"

1

Géhin, Annick. "Étude de la cellulolyse et de la colonisation de la cellulose par clostridium cellulolyticum ATCC 35319." Nancy 1, 1995. http://www.theses.fr/1995NAN10013.

Full text
Abstract:
L’étude de clostridium cellulolyticum cultivé en dialyse a mis en évidence l'effet inhibiteur des produits du métabolisme sur la croissance de la bactérie ainsi que sur la dégradation de la cellulose. Les études de croissance de clostridium cellulolyticum sur la cellulose a permis de proposer un modèle de colonisation de ce type de substrat. Ce processus consisterait en 4 étapes: adhésion a un site spécifique, colonisation du site, relargage de bactéries carencées en carbone du a la saturation du site d'adhésion, et réadhésion des bactéries a un nouveau site. L’étude de la carence carbonée sur la viabilité et la sporulation de clostridium cellulolyticum a montré que l'état cellulaire des bactéries influait sur le devenir des cellules bactériennes. Ainsi, des cellules carencées en milieu de phase exponentielle de croissance restent viables une longue période puis sporulent. De plus, une corrélation existe entre l'aptitude des bactéries à survivre à une carence et leur capacité à induire une activité protéolytique. Les essais réalisés sur l'adhésion des spores ont mis en évidence qu'elles adhèrent à 90% sur la cellulose et que leur adhésion contrairement à celle des cellules végétatives n'est pas spécifique. De ce fait, la dernière étape du processus de la colonisation d'un substrat cellulosique ne serait pas uniquement la réadhésion des bactéries à un nouveau site mais pourrait consister en une sporulation des bactéries suivie de leur adhésion ou en une mort des cellules bactériennes. Les études de l'effet de la tunicamycine sur le complexe cellulasique de clostridium cellulolyticum ont mis en exergue le rôle primordial d'une protéine de 135 kDa dans l'activité avicelase et dans l'adhésion des cellules à la cellulose
APA, Harvard, Vancouver, ISO, and other styles
2

Gelhaye, Éric. "Étude de l'adhésion et de la colonisation de la cellulose par les clostridia cellulolytiques mésophiles." Nancy 1, 1993. http://www.theses.fr/1993NAN10147.

Full text
Abstract:
L'adhésion des clostridia cellulolytiques mésophiles à la cellulose est un phénomène complexe, mettant en jeu des interactions spécifiques bactérie-cellulose et des interactions bactérie-bactérie qui permettent la formation d'agrégats cellulaires. L'étude de la croissance de clostridium cellulolyticum et de clostridium c401 a permis de proposer un modèle résumant le processus de colonisation de la cellulose par ces micro-organismes. Celui-ci comprendrait 4 étapes: 1) adhésion à un site spécifique; 2) colonisation de la cellulose; 3) relargage de bactéries carencées en carbone du à la saturation du site d'adhésion; 4) réadhésion des bactéries à un nouveau site. L'étude de la régulation par le cellobiose de la colonisation de la cellulose par clostridium c401 a montré que cet effecteur peut intervenir à différents niveaux, notamment sur l'adhésion cellulaire et sur la synthèse des activités cellulasiques
APA, Harvard, Vancouver, ISO, and other styles
3

Ferdinand, Pierre-Henri. "Adhérence et colonisation des fibres de cellulose par la bactérie cellulolytique Clostridium cellulolyticum. : étude du rôle des protéines CipC et HycP." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4729.

Full text
Abstract:
Clostridium cellulolyticum est une bactérie anaérobie stricte et cellulolytique qui produit des complexes multienzymatiques (cellulosomes) très performants pour la dégradation des polysaccharides de la paroi végétale. C. cellulolyticum adhère à la cellulose et ce phénomène intervient dès les premiers stades de croissance. Pour de nombreuses bactéries cellulolytiques, les cellulosomes semblent impliqués dans le processus d'adhérence et alors que les mécanismes moléculaires mis en jeu pour l'adhérence à la cellulose sont connus ou proposés, celui ou ceux de C. cellulolyticum sont inconnus.Mon projet de thèse a consisté à étudier l'adhérence et la colonisation des fibres de cellulose par C. cellulolyticum et d'identifier le ou les facteurs moléculaires impliqués dans l'adhérence. J'ai ainsi mis en œuvre deux stratégies distinctes. D'une part, une approche par mutagénèse aléatoire qui a permis d'isoler deux clones à l'adhérence diminuée et d'autre part, une approche par mutagénèse ciblée visant à inactiver des gènes candidats, susceptibles d'intervenir dans l'adhérence.J'ai aussi étudié la colonisation des fibres de cellulose par C. cellulolyticum et observé que les cellules adhèrent avec une haute spécificité et affinité à la cellulose. La colonisation des fibres se ferait en mono-couche cellulaire et par successions d'événements d'adhésion-relarguage-réadhésion. Un mutant d'inactivation de CipC, la protéine d'échafaudage des cellulosomes, a mis en évidence l'implication de cette protéine dans l'adhérence, mais aussi que l'adhérence à la cellulose pourrait être multifactorielle. Enfin, j'ai étudié le rôle de HycP, une protéine à CBM3 dont la fonction est inconnue
Clostridium cellulolyticum is a strict anaerobe, cellulolytic bacteria. It produces multienzymatic complexes, called cellulosomes, which are able to efficiently degrade the plant cell wall polysaccharides. Cellulolytic bacteria, including C. cellulolyticum do binds to cellulose since early growth stage. For most of the studied cellulolytic bacteria, adherence to cellulose seems to be mediated by their cellulosomes. However, molecular factors involved in C. cellulolyticum adherence to cellulose remain unknown.My Ph.D. aimed to implement different but complementary strategies to study adhesion and colonization of cellulose fibers by C. cellulolyticum and to identify the molecular mechanism(s) by which the bacteria bind to cellulose. In order to identify some proteins encoding genes involved in adhesion, I firstly developed random mutagenesis and isolated two adhesion deficient mutants. I also used a targeted mutagenesis tool to inactivate some candidate genes.My studies highlight C. cellulolyticum adheres with both high specificity and affinity to cellulose. Colonization of cellulose fibers by C. cellulolyticum forms a mono-layer of segregated cells on cellulose surface and may occur through cycles of adhesion-release-re-adhesion to substrate. Inactivation of the CipC encoding gene led to a short decrease of the mutant strain's adherence level. This result suggests some other proteins may be involved in C. cellulolyticum adhesion to cellulose. Finally, I studied HycP, a produced and secreted CBM3 encoding protein of unknown function. HycP is a unique protein among databases and may have a phagic origin
APA, Harvard, Vancouver, ISO, and other styles
4

Badalato, Nelly. "Structure de déchets lignocellulosiques : effets sur la colonisation, les communautés microbienne et les performances de méthanisation, caractérisés par des approches fonctionnelles et haut-débit." Electronic Thesis or Diss., Paris, AgroParisTech, 2014. http://www.theses.fr/2014AGPT0002.

Full text
Abstract:
La méthanisation des composés lignocellulosiques présente un fort intérêt en raison de leur haut potentiel énergétique et de leur abondance, notamment dans les ordures ménagères résiduelles. Toutefois, leur complexité de structure et de composition rend ces matériaux difficilement dégradables en conditions anaérobies et l’utilisation de prétraitements est généralement requise afin d’améliorer leurs rendements de biodégradation. Outre l’effet de ces prétraitements sur la biodégradation de ces composés, la colonisation des lignocelluloses par les micro-organismes cellulolytiques est une étape clé pour l’efficacité de sa dégradation. Dans ce cadre, le travail de thèse a pour objectifs de mieux comprendre le déterminisme de la colonisation de déchets, d’établir le lien entre la colonisation des déchets lignocellulosiques et l'efficacité de leur dégradation et enfin de caractériser plus finement les mécanismes et interactions mises en jeu au sein de la biomasse. Afin de répondre à ces questions, une approche transversale a été développée, combinant des modèles de cultures de souches pures et des systèmes de méthanisation en laboratoire par des communautés complexes. Des approches intégratives ont été appliquées à l’étude de ces systèmes, couplant des analyses haut-débit (métagénomique/(méta)protéomique), un suivi physico-chimique de la biodégradation et des caractérisations physico-chimiques des composés lignocellulosiques étudiés. L’ensemble des résultats met en évidence le rôle des propriétés chimiques, micro-et macro¬structurales des composés lignocellulosiques dans leur récalcitrance, leur performances de dégradation et la réponse du compartiment microbien. La réalisation de la première étude de protéomique totale et quantitative sur la souche pure cellulolytique Clostridium cellulolyticum, modèle des Clostridia cellulolytiques mésophiles, a permis de mettre en évidence que la vitesse maximale de biodégradation du mouchoir en papier est supérieure à celle du coton et que cette dégradation est associée à un profil métabolique particulier, à une colonisation plus rapide et plus étendue et à une modulation quantitative du système cellulasique. D’autre part, une étude sur un système plus réaliste pour l’étude de la méthanisation des déchets lignocellulosiques a confirmé la bonne concordance entre ce système et le système modèle utilisé et a également permis de mettre en évidence les effets substrats sur la structure des communautés microbienne avec la dominance de la classe Bacteroidia en présence de mouchoir en papier et la forte proportion de la classe Spirochaetes en présence de coton. Enfin l’étude des effets de broyages très fins de la paille de blé et du carton plat ont mis en évidence les limites de ces prétraitements sur les performances de leur dégradation, avec l’effet positif modéré du broyage fin de la paille. Ils ont également montré la sensibilité des communautés microbiennes aux changements de surface du substrat, qui se manifeste par l'émergence de communautés parfois différentes en fonction du prétraitement mécanique appliqué. En conclusion, ce travail a permis de traiter sous un angle nouveau les questions liées à la récalcitrance des déchets lignocellulosiques en abordant à la fois les aspects structuraux, écologiques et fonctionnels. Ces résultats alimentent le corps de connaissances fondamentales sur les bioprocédés. Ils confirment que les matériaux lignocellulosiques sont particuliers parmi les déchets non-dangereux et qu’une exploitation plus large de leur potentiel énergétique nécessiterait la mise en œuvre de procédés spécifiquement adaptés
Lignocellulosic materials have a high energy potential and are abundant, especially in municipal solid waste and their methanization is a promising waste-to-energy bioprocess. However, owing to their highly complex and heterogeneous structure, they are recalcitrant to anaerobic conditions and the use of pre-treatments is usually required to improve their biodegradation yields. Besides, lignocellulose colonization by cellulolytic microorganisms is a key step for an efficient biodegradation. In this context, the PhD work aimed to better understand the factors affecting waste colonization, to establish the link between lignocellulosic waste colonization and its biodegradation efficiency and to characterize more precisely the mechanisms and interactions within the biomass. A transversal approach was developed, combining cultures of model pure strains and lab-scale methanization microcosms with a complex biomass. Integrated approaches were applied to these studies, combining high-throughput analyses (metagenomics/(meta) proteomics), physico-chemical monitoring of bioconversion and finally physico-chemical characterization of substrates. The main results highlight the important role of lignocellulosic materials chemical and micro-and macro -structural features for their recalcitrance, their biodegradation efficiency and the response of the microbial compartment. The first global quantitative proteomic study on the cellulolytic model Clostridium cellulolyticum was conducted. Results showed an increased biodegradation rate of the facial tissue compared to cotton. This enhanced biodegradation was associated to a particular metabolic profile, a faster and more extensive colonization and finally a quantitative modulation of the cellulasic system. On the other hand, study of lignocellulosic waste methanization confirmed the good agreement between this more realistic system and the above-described model system. It also provided new information about the effects of substrate on microbial community structure. Noticeably, Bacteroidia members predominated in the presence of tissue and a high proportion of Spirochaetes members was observed in the presence of cotton. Finally, study of the effects of wheat straw and cardboard dry grinding revealed the limitations of these pretreatments on biodegradation efficiency. Main key points were a moderate positive effect of wheat straw fine grinding, and the sensitivity of the microbial communities to substrate surface characteristics, as evidenced by the emergence of different microbial communities according to the applied mechanical pretreatment. In conclusion, this work brings new perspectives to the study of lignocellulosic waste recalcitrance by addressing both the structural, functional and ecological aspects. These results contribute to the core fundamental knowledge on bioprocesses. They confirm that the lignocellulosic materials are specific among non-hazardous waste and require the implementation of adapted specific processes
APA, Harvard, Vancouver, ISO, and other styles
5

Favre-Bonté, Sabine. "Facteurs de pathogenicite bacteriens impliques dans la colonisation du tube digestif par klebsiella pneumoniae." Clermont-Ferrand 1, 1998. http://www.theses.fr/1998CLF1PP04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ehlinger, Frédéric. "Fermenteurs a cellules fixees en fermentation methanique : facteurs intervenant dans la colonisation du support, caracterisation des biofilms." Toulouse, INSA, 1988. http://www.theses.fr/1988ISAT0015.

Full text
Abstract:
Etude de l'adherence initiale d'une biomasse methanogene sur un support, en flacons agites, en faisant varier les facteurs du milieu (ph, rapport carbone-azote, calcium exopolymere) afin d'optimiser l'adherence de cette biomasse
APA, Harvard, Vancouver, ISO, and other styles
7

Ehlinger, Frédéric. "Fermenteurs à cellules fixées en fermentation méthanique facteurs intervenant dans la colonisation du support : caractérisation des biofilms /." Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb376134530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Savagner, Pierre. "Etude des mécanismes invasifs de colonisation de l'ébauche thymique par des précurseurs hématopoïétiques chez l'embryon d'oiseau." Paris 6, 1986. http://www.theses.fr/1986PA066530.

Full text
Abstract:
Au cours de l'embryogenèse, l'ébauche thymique est colonisée par des cellules hématopoïétique précurseurs. Leur activation par un peptide et, un contact direct avec la fibronectine et la laminine présentes dans l'environnement thymique ou la membrane basale amniotique parait requise dans cette migration.
APA, Harvard, Vancouver, ISO, and other styles
9

Boulahrouf, Abderrahmane. "La microflore responsable de la degradation des polyosides parietaux dans le gros intestin de la souris et du lapin : etude ecologique, facteurs de la colonisation, effets de la concentration en cellulose du regime, caracterisation des especes et activites in vitro." Clermont-Ferrand 2, 1988. http://www.theses.fr/1988CLF21114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Boulahrouf, Abderrahmane. "La Microflore responsable de la dégradation des polyosides pariétaux dans la gros intestin de la souris et du lapin étude écologique, facteurs de la colonisation, effets de la concentration en cellulose du régime, caractérisations des espèces et activités in vitro /." Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb37612194h.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Colonisation de la cellulose"

1

1958-, Gharpuray M. M., and Lee Y. H. 1943-, eds. Cellulose hydrolysis. Berlin: Springer-Verlag, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Khan, Sher Bahadar, and Tahseen Kamal. Bacterial Cellulose. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003118756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Oksman, Kristiina, and Mohini Sain, eds. Cellulose Nanocomposites. Washington, DC: American Chemical Society, 2006. http://dx.doi.org/10.1021/bk-2006-0938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Heinze, Thomas J., and Wolfgang G. Glasser, eds. Cellulose Derivatives. Washington, DC: American Chemical Society, 1998. http://dx.doi.org/10.1021/bk-1998-0688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Heinze, Thomas, Omar A. El Seoud, and Andreas Koschella. Cellulose Derivatives. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73168-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fan, Liang-tseng, Mahendra Moreshwar Gharpuray, and Yong-Hyun Lee. Cellulose Hydrolysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72575-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hamad, Wadood Y. Cellulose Nanocrystals. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118675601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Muthu, Subramanian Senthilkannan, and R. Rathinamoorthy. Bacterial Cellulose. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9581-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wüstenberg, Tanja, ed. Cellulose and Cellulose Derivatives in the Food Industry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527682935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kamide, Kenji. Cellulose and cellulose derivatives: Molecular characterization & its applications. Boston, Mass: Elsevier, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Colonisation de la cellulose"

1

Cox, Rebecca D., and Michelle Pidgeon. "Resisting Colonisation." In Student Carers in Higher Education, 88–105. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003177104-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Forganni, Antonella. "Space colonisation." In European Integration and Space Policy, 139–52. Abingdon, Oxon ; New York, NY : Routledge, 2021. | Series: Space power and politics: Routledge, 2020. http://dx.doi.org/10.4324/9780429328718-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Burns, Alan. "Spanish Colonisation." In History of the British West Indies, 101–34. London: Routledge, 2023. http://dx.doi.org/10.4324/9781003363095-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fujisawa, Shuji, Shuji Fujisawa, Tsuguyuki Saito, and Akira Isogai. "All-Cellulose (Cellulose-Cellulose) Green Composites." In Advanced Green Composites, 111–33. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119323327.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ganster, Johannes, and Hans-Peter Fink. "Cellulose and Cellulose Acetate." In Bio-Based Plastics, 35–62. Chichester, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118676646.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bährle-Rapp, Marina. "Cellulose." In Springer Lexikon Kosmetik und Körperpflege, 95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_1738.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

French, Alfred D. "Cellulose." In Encyclopedia of Biophysics, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-35943-9_82-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gooch, Jan W. "Cellulose." In Encyclopedic Dictionary of Polymers, 127–28. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

French, Alfred D. "Cellulose." In Encyclopedia of Biophysics, 248–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Isogai, Akira. "Cellulose." In Encyclopedia of Polymeric Nanomaterials, 1–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_320-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Colonisation de la cellulose"

1

Dias Fernandes, Gabriel, and Antonio Ramires Fernandes. "Space Colonisation for Procedural Road Generation." In 2018 International Conference on Graphics and Interaction (ICGI). IEEE, 2018. http://dx.doi.org/10.1109/itcgi.2018.8602928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Willock, Mr Kallun. "Human colonisation/exploration beyond low-orbit sp..." In 56th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.iac-05-e6.2.08.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Datta, B., R. Barton, R. Hobson, and H. McLaughlin. "Aspergillus in Sputum Culture – Infection or Colonisation." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a5943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Skipper, P. J. A., and L. K. Skipper. "Understanding bacterial colonisation of built cultural heritage." In REHAB 2014 - International Conference on Preservation, Maintenance and Rehabilitation of Historical Buildings and Structures. Green Lines Institute for Sustainable Development, 2014. http://dx.doi.org/10.14575/gl/rehab2014/101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ponnusamy, Ramalingam, Varuna Kumaravel, and Saraswathy Nachimuthu. "Synthesis of cellulose acetate, cellulose propionate and cellulose butyrate for the removal of synthetic dyes." In THE 8TH ANNUAL INTERNATIONAL SEMINAR ON TRENDS IN SCIENCE AND SCIENCE EDUCATION (AISTSSE) 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0109788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Welsh, Kathryn, Catherine H. Pashley, Jack Satchwell, Andrew J. Wardlaw, and Erol A. Gaillard. "Colonisation with filamentous fungi and acute asthma exacerbations in children." In ERS International Congress 2016 abstracts. European Respiratory Society, 2016. http://dx.doi.org/10.1183/13993003.congress-2016.pa3354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hollertz, R., L. Wagberga, and Claire Pitois. "Novel cellulose nanomaterials." In 2014 IEEE 18th International Conference on Dielectric Liquids (ICDL). IEEE, 2014. http://dx.doi.org/10.1109/icdl.2014.6893152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liland, K. B., M. H. Ese, L. Lundgaard, and M. Kes. "Oxidation of Cellulose." In 2008 IEEE International Symposium on Electrical Insulation. IEEE, 2008. http://dx.doi.org/10.1109/elinsl.2008.4570334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ideguchi, S., K. Yamamoto, M. Tahara, T. Takazono, T. Saijo, Y. Imamura, T. Miyazaki, et al. "Pneumonia in Patients with Rheumatoid Arthritis: Impact of Microbial Airway Colonisation." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a2141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tisekar, O., M. M. Lalani, V. Rahulan, S. K. Ravipati, U. Shah, P. Dutta, and S. Attawar. "Fungal colonisation in lung transplant recipients: A retrospective study from India." In ERS International Congress 2022 abstracts. European Respiratory Society, 2022. http://dx.doi.org/10.1183/13993003.congress-2022.3372.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Colonisation de la cellulose"

1

Bartscherer, K. A., J. J. de Pablo, M. C. Bonnin, and J. M. Prausnitz. Purification of aqueous cellulose ethers. Office of Scientific and Technical Information (OSTI), July 1990. http://dx.doi.org/10.2172/6084196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Alan R. White and Ann G. Matthysse. Cellulose Synthesis in Agrobacterium tumefaciens. Office of Scientific and Technical Information (OSTI), July 2004. http://dx.doi.org/10.2172/840242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Morrison, Mark, and Joshuah Miron. Molecular-Based Analysis of Cellulose Binding Proteins Involved with Adherence to Cellulose by Ruminococcus albus. United States Department of Agriculture, November 2000. http://dx.doi.org/10.32747/2000.7695844.bard.

Full text
Abstract:
At the beginning of this project, it was clear that R. albus adhered tightly to cellulose and its efficient degradation of this polysaccharide was dependent on micromolar concentrations of phenylacetic acid (PAA) and phenylpropionic acid (PPA). The objectives for our research were: i) to identify how many different kinds of cellulose binding proteins are produced by Ruminococcus albus; ii) to isolate and clone the genes encoding some of these proteins from the same bacterium; iii) to determine where these various proteins were located and; iv) quantify the relative importance of these proteins in affecting the rate and extent to which the bacterium becomes attached to cellulose. BARD support has facilitated a number of breakthroughs relevant to our fundamental understanding of the adhesion process. First, R. albus possesses multiple mechanisms for adhesion to cellulose. The P.I.'s laboratory has discovered a novel cellulose-binding protein (CbpC) that belongs to the Pil-protein family, and in particular, the type 4 fimbrial proteins. We have also obtained genetic and biochemical evidence demonstrating that, in addition to CbpC-mediated adhesion, R. albus also produces a cellulosome-like complex for adhesion. These breakthroughs resulted from the isolation (in Israel and the US) of spontaneously arising mutants of R. albus strains SY3 and 8, which were completely or partially defective in adhesion to cellulose, respectively. While the SY3 mutant strain was incapable of growth with cellulose as the sole carbon source, the strain 8 mutants showed varying abilities to degrade and grow with cellulose. Biochemical and gene cloning experiments have been used in Israel and the US, respectively, to identify what are believed to be key components of a cellulosome. This combination of cellulose adhesion mechanisms has not been identified previously in any bacterium. Second, differential display, reverse transcription polymerase chain reaction (DD RT-PCR) has been developed for use with R. albus. A major limitation to cellulose research has been the intractability of cellulolytic bacteria to genetic manipulation by techniques such as transposon mutagenesis and gene displacement. The P.I.'s successfully developed DD RT- PCR, which expanded the scope of our research beyond the original objectives of the project, and a subset of the transcripts conditionally expressed in response to PAA and PPA have been identified and characterized. Third, proteins immunochemically related to the CbpC protein of R. albus 8 are present in other R. albus strains and F. intestinalis, Western immunoblots have been used to examine additional strains of R. albus, as well as other cellulolytic bacteria of ruminant origin, for production of proteins immunochemically related to the CbpC protein. The results of these experiments showed that R. albus strains SY3, 7 and B199 all possess a protein of ~25 kDa which cross-reacts with polyclonal anti-CbpC antiserum. Several strains of Butyrivibrio fibrisolvens, Ruminococcus flavefaciens strains C- 94 and FD-1, and Fibrobacter succinogenes S85 produced no proteins that cross-react with the same antiserum. Surprisingly though, F. intestinalis strain DR7 does possess a protein(s) of relatively large molecular mass (~200 kDa) that was strongly cross-reactive with the anti- CbpC antiserum. Scientifically, our studies have helped expand the scope of our fundamental understanding of adhesion mechanisms in cellulose-degrading bacteria, and validated the use of RNA-based techniques to examine physiological responses in bacteria that are nor amenable to genetic manipulations. Because efficient fiber hydrolysis by many anaerobic bacteria requires both tight adhesion to substrate and a stable cellulosome, we believe our findings are also the first step in providing the resources needed to achieve our long-term goal of increasing fiber digestibility in animals.
APA, Harvard, Vancouver, ISO, and other styles
4

Cuzens, J. E. Conversion of bagasse cellulose into ethanol. Office of Scientific and Technical Information (OSTI), November 1997. http://dx.doi.org/10.2172/674641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Heintz, C. E., K. A. Rainwater, L. M. Swift, D. L. Barnes, and L. A. Worl. Enzymatic degradation of plutonium-contaminated cellulose products. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/350862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wood, Devon, Hang Liu, and Carol J. Salusso. Production and characterization of bacterial cellulose fabrics. Ames: Iowa State University, Digital Repository, November 2015. http://dx.doi.org/10.31274/itaa_proceedings-180814-130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Harmon, Jennifer. Homegrown: Investigating Design Potential of Bacterial Cellulose. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Leschine, Susan. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION. Office of Scientific and Technical Information (OSTI), October 2009. http://dx.doi.org/10.2172/966704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tobias I. Baskin. Cellulose and the Control of Growth Anisotropy. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/822600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Brown, Richard M, Jr, and Inder Mohan Saxena. Cellulose synthesizing Complexes in Vascular Plants andProcaryotes. Office of Scientific and Technical Information (OSTI), July 2009. http://dx.doi.org/10.2172/958293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography