Academic literature on the topic 'Colloidal Synthesis - Nanocrystals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Colloidal Synthesis - Nanocrystals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Colloidal Synthesis - Nanocrystals"
Erdem, Talha, and Hilmi Volkan Demir. "Colloidal nanocrystals for quality lighting and displays: milestones and recent developments." Nanophotonics 5, no. 1 (June 1, 2016): 74–95. http://dx.doi.org/10.1515/nanoph-2016-0009.
Full textYang, Tung-Han, Shan Zhou, Kyle D. Gilroy, Legna Figueroa-Cosme, Yi-Hsien Lee, Jenn-Ming Wu, and Younan Xia. "Autocatalytic surface reduction and its role in controlling seed-mediated growth of colloidal metal nanocrystals." Proceedings of the National Academy of Sciences 114, no. 52 (December 11, 2017): 13619–24. http://dx.doi.org/10.1073/pnas.1713907114.
Full textKendall, Owen, Pierce Wainer, Steven Barrow, Joel van Embden, and Enrico Della Gaspera. "Fluorine-Doped Tin Oxide Colloidal Nanocrystals." Nanomaterials 10, no. 5 (April 30, 2020): 863. http://dx.doi.org/10.3390/nano10050863.
Full textDella Gaspera, Enrico, Noel W. Duffy, Joel van Embden, Lynne Waddington, Laure Bourgeois, Jacek J. Jasieniak, and Anthony S. R. Chesman. "Plasmonic Ge-doped ZnO nanocrystals." Chemical Communications 51, no. 62 (2015): 12369–72. http://dx.doi.org/10.1039/c5cc02429c.
Full textMurray, C. B., Shouheng Sun, W. Gaschler, H. Doyle, T. A. Betley, and C. R. Kagan. "Colloidal synthesis of nanocrystals and nanocrystal superlattices." IBM Journal of Research and Development 45, no. 1 (January 2001): 47–56. http://dx.doi.org/10.1147/rd.451.0047.
Full textLi, Dehui, Weichen Qi, Jinglei Xiao, Jing Yang, Yong Wu, Qiao Gao, and Shengyong Zhai. "One-Pot Synthesis of Zincblende CuInSe2 Nanocrystals via a Green Solution Reaction Route." Nano 12, no. 09 (September 2017): 1750107. http://dx.doi.org/10.1142/s1793292017501077.
Full textGerdes, Frauke, Eugen Klein, Sascha Kull, Mohammad Mehdi Ramin Moayed, Rostyslav Lesyuk, and Christian Klinke. "Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals." Zeitschrift für Physikalische Chemie 232, no. 9-11 (August 28, 2018): 1267–80. http://dx.doi.org/10.1515/zpch-2018-1164.
Full textLópez-Domínguez, Pedro, and Isabel Van Driessche. "Colloidal Oxide Perovskite Nanocrystals: From Synthesis to Application." CHIMIA International Journal for Chemistry 75, no. 5 (May 28, 2021): 376–86. http://dx.doi.org/10.2533/chimia.2021.376.
Full textMéndez-López, A., A. Morales-Acevedo, Y. J. Acosta-Silva, and M. Ortega-López. "Synthesis and Characterization of Colloidal CZTS Nanocrystals by a Hot-Injection Method." Journal of Nanomaterials 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/7486094.
Full textGao, Yukun, and PG Yin. "Synthesis of cubic CdSe nanocrystals and their spectral properties." Nanomaterials and Nanotechnology 7 (January 1, 2017): 184798041770174. http://dx.doi.org/10.1177/1847980417701747.
Full textDissertations / Theses on the topic "Colloidal Synthesis - Nanocrystals"
IMRAN, MUHAMMAD. "Synthesis and Post-synthesis Transformations of Colloidal Semiconductor Nanocrystals." Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/945513.
Full textSöderlind, Fredrik. "Colloidal synthesis of metal oxide nanocrystals and thin films." Doctoral thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11831.
Full textSayevich, Uladzimir. "Synthesis, Surface Design and Assembling of Colloidal Semiconductor Nanocrystals." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-209074.
Full textSHAMSI, JAVAD. "Colloidal Synthesis of Lead Halide Perovskite Nanocrystals for Optoelectronic Application." Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/929994.
Full textBerestok, Taisiia. "Assembly of colloidal nanocrystals into porous nanomaterials." Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/663275.
Full textEsta tesis se centra en la síntesis coloidal de nanocristales (NCs), en la exploración de su química de superficie y en su ensabanado en nanomateriales porosos funcionales. Para demostrar la versatilidad de aplicación de dichas estructuras, en este estudio se han considerado NCs de distintos tipos de materiales: metales (Au), óxidos metálicos (CeO2, TiO2, Fe2O3), calcogenuros metálicos (In2S3, ZnS, PbS, CuGaS2,Cu2ZnSnSe4) y sus materiales compuestos. El trabajo se dividió en dos bloques. En el primero se desarrolló y optimizó la síntesis de NCs de óxidos y calcogenuros metálicos y se evaluó su potencial para aplicaciones de catálisis y fotocatálisis. Se investigó en profundidad la síntesis de NCs de CeO2, poniendo énfasis en controlar su morfología. Se consiguió producir NCs de CeO2 de forma controlada (esférica, octapodo ramificado, cúbico ramificado y romboidal) y con tamaño controlado (7-45 nm). Asimismo, se obtuvieron NCs de Cu2ZnSnSe4 con una fina distribución de tamaños y composición controlada. En el segundo bloque se establecieron y estudiaron procedimientos para fabricar nanomateriales porosos mono- o multicomponentes a partir del ensamblado de NCs. Se desarrolló una estrategia basada en el ajuste de la química de superficie de NCs de óxidos metálicos (CeO2, Fe2O3,TiO2) y de calcogenuros metálicos (In2S3, CuGaS2-ZnS) que permitió su ensamblaje controlado en estructuras porosas de tipo gel y aerogel. En el caso de los óxidos metálicos, se determinó que el ensamblado se inicia con la adición de un epóxido a NCs funcionalizados con glutamina, causando la gelación. La desorción oxidativa de ligandos basada en la formación de enlaces calcogenuro-calcogenuro se propuso como mecanismo de gelación en calcogenuros mono- (In2S3) y multicomponente (CuGaS2-ZnS). Se investigó el impacto del empleo de distintos ligandos en la eficiencia foto-electrocatalítica de NCs en forma coloidal, ensamblados en geles y soportados en sustratos. Se desarrolló y estudió el ajuste de la química de superficie de NCs para la obtención de ensamblajes multicomponente mediante interacción electrostática de coloides en suspensión. El mecanismo de gelación fue investigado al detalle para materiales compuestos de NCs de oxido metálico (CeO2) con NCs de óxido de calcogenuro (PbS-CeO2) y metálicos (Au-CeO2). Los aerogeles de Au-CeO2 demostraron potencial para la oxidación de CO.
Fisher, Aidan Antony Edward. "Colloidal synthesis, structural characterisation and single molecule spectroscopy of semiconducting nanocrystals." Thesis, University of Sussex, 2018. http://sro.sussex.ac.uk/id/eprint/73443/.
Full textPanthani, Matthew George. "Colloidal Nanocrystals with Near-infrared Optical Properties| Synthesis, Characterization, and Applications." Thesis, The University of Texas at Austin, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3572875.
Full textColloidal nanocrystals with optical properties in the near-infrared (NIR) are of interest for many applications such as photovoltaic (PV) energy conversion, bioimaging, and therapeutics. For PVs and other electronic devices, challenges in using colloidal nanomaterials often deal with the surfaces. Because of the high surface-to-volume ratio of small nanocrystals, surfaces and interfaces play an enhanced role in the properties of nanocrystal films and devices.
Organic ligand-capped CuInSe2 (CIS) and Cu(InXGa 1-X)Se2 (CIGS) nanocrystals were synthesized and used as the absorber layer in prototype solar cells. By fabricating devices from spray-coated CuInSe nanocrystals under ambient conditions, solar-to-electric power conversion efficiencies as high as 3.1% were achieved. Many treatments of the nanocrystal films were explored. Although some treatments increased the conductivity of the nanocrystal films, the best devices were from untreated CIS films. By modifying the reaction chemistry, quantum-confined CuInSe XS2-X (CISS) nanocrystals were produced. The potential of the CISS nanocrystals for targeted bioimaging was demonstrated via oral delivery to mice and imaging of nanocrystal fluorescence.
The size-dependent photoluminescence of Si nanocrystals was measured. Si nanocrystals supported on graphene were characterized by conventional transmission electron microscopy and spherical aberration (Cs)-corrected scanning transmission electron microscopy (STEM). Enhanced imaging contrast and resolution was achieved by using Cs-corrected STEM with a graphene support. In addition, clear imaging of defects and the organic-inorganic interface was enabled by utilizing this technique.
Ho, Minh Q. "Colloidal Synthesis and Optical Characterizations of Semiconductor Nanocrystals from Nontoxic Elements." VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/3915.
Full textGONCALVES, GUILHERME. "Colloidal synthesis and characterization of two- and three-dimensional semiconductor nanocrystals." Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/930563.
Full textYuan, Ying [Verfasser], and Michael [Akademischer Betreuer] Krüger. "Colloidal CdE (E= S, Se and Te) nanocrystals: from synthesis to applications." Freiburg : Universität, 2016. http://d-nb.info/1122831633/34.
Full textBooks on the topic "Colloidal Synthesis - Nanocrystals"
Hendricks, Mark Patrick. The Synthesis of Colloidal Metal Sulfide Nanocrystals. [New York, N.Y.?]: [publisher not identified], 2015.
Find full textLesnyak, Vladimir, Maksym Yarema, and Shiding Miao, eds. Colloidal Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88963-269-5.
Full textBook chapters on the topic "Colloidal Synthesis - Nanocrystals"
Leite, Edson Roberto, and Caue Ribeiro. "Trends and Perspectives in Nanoparticles Synthesis." In Crystallization and Growth of Colloidal Nanocrystals, 83–92. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1308-0_6.
Full textKwon, Soon Gu, and Taeghwan Hyeon. "Kinetics of Colloidal Chemical Synthesis of Monodisperse Spherical Nanocrystals." In Nanoscale Materials in Chemistry, 127–53. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470523674.ch6.
Full textPrivman, Vladimir. "Models of Size and Shape Control in Synthesis of Uniform Colloids and Nanocrystals." In Fine Particles in Medicine and Pharmacy, 1–24. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0379-1_1.
Full textMehta, Aarti, Shailesh N. Sharma, Kanchan Sharma, Parth Vashishtha, and S. Chand. "Single-Pot Rapid Synthesis of Colloidal Core/Core-Shell Quantum Dots: A Novel Polymer-Nanocrystal Hybrid Material." In Physics of Semiconductor Devices, 315–18. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_79.
Full textPrivman, Vladimir. "Colloids, Nanocrystals, and Surface Nanostructures of Uniform Size and Shape: Modeling of Nucleation and Growth in Solution Synthesis." In Complex-Shaped Metal Nanoparticles, 239–68. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652570.ch7.
Full textZeng, Jie, Xiaoping Wang, and J. G. "Colloidal Hybrid Nanocrystals: Synthesis, Properties, and Perspectives." In Nanocrystal. InTech, 2011. http://dx.doi.org/10.5772/16418.
Full textLiz-Marzán, Luis M., and Paul Mulvaney. "The Assembly of Coated Nanocrystals*." In Colloidal Synthesis of Plasmonic Nanometals, 89–129. Jenny Stanford Publishing, 2020. http://dx.doi.org/10.1201/9780429295188-3.
Full textLesnyak, Vladimir, Nikolai Gaponik, and Alexander Eychmüller. "Aqueous Synthesis of Colloidal CdTe Nanocrystals." In Cadmium Telluride Quantum Dots, 23–59. Pan Stanford Publishing, 2013. http://dx.doi.org/10.1201/b16378-3.
Full text"Colloidal Inorganic Nanocrystals: Synthesis and Controlled Assembly." In Nanofabrication Handbook, 267–98. CRC Press, 2012. http://dx.doi.org/10.1201/b11626-19.
Full textLi, Zili, Shuang Liang, Mingyue Zhang, Zewei Wang, and Zhiqun Lin. "Template-Assisted Colloidal Synthesis of Plasmonic Nanocrystals." In World Scientific Reference on Plasmonic Nanomaterials, 235–304. World Scientific, 2022. http://dx.doi.org/10.1142/9789811235221_0006.
Full textConference papers on the topic "Colloidal Synthesis - Nanocrystals"
Bastus, Neus, Jordi Piella, Carmen Hervés, Elizaveta Demakova, Jana Oliveras, Oscar Moriones, and Victor Puntes. "Colloidal Synthesis of Complex Multicomponent Inorganic Nanocrystals." In Internet NanoGe Conference on Nanocrystals. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.incnc.2021.049.
Full textZhang, Xiaoyan, Ningzhong Bao, Karthik Ramasamy, Baoping Lin, and Arunava Gupta. "Colloidal synthesis of wurtzite Cu2FeSnS4 nanocrystals." In 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC). IEEE, 2012. http://dx.doi.org/10.1109/pvsc.2012.6317981.
Full textSemendy, Fred, Gomatam Jaganathan, Nibir Dhar, Sudhir Trivedi, Ishwara Bhat, and Yuanping Chen. "Synthesis and characterization of colloidal CdTe nanocrystals." In NanoScience + Engineering, edited by Elizabeth A. Dobisz and Louay A. Eldada. SPIE, 2008. http://dx.doi.org/10.1117/12.803826.
Full textGreenberg, Melisa R., Gennady A. Smolyakov, Timothy J. Boyle, and Marek Osinski. "Synthesis and Characterization of ZnO Colloidal Nanocrystals." In CLEO '07. 2007 Conference on Lasers and Electro-Optics. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452606.
Full textHill, Eric. "Synthesis of Semiconductors Confined in Nanoscopic Colloidal Templates toward Heterostructured Nanomaterials." In Internet NanoGe Conference on Nanocrystals. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.incnc.2021.008.
Full textNath, Peuli, and Aniruddha Ray. "Water-assisted facile synthesis of bright inorganic perovskite nanocrystals." In Colloidal Nanoparticles for Biomedical Applications XVIII, edited by Marek Osiński and Antonios G. Kanaras. SPIE, 2023. http://dx.doi.org/10.1117/12.2650534.
Full textGharde, Shruti I., Arjun Senthil, Mark V. Reymatias, Aadit Sharma, Ciara R. Murphy, Nathan J. Withers, Gennady A. Smolyakov, et al. "Colloidal synthesis and characterization of ytterbium-doped YLF nanocrystals." In Colloidal Nanoparticles for Biomedical Applications XVII, edited by Marek Osiński and Antonios G. Kanaras. SPIE, 2022. http://dx.doi.org/10.1117/12.2615365.
Full textBuonsanti, Raffaella. "Reaction Intermediates in the Synthesis of Colloidal Nanocrystals." In MATSUS23 & Sustainable Technology Forum València (STECH23). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.matsus.2023.063.
Full textHuber, Dale L., Nathan J. Withers, Marek Osinski, Gavin Gonzales, Gema Alas, Alejandro Sandoval, Christina Minetos, Sergei A. Ivanov, Gennady A. Smolakov, and Arjun Senthil. "Synthesis and characterization of colloidal ZnTe nanocrystals and ZnTe/ZnSe quantum dots." In Colloidal Nanoparticles for Biomedical Applications XIII, edited by Xing-Jie Liang, Wolfgang J. Parak, and Marek Osiński. SPIE, 2018. http://dx.doi.org/10.1117/12.2299330.
Full textGreenberg, Melisa R., Gennady A. Smolyakov, Jason C. Jones, Scott D. Bunge, Timothy J. Boyle, and Marek Osinski. "Synthesis and characterization of InP and InN colloidal nanocrystals." In 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference. IEEE, 2006. http://dx.doi.org/10.1109/cleo.2006.4628249.
Full textReports on the topic "Colloidal Synthesis - Nanocrystals"
Liu, Haitao. Chemistry of the Colloidal Group II-VI Nanocrystal Synthesis. Office of Scientific and Technical Information (OSTI), May 2007. http://dx.doi.org/10.2172/918668.
Full text