Journal articles on the topic 'Collective Atomic Recoil Lasing'

To see the other types of publications on this topic, follow the link: Collective Atomic Recoil Lasing.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Collective Atomic Recoil Lasing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zimmermann, Claus, Dietmar Kruse, Christoph Von Cube, Sebastian Slama, Benjamin Deh, and Philippe Courteille. "Collective atomic recoil lasing." Journal of Modern Optics 51, no. 6-7 (April 2004): 957–65. http://dx.doi.org/10.1080/09500340408233609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Deh, Benjamin, Philippe Courteille, Dietmar Kruse, Christoph von Cube, Sebastian Slama, and Claus Zimmermann. "Collective atomic recoil lasing." Journal of Modern Optics 51, no. 6-7 (May 15, 2004): 957–65. http://dx.doi.org/10.1080/09500340410001664403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

McKelvie, James, and Gordon Robb. "Two-Photon Collective Atomic Recoil Lasing." Atoms 3, no. 4 (November 20, 2015): 495–508. http://dx.doi.org/10.3390/atoms3040495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Piovella, N., L. Volpe, M. M. Cola, and R. Bonifacio. "Transverse effects in collective atomic recoil lasing." Laser Physics 17, no. 2 (February 2007): 174–79. http://dx.doi.org/10.1134/s1054660x07020223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gisbert, Angel T., and Nicola Piovella. "Multimode Collective Atomic Recoil Lasing in Free Space." Atoms 8, no. 4 (December 10, 2020): 93. http://dx.doi.org/10.3390/atoms8040093.

Full text
Abstract:
Cold atomic clouds in collective atomic recoil lasing are usually confined by an optical cavity, which forces the light-scattering to befall in the mode fixed by the resonator. Here we consider the system to be in free space, which leads into a vacuum multimode collective scattering. We show that the presence of an optical cavity is not always necessary to achieve coherent collective emission by the atomic ensemble and that a preferred scattering path arises along the major axis of the atomic cloud. We derive a full vectorial model for multimode collective atomic recoil lasing in free space. Such a model consists of multi-particle equations capable of describing the motion of each atom in a 2D/3D cloud. These equations are numerically solved by means of molecular dynamic algorithms, usually employed in other scientific fields. The numerical results show that both atomic density and collective scattering patterns are applicable to the cloud’s orientation and shape and to the polarization of the incident light.
APA, Harvard, Vancouver, ISO, and other styles
6

Piovella, Nicola, Angel Tarramera Gisbert, and Gordon R. M. Robb. "Classical and Quantum Collective Recoil Lasing: A Tutorial." Atoms 9, no. 3 (July 6, 2021): 40. http://dx.doi.org/10.3390/atoms9030040.

Full text
Abstract:
Collective atomic recoil lasing (CARL) is a process during which an ensemble of cold atoms, driven by a far-detuned laser beam, spontaneously organize themselves in periodic structures on the scale of the optical wavelength. The principle was envisaged by R. Bonifacio in 1994 and, ten years later, observed in a series of experiments in Tübingen by C. Zimmermann and colleagues. Here, we review the basic model of CARL in the classical and in the quantum regime.
APA, Harvard, Vancouver, ISO, and other styles
7

Bonifacio, R., N. Piovella, G. R. M. Robb, and M. M. Cola. "Propagation effects in the quantum description of collective recoil lasing." Optics Communications 252, no. 4-6 (August 2005): 381–96. http://dx.doi.org/10.1016/j.optcom.2005.04.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bonifacio, R., M. M. Cola, N. Piovella, and G. R. M. Robb. "A quantum model for collective recoil lasing." Europhysics Letters (EPL) 69, no. 1 (January 2005): 55–60. http://dx.doi.org/10.1209/epl/i2004-10308-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Berman, P. R. "Comparison of recoil-induced resonances and the collective atomic recoil laser." Physical Review A 59, no. 1 (January 1, 1999): 585–96. http://dx.doi.org/10.1103/physreva.59.585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

De Salvo, Lucia, Roberta Cannerozzi, Rodolfo Bonifacio, Eduardo J. D’Angelo, and Lorenzo M. Narducci. "Collective-variables description of the atomic-recoil laser." Physical Review A 52, no. 3 (September 1, 1995): 2342–49. http://dx.doi.org/10.1103/physreva.52.2342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Bonifacio, R., L. De Salvo, and W. A. Barletta. "Relativistic theory of the collective atomic recoil laser." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 384, no. 2-3 (January 1997): 337–41. http://dx.doi.org/10.1016/s0168-9002(96)00849-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bonifacio, R., L. De Salvo, and G. R. M. Robb. "Propagation effects in a collective atomic recoil laser." Optics Communications 137, no. 4-6 (May 1997): 276–80. http://dx.doi.org/10.1016/s0030-4018(96)00800-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bonifacio, R., and L. De Salvo. "Collective atomic recoil laser (CARL) optical gain without inversion by collective atomic recoil and self-bunching of two-level atoms." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 341, no. 1-3 (March 1994): 360–62. http://dx.doi.org/10.1016/0168-9002(94)90382-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Moore, M. G., and P. Meystre. "Effects of atomic diffraction on the collective atomic recoil laser." Physical Review A 58, no. 4 (October 1, 1998): 3248–58. http://dx.doi.org/10.1103/physreva.58.3248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Perrin, Mathias, Zongxiong Ye, Julien Javaloyes, Gian Luca Lippi, Antonio Politi, and Lorenzo M. Narducci. "Collective Light-Matter Interaction in the Presence Of Atomic Recoil." Optics and Photonics News 12, no. 12 (December 1, 2001): 60. http://dx.doi.org/10.1364/opn.12.12.000060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Cola, Mary M., Matteo G. A. Paris, Nicola Piovella, and Rodolfo Bonifacio. "Entanglement in a Bose–Einstein condensate by collective atomic recoil." Journal of Physics B: Atomic, Molecular and Optical Physics 37, no. 7 (March 24, 2004): S187—S194. http://dx.doi.org/10.1088/0953-4075/37/7/064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mendonça, José Tito, and Antonio P. B. Serbêto. "Wave-Kinetic Approach to Collective Atomic Emission." Atoms 8, no. 3 (August 10, 2020): 42. http://dx.doi.org/10.3390/atoms8030042.

Full text
Abstract:
We study the collective scattering of radiation by a large ensemble of Na≫1 atoms, in the presence of a pump field. We use the wave-kinetic approach where the center-of-mass position of the moving atoms is described by a microscopic discrete distribution, or alternatively, by a Wigner distribution. This approach can include thermal effects and quantum recoil in a natural way, and even consider atomic ensembles out of equilibrium. We assume two-level atoms with atomic transition frequency ωa very different from the frequency ω0 of the pump field. We consider both the quasi-classical and quantum descriptions of the center-of-mass motion. In both cases, we establish the unstable regimes where coherent emission of radiation can take place.
APA, Harvard, Vancouver, ISO, and other styles
18

Robb, G. R. M., and B. W. J. McNeil. "Sum-frequency generation in an ultracold atomic gas due to collective atomic recoil." Journal of Physics B: Atomic, Molecular and Optical Physics 39, no. 22 (October 27, 2006): 4593–603. http://dx.doi.org/10.1088/0953-4075/39/22/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Bonifacio, R., L. De Salvo, L. M. Narducci, and E. J. D’Angelo. "Exponential gain and self-bunching in a collective atomic recoil laser." Physical Review A 50, no. 2 (August 1, 1994): 1716–24. http://dx.doi.org/10.1103/physreva.50.1716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wang, Jun-Li, Yao-Jun Qiao, Wen-Jun Fan, Peng-Wang Zhai, and Jin-Yue Gao. "Optical gain and grating structure in the collective atomic recoil laser." Physics Letters A 254, no. 5 (April 1999): 251–56. http://dx.doi.org/10.1016/s0375-9601(99)00085-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Bonifacio, R., and P. Verkerk. "Doppler broadening and collision effects in a collective atomic recoil laser." Optics Communications 124, no. 5-6 (March 1996): 469–74. http://dx.doi.org/10.1016/0030-4018(95)00585-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

McNeil, B. W. J., and G. R. M. Robb. "Collective Rayleigh scattering from dielectric particles: A classical theory of the Collective Atomic Recoil Laser." Optics Communications 148, no. 1-3 (March 1998): 54–58. http://dx.doi.org/10.1016/s0030-4018(97)00629-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Enaki, Nicolae A., and Vitalie Eremeev. "Two-photon lasing stimulated by collective modes." Optics Communications 247, no. 4-6 (March 2005): 381–92. http://dx.doi.org/10.1016/j.optcom.2004.11.076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ian, Hou. "Stability branching induced by collective atomic recoil in an optomechanical ring cavity." New Journal of Physics 19, no. 2 (February 27, 2017): 023052. http://dx.doi.org/10.1088/1367-2630/aa5b7b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bonifacio, R., G. R. M. Robb, and B. W. J. McNeil. "Propagation, cavity, and Doppler-broadening effects in the collective atomic recoil laser." Physical Review A 56, no. 1 (July 1, 1997): 912–24. http://dx.doi.org/10.1103/physreva.56.912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Bonifacio, Rodolfo. "Photon statistics and quantum fluctuations in a Collective Atomic Recoil Laser (CARL)." Optics Communications 146, no. 1-6 (January 1998): 236–40. http://dx.doi.org/10.1016/s0030-4018(97)00465-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zhang, L., G. J. Yang, and Z. H. He. "Light amplification related to collective atomic recoil affected by dipole–dipole collision." Physics Letters A 322, no. 3-4 (March 2004): 166–72. http://dx.doi.org/10.1016/j.physleta.2004.01.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ripoll, Jorge, Costas M. Soukoulis, and Eleftherios N. Economou. "Optimal tuning of lasing modes through collective particle resonance." Journal of the Optical Society of America B 21, no. 1 (January 1, 2004): 141. http://dx.doi.org/10.1364/josab.21.000141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bychek, Anna, Christoph Hotter, David Plankensteiner, and Helmut Ritsch. "Superradiant lasing in inhomogeneously broadened ensembles with spatially varying coupling." Open Research Europe 1 (June 25, 2021): 73. http://dx.doi.org/10.12688/openreseurope.13781.1.

Full text
Abstract:
Background: Theoretical studies of superradiant lasing on optical clock transitions predict a superb frequency accuracy and precision closely tied to the bare atomic linewidth. Such a superradiant laser is also robust against cavity fluctuations when the spectral width of the lasing mode is much larger than that of the atomic medium. Recent predictions suggest that this unique feature persists even for a hot and thus strongly broadened ensemble, provided the effective atom number is large enough. Methods: Here we use a second-order cumulant expansion approach to study the power, linewidth and lineshifts of such a superradiant laser as a function of the inhomogeneous width of the ensemble including variations of the spatial atom-field coupling within the resonator. Results: We present conditions on the atom numbers, the pump and coupling strengths required to reach the buildup of collective atomic coherence as well as scaling and limitations for the achievable laser linewidth. Conclusions: We show how sufficiently large numbers of atoms subject to strong optical pumping can induce synchronization of the atomic dipoles over a large bandwidth. This generates collective stimulated emission of light into the cavity mode leading to narrow-band laser emission at the average of the atomic frequency distribution. The linewidth is orders of magnitudes smaller than that of the cavity as well as the inhomogeneous gain broadening and exhibits reduced sensitivity to cavity frequency noise.
APA, Harvard, Vancouver, ISO, and other styles
30

Bychek, Anna, Christoph Hotter, David Plankensteiner, and Helmut Ritsch. "Superradiant lasing in inhomogeneously broadened ensembles with spatially varying coupling." Open Research Europe 1 (September 22, 2021): 73. http://dx.doi.org/10.12688/openreseurope.13781.2.

Full text
Abstract:
Background: Theoretical studies of superradiant lasing on optical clock transitions predict a superb frequency accuracy and precision closely tied to the bare atomic linewidth. Such a superradiant laser is also robust against cavity fluctuations when the spectral width of the lasing mode is much larger than that of the atomic medium. Recent predictions suggest that this unique feature persists even for a hot and thus strongly broadened ensemble, provided the effective atom number is large enough. Methods: Here we use a second-order cumulant expansion approach to study the power, linewidth and lineshifts of such a superradiant laser as a function of the inhomogeneous width of the ensemble including variations of the spatial atom-field coupling within the resonator. Results: We present conditions on the atom numbers, the pump and coupling strengths required to reach the buildup of collective atomic coherence as well as scaling and limitations for the achievable laser linewidth. Conclusions: We show how sufficiently large numbers of atoms subject to strong optical pumping can induce synchronization of the atomic dipoles over a large bandwidth. This generates collective stimulated emission of light into the cavity mode leading to narrow-band laser emission at the average of the atomic frequency distribution. The linewidth is orders of magnitudes smaller than that of the cavity as well as the inhomogeneous gain broadening and exhibits reduced sensitivity to cavity frequency noise.
APA, Harvard, Vancouver, ISO, and other styles
31

Cola, Mary M., Matteo G. A. Paris, Nicola Piovella, and Rodolfo Bonifacio. "A condensate in a lossy cavity: Collective atomic recoil and generation of entanglement." Journal of Modern Optics 51, no. 6-7 (April 2004): 1043–47. http://dx.doi.org/10.1080/09500340408233622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Piano, Samanta, and Gerardo Adesso. "Genuine Tripartite Entanglement and Nonlocality in Bose-Einstein Condensates by Collective Atomic Recoil." Entropy 15, no. 12 (May 17, 2013): 1875–86. http://dx.doi.org/10.3390/e15051875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Piovella, N., M. Cola, and R. Bonifacio. "Classical and quantum regimes in the collective atomic recoil laser from a Bose-Einstein condensate." Journal of Modern Optics 51, no. 6-7 (April 2004): 1019–23. http://dx.doi.org/10.1080/09500340408233618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Zhang, Lin, G. J. Yang, and L. X. Xia. "Self-organization effects and light amplification of collective atomic recoil motion in a harmonic trap." Journal of Optics B: Quantum and Semiclassical Optics 7, no. 11 (October 24, 2005): 355–60. http://dx.doi.org/10.1088/1464-4266/7/11/007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Norcia, Matthew A., Matthew N. Winchester, Julia R. K. Cline, and James K. Thompson. "Superradiance on the millihertz linewidth strontium clock transition." Science Advances 2, no. 10 (October 2016): e1601231. http://dx.doi.org/10.1126/sciadv.1601231.

Full text
Abstract:
Laser frequency noise contributes a significant limitation to today’s best atomic clocks. A proposed solution to this problem is to create a superradiant laser using an optical clock transition as its gain medium. This laser would act as an active atomic clock and would be highly immune to the fluctuations in reference cavity length that limit today’s best lasers. We demonstrate and characterize superradiant emission from the millihertz linewidth clock transition in an ensemble of laser-cooled 87Sr atoms trapped within a high-finesse optical cavity. We measure a collective enhancement of the emission rate into the cavity mode by a factor of more than 10,000 compared to independently radiating atoms. We also demonstrate a method for seeding superradiant emission and observe interference between two independent transitions lasing simultaneously. We use this interference to characterize the relative spectral properties of the two lasing subensembles.
APA, Harvard, Vancouver, ISO, and other styles
36

Piovella, N., M. Gatelli, and R. Bonifacio. "Quantum effects in the collective light scattering by coherent atomic recoil in a Bose–Einstein condensate." Optics Communications 194, no. 1-3 (July 2001): 167–73. http://dx.doi.org/10.1016/s0030-4018(01)01293-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Paris, Matteo G. A., Mary Cola, Nicola Piovella, and Rodolfo Bonifacio. "Radiation to atom quantum mapping by collective recoil in a Bose–Einstein condensate." Optics Communications 227, no. 4-6 (November 2003): 349–54. http://dx.doi.org/10.1016/j.optcom.2003.09.065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kamynin, V. A., V. V. Kashin, D. A. Nikolaev, A. I. Trikshev, V. B. Tsvetkov, and V. P. Yakunin. "Appearance of collective lasing of laser channels at the intracavity spectral beam combining." Optics Communications 506 (March 2022): 127591. http://dx.doi.org/10.1016/j.optcom.2021.127591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Poli, M. de, G. de Angelis, E. Farnea, M. Sferrazza, A. Gadea, Y. Li, P. Spolaore, et al. "Approaching 100Sn with GASP + Si-ball + Recoil Mass Spectrometer: collective states of 105Sn and 103,105In." Physica Scripta T56 (January 1, 1995): 296–98. http://dx.doi.org/10.1088/0031-8949/1995/t56/053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Fradkin, M. A., S. X. Zeng, and R. O. Simmons. "Deep Inelastic Neutron Scattering Studies of Atomic Momentum Distributions in Condensed Argon and Neon." Zeitschrift für Naturforschung A 48, no. 1-2 (February 1, 1993): 438–42. http://dx.doi.org/10.1515/zna-1993-1-273.

Full text
Abstract:
Abstract Using deep inelastic neutron scattering, direct measurements have been made, i) of the dynamic structure factor of a series of condensed argon samples over the temperature range 18 to 85 K, near melting (for wave-vector transfers 12 to 26 Ä -1) and ii) of liquid neon, near 27 K (for wave-vector transfers 10.4 to 27.6 Ä -1). Neutron time-of-flight chopper spectrometers were employed. Single-particle kinetic energies, £ k , can be obtained from the analysis of the Doppler-broadened recoil spectrum of the target particles. For argon the temperature dependence of £ k can be compared to expectations from theory, from thermodynamic data, and from previous neutron scattering measurements on collective vibrational modes. For liquid neon the wave-vector-transfer dependence of J{y), the longitudinal momentum distribution function, is being analyzed for final-state effects.
APA, Harvard, Vancouver, ISO, and other styles
41

ZHAO, Y., D. HUANG, and C. WU. "FIELD-INDUCED QUANTUM INTERFERENCE IN SEMICONDUCTOR QUANTUM WELLS FOR LASING WITHOUT POPULATION INVERSION AND ELECTROMAGNETICALLY INDUCED TRANSPARENCY." Journal of Nonlinear Optical Physics & Materials 04, no. 02 (April 1995): 261–82. http://dx.doi.org/10.1142/s0218863595000112.

Full text
Abstract:
This paper presents the current results of field-induced quantum interference in semiconductor quantum wells. Three-level systems with two conduction subbands in single and double quantum wells coupled by a resonant field are studied. We investigate effects of the Coulomb and field-induced electronic renormalizations of the energy subbands and steady eigenstates of electrons. The random-phase and ladder approximations have been used to calculate the linear interband and intersubband optical absorptions and refractive indices. The effect of collective dipole moment on the nonlinear susceptibility has been incorporated into the study by using a local-field approach. Lasing without population inversion, electromagnetically induced transparency, and enhanced nonlinearity with reduced absorption inside the intersubband-coupled single quantum well and dc-field coupled double quantum wells are found.
APA, Harvard, Vancouver, ISO, and other styles
42

Kruse, D., C. von Cube, C. Zimmermann, and Ph W. Courteille. "Observation of Lasing Mediated by Collective Atomic Recoil." Physical Review Letters 91, no. 18 (October 29, 2003). http://dx.doi.org/10.1103/physrevlett.91.183601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Robb, G. R. M., N. Piovella, A. Ferraro, R. Bonifacio, Ph W. Courteille, and C. Zimmermann. "Collective atomic recoil lasing including friction and diffusion effects." Physical Review A 69, no. 4 (April 27, 2004). http://dx.doi.org/10.1103/physreva.69.041403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Robb, G. R. M., and W. J. Firth. "Collective Atomic Recoil Lasing with a Partially Coherent Pump." Physical Review Letters 99, no. 25 (December 19, 2007). http://dx.doi.org/10.1103/physrevlett.99.253601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Robb, G. R. M., R. T. L. Burgess, and W. J. Firth. "Enhancement of collective atomic recoil lasing due to pump phase modulation." Physical Review A 78, no. 4 (October 30, 2008). http://dx.doi.org/10.1103/physreva.78.041804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

von Cube, C., S. Slama, D. Kruse, C. Zimmermann, Ph W. Courteille, G. R. M. Robb, N. Piovella, and and R. Bonifacio. "Self-Synchronization and Dissipation-Induced Threshold in Collective Atomic Recoil Lasing." Physical Review Letters 93, no. 8 (August 16, 2004). http://dx.doi.org/10.1103/physrevlett.93.083601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Slama, S., S. Bux, G. Krenz, C. Zimmermann, and Ph W. Courteille. "Superradiant Rayleigh Scattering and Collective Atomic Recoil Lasing in a Ring Cavity." Physical Review Letters 98, no. 5 (February 1, 2007). http://dx.doi.org/10.1103/physrevlett.98.053603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Cola, Mary M., Luca Volpe, and Nicola Piovella. "Accelerated superradiance and collective atomic recoil lasing with a two-frequency pump." Physical Review A 79, no. 1 (January 15, 2009). http://dx.doi.org/10.1103/physreva.79.013613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Gisbert, A. T., N. Piovella, G. R. M. Robb, and D. G. McLellan. "Superradiant atomic recoil lasing with orbital-angular-momentum light." Physical Review A 105, no. 2 (February 25, 2022). http://dx.doi.org/10.1103/physreva.105.023526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ling, H. Y., H. Pu, L. Baksmaty, and N. P. Bigelow. "Theory of a collective atomic recoil laser." Physical Review A 63, no. 5 (April 17, 2001). http://dx.doi.org/10.1103/physreva.63.053810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography