Academic literature on the topic 'COLLABORATIVE FILTERING ALGORITHMS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'COLLABORATIVE FILTERING ALGORITHMS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "COLLABORATIVE FILTERING ALGORITHMS"
Ben Kharrat, Firas, Aymen Elkhleifi, and Rim Faiz. "Improving Collaborative Filtering Algorithms." International Journal of Knowledge Society Research 7, no. 3 (July 2016): 99–118. http://dx.doi.org/10.4018/ijksr.2016070107.
Full textCacheda, Fidel, Víctor Carneiro, Diego Fernández, and Vreixo Formoso. "Comparison of collaborative filtering algorithms." ACM Transactions on the Web 5, no. 1 (February 2011): 1–33. http://dx.doi.org/10.1145/1921591.1921593.
Full textZhou, Li Juan, Ming Sheng Xu, and Hai Jun Geng. "Improved Attack-Resistant Collaborative Filtering Algorithm." Key Engineering Materials 460-461 (January 2011): 439–44. http://dx.doi.org/10.4028/www.scientific.net/kem.460-461.439.
Full textWu, Xinyi. "Comparison Between Collaborative Filtering and Content-Based Filtering." Highlights in Science, Engineering and Technology 16 (November 10, 2022): 480–89. http://dx.doi.org/10.54097/hset.v16i.2627.
Full textJalili, Mahdi. "A Survey of Collaborative Filtering Recommender Algorithms and Their Evaluation Metrics." International Journal of System Modeling and Simulation 2, no. 2 (June 30, 2017): 14. http://dx.doi.org/10.24178/ijsms.2017.2.2.14.
Full textZhang, Zhen, Taile Peng, and Ke Shen. "Overview of Collaborative Filtering Recommendation Algorithms." IOP Conference Series: Earth and Environmental Science 440 (March 19, 2020): 022063. http://dx.doi.org/10.1088/1755-1315/440/2/022063.
Full textJing, Hui. "Application of Improved K-Means Algorithm in Collaborative Recommendation System." Journal of Applied Mathematics 2022 (December 22, 2022): 1–10. http://dx.doi.org/10.1155/2022/2213173.
Full textJiang, Tong Qiang, and Wei Lu. "Improved Slope One Algorithm Based on Time Weight." Applied Mechanics and Materials 347-350 (August 2013): 2365–68. http://dx.doi.org/10.4028/www.scientific.net/amm.347-350.2365.
Full textLi, Xiaofeng, and Dong Li. "An Improved Collaborative Filtering Recommendation Algorithm and Recommendation Strategy." Mobile Information Systems 2019 (May 7, 2019): 1–11. http://dx.doi.org/10.1155/2019/3560968.
Full textKourtiche, Ali, and Mohamed Merabet. "Collaborative Filtering Technical Comparison in Implicit Data." International Journal of Knowledge-Based Organizations 11, no. 4 (October 2021): 1–24. http://dx.doi.org/10.4018/ijkbo.2021100101.
Full textDissertations / Theses on the topic "COLLABORATIVE FILTERING ALGORITHMS"
Hansjons, Vegeborn Victor, and Hakim Rahmani. "Comparison and Improvement Of Collaborative Filtering Algorithms." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209468.
Full textRekommendationssystem är ett ämne som många datatekniker har forskat inom. Med dagens e-handel och Internetåtkomst, så försöker företag att maximera sina vinster genom att utnyttja diverse rekommendationsalgoritmer. En metodik som används i sådana system är Collaborative Filtering. Syftet med denna uppsats är att jämföra fyra algoritmer, alla baserade på Collaborati- ve Filtering, vilket är k-Nearest-Neighbour, Slope One, Single Value Decomposition och Average Least Square, i syfte att ta reda på vilken algoritm som producerar den bästa be- tygsättningen. Uppsatsen kommer även använda sig av två olika matematiska modeller, Aritmetisk Median och Viktad Aritmetisk Median, för att ta reda på om dom kan förbättra betygsättningen. Single Value Decomposition presterade bäst medan Average Least Square presterade sämst av de fyra algoritmerna. Däremot presterade Aritmetiska Median en aning bättre än Single Value Decomposition och Viktad Aritmetisk Median presterade sämst.
Anne, Patricia Anne. "Semantically and Contextually-Enhanced Collaborative Filtering Recommender Algorithms." Thesis, University of Ulster, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.516289.
Full textCasey, Walker Evan. "Scalable Collaborative Filtering Recommendation Algorithms on Apache Spark." Scholarship @ Claremont, 2014. http://scholarship.claremont.edu/cmc_theses/873.
Full textRault, Antoine. "User privacy in collaborative filtering systems." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S019/document.
Full textRecommendation systems try to infer their users’ interests in order to suggest items relevant to them. These systems thus offer a valuable service to users in that they automatically filter non-relevant information, which avoids the nowadays common issue of information overload. This is why recommendation systems are now popular, if not pervasive in some domains such as the World Wide Web. However, an individual’s interests are personal and private data, such as one’s political or religious orientation. Therefore, recommendation systems gather private data and their widespread use calls for privacy-preserving mechanisms. In this thesis, we study the privacy of users’ interests in the family of recommendation systems called Collaborative Filtering (CF) ones. Our first contribution is Hide & Share, a novel privacy-preserving similarity mechanism for the decentralized computation of K-Nearest-Neighbor (KNN) graphs. It is a lightweight mechanism designed for decentralized (a.k.a. peer-to-peer) user-based CF systems, which rely on KNN graphs to provide recommendations. Our second contribution also applies to user-based CF systems, though it is independent of their architecture. This contribution is two-fold: first we evaluate the impact of an active Sybil attack on the privacy of a target user’s profile of interests, and second we propose a counter-measure. This counter-measure is 2-step, a novel similarity metric combining a good precision, in turn allowing for good recommendations,with high resilience to said Sybil attack
Strunjas, Svetlana. "Algorithms and Models for Collaborative Filtering from Large Information Corpora." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1220001182.
Full textAlmosallam, Ibrahim Ahmad Shang Yi. "A new adaptive framework for collaborative filtering prediction." Diss., Columbia, Mo. : University of Missouri-Columbia, 2008. http://hdl.handle.net/10355/5630.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on August 22, 2008) Includes bibliographical references.
Salam, Patrous Ziad, and Safir Najafi. "Evaluating Prediction Accuracy for Collaborative Filtering Algorithms in Recommender Systems." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186456.
Full textNARAYANASWAMY, SHRIRAM. "A CONCEPT-BASED FRAMEWORK AND ALGORITHMS FOR RECOMMENDER SYSTEMS." University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1186165016.
Full textSvebrant, Henrik, and John Svanberg. "A comparative study of the conventional item-based collaborative filtering and the Slope One algorithms for recommender systems." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186449.
Full textSafran, Mejdl Sultan. "EFFICIENT LEARNING-BASED RECOMMENDATION ALGORITHMS FOR TOP-N TASKS AND TOP-N WORKERS IN LARGE-SCALE CROWDSOURCING SYSTEMS." OpenSIUC, 2018. https://opensiuc.lib.siu.edu/dissertations/1511.
Full textBooks on the topic "COLLABORATIVE FILTERING ALGORITHMS"
Nadler, Anthony M. Popularizing News 2.0. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252040146.003.0005.
Full textBook chapters on the topic "COLLABORATIVE FILTERING ALGORITHMS"
Nisgav, Aviv, and Boaz Patt-Shamir. "Improved Collaborative Filtering." In Algorithms and Computation, 425–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25591-5_44.
Full textChang, Edward Y. "Parallel Algorithms for Collaborative Filtering." In Algorithmic Aspects in Information and Management, 2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02158-9_2.
Full textCunha, Tiago, Carlos Soares, and André C. P. L. F. de Carvalho. "Selecting Collaborative Filtering Algorithms Using Metalearning." In Machine Learning and Knowledge Discovery in Databases, 393–409. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46227-1_25.
Full textKluver, Daniel, Michael D. Ekstrand, and Joseph A. Konstan. "Rating-Based Collaborative Filtering: Algorithms and Evaluation." In Social Information Access, 344–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90092-6_10.
Full textPan, Lilin, and Jianfei Shao. "Review of Improved Collaborative Filtering Recommendation Algorithms." In Advances in Intelligent Systems and Computing, 21–26. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1843-7_3.
Full textCunha, Tiago, Carlos Soares, and André C. P. L. F. de Carvalho. "Recommending Collaborative Filtering Algorithms Using Subsampling Landmarkers." In Discovery Science, 189–203. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67786-6_14.
Full textCai, Xianggao, Zhanpeng Xu, Guoming Lai, Chengwei Wu, and Xiaola Lin. "GPU-Accelerated Restricted Boltzmann Machine for Collaborative Filtering." In Algorithms and Architectures for Parallel Processing, 303–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33078-0_22.
Full textVerhaegh, Wim F. J., Aukje E. M. van Duijnhoven, Pim Tuyls, and Jan Korst. "Privacy Protection in Collaborative Filtering by Encrypted Computation." In Intelligent Algorithms in Ambient and Biomedical Computing, 169–84. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4995-1_11.
Full textAdán-Coello, Juan Manuel, and Carlos Miguel Tobar. "Using Collaborative Filtering Algorithms for Predicting Student Performance." In Electronic Government and the Information Systems Perspective, 206–18. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44159-7_15.
Full textPapagelis, Manos, Ioannis Rousidis, Dimitris Plexousakis, and Elias Theoharopoulos. "Incremental Collaborative Filtering for Highly-Scalable Recommendation Algorithms." In Lecture Notes in Computer Science, 553–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11425274_57.
Full textConference papers on the topic "COLLABORATIVE FILTERING ALGORITHMS"
Kharrat, Firas Ben, Aymen Elkhleifi, and Rim Faiz. "Improving Collaborative Filtering Algorithms." In 2016 12th International Conference on Semantics, Knowledge and Grids (SKG). IEEE, 2016. http://dx.doi.org/10.1109/skg.2016.024.
Full textYaqiu Liu, Zhendi Wang, and Man Li. "Ratio-based collaborative filtering algorithms." In 2008 2nd International Symposium on Systems and Control in Aerospace and Astronautics (ISSCAA). IEEE, 2008. http://dx.doi.org/10.1109/isscaa.2008.4776258.
Full textKleinberg, Jon, and Mark Sandler. "Convergent algorithms for collaborative filtering." In the 4th ACM conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/779928.779929.
Full textPatil, Vandana A., and Lata Ragha. "Comparing performance of collaborative filtering algorithms." In 2012 International Conference on Communication, Information & Computing Technology (ICCICT). IEEE, 2012. http://dx.doi.org/10.1109/iccict.2012.6398206.
Full textSarwar, Badrul, George Karypis, Joseph Konstan, and John Reidl. "Item-based collaborative filtering recommendation algorithms." In the tenth international conference. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/371920.372071.
Full text"Comparative Study of Collaborative Filtering Algorithms." In International Conference on Knowledge Discovery and Information Retrieval. SciTePress - Science and and Technology Publications, 2012. http://dx.doi.org/10.5220/0004104001320137.
Full textMatuszyk, Pawel, and Myra Spiliopoulou. "Predicting the Performance of Collaborative Filtering Algorithms." In the 4th International Conference. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2611040.2611054.
Full text"Using Collaborative Filtering Algorithms as eLearning Tools." In 2009 42nd Hawaii International Conference on System Sciences. IEEE, 2009. http://dx.doi.org/10.1109/hicss.2009.492.
Full textLiu, Dong. "A Study on Collaborative Filtering Recommendation Algorithms." In 2018 IEEE 4th International Conference on Computer and Communications (ICCC). IEEE, 2018. http://dx.doi.org/10.1109/compcomm.2018.8780979.
Full textCöster, Rickard, and Martin Svensson. "Inverted file search algorithms for collaborative filtering." In the 25th annual international ACM SIGIR conference. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/564376.564420.
Full text