Journal articles on the topic 'Cold Water Immersion (CWI)'

To see the other types of publications on this topic, follow the link: Cold Water Immersion (CWI).

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Cold Water Immersion (CWI).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Stephens, Jessica M., Ken Sharpe, Christopher Gore, Joanna Miller, Gary J. Slater, Nathan Versey, Jeremiah Peiffer, et al. "Core Temperature Responses to Cold-Water Immersion Recovery: A Pooled-Data Analysis." International Journal of Sports Physiology and Performance 13, no. 7 (August 1, 2018): 917–25. http://dx.doi.org/10.1123/ijspp.2017-0661.

Full text
Abstract:
Purpose: To examine the effect of postexercise cold-water immersion (CWI) protocols, compared with control (CON), on the magnitude and time course of core temperature (Tc) responses. Methods: Pooled-data analyses were used to examine the Tc responses of 157 subjects from previous postexercise CWI trials in the authors’ laboratories. CWI protocols varied with different combinations of temperature, duration, immersion depth, and mode (continuous vs intermittent). Tc was examined as a double difference (ΔΔTc), calculated as the change in Tc in CWI condition minus the corresponding change in CON. The effect of CWI on ΔΔTc was assessed using separate linear mixed models across 2 time components (component 1, immersion; component 2, postintervention). Results: Intermittent CWI resulted in a mean decrease in ΔΔTc that was 0.25°C (0.10°C) (estimate [SE]) greater than continuous CWI during the immersion component (P = .02). There was a significant effect of CWI temperature during the immersion component (P = .05), where reductions in water temperature of 1°C resulted in decreases in ΔΔTc of 0.03°C (0.01°C). Similarly, the effect of CWI duration was significant during the immersion component (P = .01), where every 1 min of immersion resulted in a decrease in ΔΔTc of 0.02°C (0.01°C). The peak difference in Tc between the CWI and CON interventions during the postimmersion component occurred at 60 min postintervention. Conclusions: Variations in CWI mode, duration, and temperature may have a significant effect on the extent of change in Tc. Careful consideration should be given to determine the optimal amount of core cooling before deciding which combination of protocol factors to prescribe.
APA, Harvard, Vancouver, ISO, and other styles
2

Buchheit, M., J. J. Peiffer, C. R. Abbiss, and P. B. Laursen. "Effect of cold water immersion on postexercise parasympathetic reactivation." American Journal of Physiology-Heart and Circulatory Physiology 296, no. 2 (February 2009): H421—H427. http://dx.doi.org/10.1152/ajpheart.01017.2008.

Full text
Abstract:
The aim of the present study was to assess the effect of cold water immersion (CWI) on postexercise parasympathetic reactivation. Ten male cyclists (age, 29 ± 6 yr) performed two repeated supramaximal cycling exercises (SE1 and SE2) interspersed with a 20-min passive recovery period, during which they were randomly assigned to either 5 min of CWI in 14°C or a control (N) condition where they sat in an environmental chamber (35.0 ± 0.3°C and 40.0 ± 3.0% relative humidity). Rectal temperature (Tre) and beat-to-beat heart rate (HR) were recorded continuously. The time constant of HR recovery (HRRτ) and a time (30-s) varying vagal-related HR variability (HRV) index (rMSSD30s) were assessed during the 6-min period immediately following exercise. Resting vagal-related HRV indexes were calculated during 3-min periods 2 min before and 3 min after SE1 and SE2. Results showed no effect of CWI on Tre ( P = 0.29), SE performance ( P = 0.76), and HRRτ ( P = 0.61). In contrast, all vagal-related HRV indexes were decreased after SE1 ( P < 0.001) and tended to decrease even further after SE2 under N condition but not with CWI. When compared with the N condition, CWI increased HRV indexes before ( P < 0.05) and rMSSD30s after ( P < 0.05) SE2. Our study shows that CWI can significantly restore the impaired vagal-related HRV indexes observed after supramaximal exercise. CWI may serve as a simple and effective means to accelerate parasympathetic reactivation during the immediate period following supramaximal exercise.
APA, Harvard, Vancouver, ISO, and other styles
3

Missau, Edson, André de Oliveira Teixeira, Ozeias Simões Franco, Cassio Noronha Martins, Felipe da Silva Paulitsch, William Peres, Antonio Marcos Vargas da Silva, and Luis Ulisses Signori. "COLD WATER IMMERSION AND INFLAMMATORY RESPONSE AFTER RESISTANCE EXERCISES." Revista Brasileira de Medicina do Esporte 24, no. 5 (September 2018): 372–76. http://dx.doi.org/10.1590/1517-869220182405182913.

Full text
Abstract:
ABSTRACT Introduction: High-intensity resistance exercises (RE) cause an inflammatory response that reduces functionality. Objective: To evaluate the effects of Cold Water Immersion (CWI) on leukocytosis, oxidative stress parameters, inflammatory markers and delayed onset muscle soreness (DOMS) resulting from a RE session in untrained volunteers. Methods: Thirteen volunteers (aged 26 ± 5 years) who do not engage in RE were randomized and underwent Control RE and RE with CWI sessions. Exercise sessions (leg extension machine, squats and leg presses) consisted of four sets of 10 maximum repetitions (one-week interval between the assessment and the sessions). CWI consisted of immersion in water (15°C) to the umbilicus for 10 minutes immediately after the exercise session. Complete blood count, CRP, creatine kinase (CK) and lipoperoxidation (LPO) were assessed previously (baseline) and immediately, 30 minutes and 2 hours after RE. DOMS was assessed 24 hours after the sessions. Results: RE induced progressive leukocytosis (P<0.001). CRP was elevated 2 hours after exercise (P=0.008) only in the Control RE session. CK increased 30 minutes and 2 hours after exercise (P<0.001) in the Control session, whereas in the CWI session the increase was observed after 2 hours (P<0.001). LPO increased only in the Control session after 2 hours (P=0.025). CWI reduced DOMS by 57% (P<0.001). Conclusion: CWI slows the inflammatory response and reduces DOMS in untrained individuals undergoing RE. Level of Evidence I; Randomized Clinical Trial.
APA, Harvard, Vancouver, ISO, and other styles
4

Halson, Shona L., Marc J. Quod, David T. Martin, Andrew S. Gardner, Tammie R. Ebert, and Paul B. Laursen. "Physiological Responses to Cold Water Immersion Following Cycling in the Heat." International Journal of Sports Physiology and Performance 3, no. 3 (September 2008): 331–46. http://dx.doi.org/10.1123/ijspp.3.3.331.

Full text
Abstract:
Cold water immersion (CWI) has become a popular means of enhancing recovery from various forms of exercise. However, there is minimal scientific information on the physiological effects of CWI following cycling in the heat.Purpose:To examine the safety and acute thermoregulatory, cardiovascular, metabolic, endocrine, and inflammatory responses to CWI following cycling in the heat.Methods:Eleven male endurance trained cyclists completed two simulated ~40-min time trials at 34.3 ± 1.1°C. All subjects completed both a CWI trial (11.5°C for 60 s repeated three times) and a control condition (CONT; passive recovery in 24.2 ± 1.8°C) in a randomized cross-over design. Capillary blood samples were assayed for lactate, glucose, pH, and blood gases. Venous blood samples were assayed for catecholamines, cortisol, testosterone, creatine kinase, C-reactive protein, IL-6, and IGF-1 on 7 of the 11 subjects. Heart rate (HR), rectal (Tre), and skin temperatures (Tsk) were measured throughout recovery.Results:CWI elicited a significantly lower HR (CWI: Δ116 ± 9 bpm vs. CONT: Δ106 ± 4 bpm; P = .02), Tre (CWI: Δ1.99 ± 0.50°C vs. CONT: Δ1.49 ± 0.50°C; P = .01) and Tsk. However, all other measures were not significantly different between conditions. All participants subjectively reported enhanced sensations of recovery following CWI.Conclusion:CWI did not result in hypothermia and can be considered safe following high intensity cycling in the heat, using the above protocol. CWI significantly reduced heart rate and core temperature; however, all other metabolic and endocrine markers were not affected by CWI.
APA, Harvard, Vancouver, ISO, and other styles
5

Nye, Emma A., Jessica R. Edler, Lindsey E. Eberman, and Kenneth E. Games. "Optimizing Cold-Water Immersion for Exercise-Induced Hyperthermia: An Evidence-Based Paper." Journal of Athletic Training 51, no. 6 (June 1, 2016): 500–501. http://dx.doi.org/10.4085/1062-6050-51.9.04.

Full text
Abstract:
Reference: Zhang Y, Davis JK, Casa DJ, Bishop PA. Optimizing cold water immersion for exercise-induced hyperthermia: a meta-analysis. Med Sci Sports Exerc. 2015;47(11):2464−2472. Clinical Questions: Do optimal procedures exist for implementing cold-water immersion (CWI) that yields high cooling rates for hyperthermic individuals? Data Sources: One reviewer performed a literature search using PubMed and Web of Science. Search phrases were cold water immersion, forearm immersion, ice bath, ice water immersion, immersion, AND cooling. Study Selection: Studies were included based on the following criteria: (1) English language, (2) full-length articles published in peer-reviewed journals, (3) healthy adults subjected to exercise-induced hyperthermia, and (4) reporting of core temperature as 1 outcome measure. A total of 19 studies were analyzed. Data Extraction: Pre-immersion core temperature, immersion water temperature, ambient temperature, immersion duration, and immersion level were coded a priori for extraction. Data originally reported in graphical form were digitally converted to numeric values. Mean differences comparing the cooling rates of CWI with passive recovery, standard deviation of change from baseline core temperature, and within-subjects r were extracted. Two independent reviewers used the Physiotherapy Evidence Database (PEDro) scale to assess the risk of bias. Main Results: Cold-water immersion increased the cooling rate by 0.03°C/min (95% confidence interval [CI] = 0.03, 0.04°C/min) compared with passive recovery. Cooling rates were more effective when the pre-immersion core temperature was ≥38.6°C (P = .023), immersion water temperature was ≤10°C (P = .036), ambient temperature was ≥20°C (P = .013), or immersion duration was ≤10 minutes (P &lt; .001). Cooling rates for torso and limb immersion (mean difference = 0.04°C/min, 95% CI = 0.03, 0.06°C/min) were higher (P = .028) than those for forearm and hand immersion (mean difference = 0.01°C/min, 95% CI = −0.01, 0.04°C/min). Conclusions: Hyperthermic individuals were cooled twice as fast by CWI as by passive recovery. Therefore, the former method is the preferred choice when treating patients with exertional heat stroke. Water temperature should be &lt;10°C, with the torso and limbs immersed. Insufficient published evidence supports CWI of the forearms and hands.
APA, Harvard, Vancouver, ISO, and other styles
6

Kodejška, Jan, Jiří Baláš, and Nick Draper. "Effect of Cold-Water Immersion on Handgrip Performance in Rock Climbers." International Journal of Sports Physiology and Performance 13, no. 8 (September 1, 2018): 1097–99. http://dx.doi.org/10.1123/ijspp.2018-0012.

Full text
Abstract:
Purpose: To determine the effect of 2 cold-water-immersion (CWI) temperatures (15°C and 8°C) on repeat handgrip performance to failure. Methods: A total of 32 participants completed 3 intermittent trials to failure on a climbing-specific handgrip dynamometer on 3 laboratory visits. For each visit, a different recovery strategy was employed: passive (PAS) recovery, CWI at 8°C (CW8), or CWI at 15°C (CW15). The force time integral (FTI: time of contraction multiplied by the force of contraction) was determined to assess handgrip performance. Results: There was no significant difference between recovery strategies at the end of trial 1. In response to the PAS recovery strategy, there were 10% and 22% decreases in FTI in the second and third trials, respectively. The PAS recovery-strategy FTI values were lower than both CWI strategies for trials 2 and 3 (P < .05). FTI increased in the second trial (↑32% and ↑38%; P < .05) for both immersion strategies (CW8 and CW15, respectively) compared with trial 1. During the third trial, FTI was significantly higher for CW15 than CW8 (↑27% and ↓4% with respect to baseline trial; P < .05). Conclusions: The results suggest that CWI has potential performance advantages over PAS recovery for rock climbing. The data show that in events where multiple recoveries are required, 15°C CWI may be more beneficial for climbers than 8°C CWI. Future research should focus on the optimization of protocols for sport performance.
APA, Harvard, Vancouver, ISO, and other styles
7

Roberts, Llion A., Kazunori Nosaka, Jeff S. Coombes, and Jonathan M. Peake. "Cold water immersion enhances recovery of submaximal muscle function after resistance exercise." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 307, no. 8 (October 15, 2014): R998—R1008. http://dx.doi.org/10.1152/ajpregu.00180.2014.

Full text
Abstract:
We investigated the effect of cold water immersion (CWI) on the recovery of muscle function and physiological responses after high-intensity resistance exercise. Using a randomized, cross-over design, 10 physically active men performed high-intensity resistance exercise followed by one of two recovery interventions: 1) 10 min of CWI at 10°C or 2) 10 min of active recovery (low-intensity cycling). After the recovery interventions, maximal muscle function was assessed after 2 and 4 h by measuring jump height and isometric squat strength. Submaximal muscle function was assessed after 6 h by measuring the average load lifted during 6 sets of 10 squats at 80% of 1 repetition maximum. Intramuscular temperature (1 cm) was also recorded, and venous blood samples were analyzed for markers of metabolism, vasoconstriction, and muscle damage. CWI did not enhance recovery of maximal muscle function. However, during the final three sets of the submaximal muscle function test, participants lifted a greater load ( P < 0.05, Cohen's effect size: 1.3, 38%) after CWI compared with active recovery. During CWI, muscle temperature decreased ∼7°C below postexercise values and remained below preexercise values for another 35 min. Venous blood O2 saturation decreased below preexercise values for 1.5 h after CWI. Serum endothelin-1 concentration did not change after CWI, whereas it decreased after active recovery. Plasma myoglobin concentration was lower, whereas plasma IL-6 concentration was higher after CWI compared with active recovery. These results suggest that CWI after resistance exercise allows athletes to complete more work during subsequent training sessions, which could enhance long-term training adaptations.
APA, Harvard, Vancouver, ISO, and other styles
8

Stephens, Jessica M., Shona Halson, Joanna Miller, Gary J. Slater, and Christopher D. Askew. "Cold-Water Immersion for Athletic Recovery: One Size Does Not Fit All." International Journal of Sports Physiology and Performance 12, no. 1 (January 2017): 2–9. http://dx.doi.org/10.1123/ijspp.2016-0095.

Full text
Abstract:
The use of cold-water immersion (CWI) for postexercise recovery has become increasingly prevalent in recent years, but there is a dearth of strong scientific evidence to support the optimization of protocols for performance benefits. While the increase in practice and popularity of CWI has led to multiple studies and reviews in the area of water immersion, the research has predominantly focused on performance outcomes associated with postexercise CWI. Studies to date have generally shown positive results with enhanced recovery of performance. However, there are a small number of studies that have shown CWI to have either no effect or a detrimental effect on the recovery of performance. The rationale for such contradictory responses has received little attention but may be related to nuances associated with individuals that may need to be accounted for in optimizing prescription of protocols. To recommend optimal protocols to enhance athletic recovery, research must provide a greater understanding of the physiology underpinning performance change and the factors that may contribute to the varied responses currently observed. This review focuses specifically on why some of the current literature may show variability and disparity in the effectiveness of CWI for recovery of athletic performance by examining the body temperature and cardiovascular responses underpinning CWI and how they are related to performance benefits. This review also examines how individual characteristics (such as physique traits), differences in water-immersion protocol (depth, duration, temperature), and exercise type (endurance vs maximal) interact with these mechanisms.
APA, Harvard, Vancouver, ISO, and other styles
9

Strzelczyk, Małgorzata, Aneta Teległów, Jakub Marchewka, Bartłomiej Ptaszek, and Anna Marchewka. "The Impact of Moderate Physical Exercise on the Rheological and Biochemical Properties of Blood in Osteoarthritis Patients Who Are Regular Winter Swimmers." Folia Biologica 69, no. 1 (March 31, 2021): 31–37. http://dx.doi.org/10.3409/fb_69-1.04.

Full text
Abstract:
The aim of this study was to assess the influence of moderate physical exercise on selected blood parameters in regular winter swimmers who suffer from osteoarthritis. The study covered a period of 6 months, from November to April, and was carried out on 17 women and 22 men. The participants were divided into 4 groups: Female CWI – women who only immersed themselves in cold water, Female CWI + PE – women who exercised in addition to water immersion, Male CWI – men who only immersed themselves in cold water, and Male CWI + PE – men, who exercised in addition to water immersion. Venous blood was collected twice, before and after the exercise program. A statistically significant decrease in fibrinogen, plasma viscosity, T ½ , and AMP was observed in the blood of people who did not take part in the physical exercise program while a significant decrease in cortisol levels was observed in the people who participated in the exercise program in addition to cold water immersion. In terms of rheological parameters, a significant increase in the elongation index (EI) of erythrocytes from shear stress 2.19 Pa in all groups was observed. There were no statistically significant changes in AI in all groups. Physical activity has an influence on the blood parameters of elderly winter swimmers suffering from osteoarthritis.
APA, Harvard, Vancouver, ISO, and other styles
10

Mawhinney, Chris, Ilkka Heinonen, David A. Low, Chunlei Han, Helen Jones, Kari K. Kalliokoski, Anna Kirjavainen, et al. "Changes in quadriceps femoris muscle perfusion following different degrees of cold-water immersion." Journal of Applied Physiology 128, no. 5 (May 1, 2020): 1392–401. http://dx.doi.org/10.1152/japplphysiol.00833.2019.

Full text
Abstract:
Using positron emission tomography, we report for the first time muscle perfusion heterogeneity in the quadriceps femoris in response to different degrees of cold-water immersion (CWI). Noxious CWI temperatures (8°C) increase perfusion in the deep quadriceps muscle, whereas superficial quadriceps muscle perfusion is reduced in cooler (15°C) water. Therefore, these data have important implications for the selection of CWI approaches used in the treatment of soft tissue injury, while also increasing our understanding of the potential mechanisms underpinning CWI.
APA, Harvard, Vancouver, ISO, and other styles
11

Burton, Connor A., and Christine A. Lauber. "Efficacy of Cold Water Immersion Prior to Endurance Cycling or Running to Increase Performance: A Critically Appraised Topic." International Journal of Athletic Therapy and Training 23, no. 1 (January 1, 2018): 3–9. http://dx.doi.org/10.1123/ijatt.2016-0087.

Full text
Abstract:
Clinical Question: Is there evidence to support precooling with cold water immersion prior to endurance cycling and running in hot, humid environments to enhance performance? Clinical Bottom Line: There is moderate evidence suggesting cold water immersion (CWI) as a precooling intervention improves endurance performance in cyclists and runners in a hot, humid environment. All five included studies reported significant improvements in endurance performance regarding time to exhaustion or distance traveled. In all included studies, core temperature was significantly decreased in the CWI group versus the control group during the fifth and twentieth minutes of exercise. No significant differences were reported for the rating of perceived exertion (RPE) between the CWI and control groups.
APA, Harvard, Vancouver, ISO, and other styles
12

Al-horani, Ramzi A., Bahaa Al-Trad, and Saja Haifawi. "Modulation of cardiac vascular endothelial growth factor and PGC-1α with regular postexercise cold-water immersion of rats." Journal of Applied Physiology 126, no. 4 (April 1, 2019): 1110–16. http://dx.doi.org/10.1152/japplphysiol.00918.2018.

Full text
Abstract:
Myocardial mitochondrial biogenesis and vascular angiogenesis biomarker responses to postexercise cold-water immersion (CWI) have not been reported. Therefore, to determine those cardiac adaptations, adult male Sprague-Dawley rats were divided into three groups: postexercise CWI (CWI; n = 13), exercise only (Ex; n = 12), and untreated control (CON; n = 10). CWI and Ex were trained for 10 wk, 5 sessions/wk, 30–60 min/session. CWI rats were immersed after each session in cold water (15 min at ~12°C). CON remained sedentary. Left ventricle tissue was obtained 48 h after the last exercise session and analyzed for peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), vascular endothelial growth factor (VEGF), and heat shock protein 70 kDa (Hsp70) protein content and mRNA expression levels. In addition, superoxide dismutase activity and mRNA and malondialdehyde levels were evaluated. Ex and CWI induced higher PGC-1α protein content compared with CON (1.8 ± 0.6-fold, P < 0.001), which was significantly higher in CWI than Ex rats ( P = 0.01). VEGF protein (4.3 ± 3.7-fold) and mRNA (10.1 ± 1.1-fold) were markedly increased only in CWI ( P < 0.001) relative to CON. CWI and Ex augmented cardiac Hsp70 protein to a similar level relative to CON ( P < 0.05); however, Hsp70 mRNA increased only in Ex ( P = 0.002). No further differences were observed between groups. These results suggest that postexercise CWI may further enhance cardiac oxidative capacity by increasing the angiogenic and mitochondrial biogenic factors. In addition, CWI does not seem to worsen exercise-induced cardioprotection and oxidative stress. NEW & NOTEWORTHY A regular postexercise cold-water immersion for 10 wk of endurance training augmented the myocardial mitochondrial biogenesis and vascular angiogenesis coactivators peroxisome proliferator-activated receptor γ coactivator-1α and vascular endothelial growth factor, respectively. In addition, postexercise cold-water immersion did not attenuate the exercise-induced increase in the cardioprotective biomarker heat shock protein 70 kDa or increase exercise-induced oxidative stress.
APA, Harvard, Vancouver, ISO, and other styles
13

Gaspar-Junior, Jair J., Rodolfo A. Dellagrana, Fernando S. S. Barbosa, Ana P. Anghinoni, Charles Taciro, Rodrigo L. Carregaro, Paula F. Martinez, and Silvio A. Oliveira-Junior. "Efficacy of Different Cold-Water Immersion Temperatures on Neuromotor Performance in Young Athletes." Life 12, no. 5 (May 5, 2022): 683. http://dx.doi.org/10.3390/life12050683.

Full text
Abstract:
Cold-Water-Immersion (CWI) has been frequently used to accelerate muscle recovery and to improve performance after fatigue onset. In the present study, the aim was to investigate the effects of different CWI temperatures on neuromuscular activity on quadriceps after acute fatigue protocol. Thirty-six young athletes (16.9 ± 1.4 years-old; 72.1 ± 13.8 kg; 178.4 ± 7.2 cm) were divided into three groups: passive recovery group (PRG); CWI at 5 °C group (5G); and CWI at 10 °C group (10G). All participants performed a fatigue exercise protocol; afterwards, PRG performed a passive recovery (rest), while 5G and 10G were submitted to CWI by means of 5 °C and 10 °C temperatures during 10 min, respectively. Fatigue protocol was performed by knee extension at 40% of isometric peak force from maximal isometric voluntary contraction. Electromyography was used to evaluate neuromuscular performance. The passive recovery and CWI at 5 °C were associated with normalized isometric force and quadriceps activation amplitude from 15 until 120 min after exercise-induced fatigue (F = 7.169, p < 0.001). CWI at 5 °C and 10 °C showed higher muscle activation (F = 6.850, p < 0.001) and lower median frequency (MF) than passive recovery after 15 and 30 min of fatigue (F = 5.386, p < 0.001). For neuromuscular efficiency (NME) recovery, while PRG normalized NME values after 15 min, 5G and 10G exhibited these responses after 60 and 30 min (F = 4.330, p < 0.01), respectively. Passive recovery and CWI at 5 °C and 10 °C revealed similar effects in terms of recovery of muscle strength and NME, but ice interventions resulted in higher quadriceps activation recovery.
APA, Harvard, Vancouver, ISO, and other styles
14

Park, Eun-Hee, Seung-Wook Choi, and Yoon-Kwon Yang. "Cold-Water Immersion Promotes Antioxidant Enzyme Activation in Elite Taekwondo Athletes." Applied Sciences 11, no. 6 (March 23, 2021): 2855. http://dx.doi.org/10.3390/app11062855.

Full text
Abstract:
The aim of this study was to investigate the effect of cold-water immersion (CWI) on lipid peroxides and antioxidant enzymes in adult Taekwondo athletes after a match. A cross-sectional study was performed. After a Taekwondo match, the control group remained seated passively, while the treatment group immersed their legs below the knee joint in cold water at 10 °C. Blood samples were taken at pre-match, post-match, post-treatment, and post-rest, and changes in malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) concentrations were analyzed. The results showed that there was a significant difference in MDA between the two groups, and while the CWI group had 19% lower SOD concentration compared to the control group, and the difference was not significant. However, in case of interaction for GPx concentration (p < 0.001), a statistically significant difference was found between the two groups (p < 0.05). In conclusion, CWI after a Taekwondo match elevates the concentration of antioxidant enzymes.
APA, Harvard, Vancouver, ISO, and other styles
15

Yoshimura, Miho, Tatsuya Hojo, Hayato Yamamoto, Misato Tachibana, Masatoshi Nakamura, Hiroaki Tsutsumi, and Yoshiyuki Fukuoka. "Application of carbon dioxide to the skin and muscle oxygenation of human lower-limb muscle sites during cold water immersion." PeerJ 8 (August 21, 2020): e9785. http://dx.doi.org/10.7717/peerj.9785.

Full text
Abstract:
Background Cold therapy has the disadvantage of inducing vasoconstriction in arterial and venous capillaries. The effects of carbon dioxide (CO2) hot water depend mainly on not only cutaneous vasodilation but also muscle vasodilation. We examined the effects of artificial CO2 cold water immersion (CCWI) on skin oxygenation and muscle oxygenation and the immersed skin temperature. Subjects and Methods Fifteen healthy young males participated. CO2-rich water containing CO2 >1,150 ppm was prepared using a micro-bubble device. Each subject’s single leg was immersed up to the knee in the CO2-rich water (20 °C) for 15 min, followed by a 20-min recovery period. As a control study, a leg of the subject was immersed in cold tap-water at 20 °C (CWI). The skin temperature at the lower leg under water immersion (Tsk-WI) and the subject’s thermal sensation at the immersed and non-immersed lower legs were measured throughout the experiment. We simultaneously measured the relative changes of local muscle oxygenation/deoxygenation compared to the basal values (Δoxy[Hb+Mb], Δdeoxy[Hb+Mb], and Δtotal[Hb+Mb]) at rest, which reflected the blood flow in the muscle, and we measured the tissue O2 saturation (StO2) by near-infrared spectroscopy on two regions of the tibialis anterior (TA) and gastrocnemius (GAS) muscles. Results Compared to the CWI results, the Δoxy[Hb+Mb] and Δtotal[Hb+Mb] in the TA muscle at CCWI were increased and continued at a steady state during the recovery period. In GAS muscle, the Δtotal[Hb+Mb] and Δdeoxy[Hb+Mb] were increased during CCWI compared to CWI. Notably, StO2values in both TA and GAS muscles were significantly increased during CCWI compared to CWI. In addition, compared to the CWI, a significant decrease in Tsk at the immersed leg after the CCWI was maintained until the end of the 20-min recovery, and the significant reduction continued. Discussion The combination of CO2 and cold water can induce both more increased blood inflow into muscles and volume-related (total heme concentration) changes in deoxy[Hb+Mb] during the recovery period. The Tsk-WI stayed lower with the CCWI compared to the CWI, as it is associated with vasodilation by CO2.
APA, Harvard, Vancouver, ISO, and other styles
16

Hüttel, Moritz, Tobias Golditz, Isabel Mayer, Rafael Heiss, Christoph Lutter, Matthias Wilhelm Hoppe, Martin Engelhardt, et al. "Effects of Pre- and Post-Exercise Cold-Water Immersion Therapy on Passive Muscle Stiffness." Sportverletzung · Sportschaden 34, no. 02 (July 18, 2019): 72–78. http://dx.doi.org/10.1055/a-0854-8302.

Full text
Abstract:
Abstract Background Cold-water immersion (CWI) has become a popular preventive, regenerative and performance-enhancing intervention in various sports. However, its effects on soft tissue, including changes of intramuscular stiffness, are poorly understood. The purpose of this study was to investigate the effect of CWI on muscle stiffness. Patients/Material and Methods Thirty healthy participants were included and divided into the three following groups (n = 10): 1) post-ESU group: exercise and CWI (post-exercise set-up); 2) control group: exercise without CWI (control condition); 3) pre-ESU group: CWI alone (pre-exercise set-up). Acoustic radiation force impulse (ARFI) elastography was conducted to assess tissue stiffness (shear wave velocity, SWV). Values obtained at resting conditions (baseline, t0) were compared to values post-exercise (t1, for post-ESU group and control group), post-CWI (t2, for post-ESU group and pre-ESU group; rest for control group) and to 60-min follow-up time (t3, for all groups). Data were assessed in superficial and deep muscle tissue (rectus femoris muscle, RF; vastus intermedius muscle, VI). Results For the post-ESU group (CWI post-exercise), there was no significant difference between the time points of measurements: exercise (t1: RF: 1.63 m/s; VI: 1.54 m/s), CWI (t2: RF: 1.63 m/s; VI: 1.53 m/s) and at 60-min follow-up (t3: RF: 1.72 m/s; VI: 1.61 m/s). In the control group, a significant decrease of SWV was found between baseline conditions at t0 and post-exercise (t1) at VI (VI: 1.37 m/s; p = 0.004; RF: 1.59 m/s; p = 0.084). For t2 and t3, no further significant changes were detected. Regarding the pre-exercise set-up (pre-ESU group), a significant decrease in SWV from baseline to t2 in VI (1.60 m/s to 1.49 m/s; VI: p = 0.027) was found. Conclusion This study shows varying influences of CWI on muscle stiffness. Overall, we did not detect any significant effects of CWI on muscle stiffness post-exercise. Muscle stiffness-related effects of CWI differ in the context of a pre- or post-exercise condition and have to be considered in the implementation of CWI to ensure its potential preventive and regenerative benefits.
APA, Harvard, Vancouver, ISO, and other styles
17

Abaïdia, Abd-Elbasset, Julien Lamblin, Barthélémy Delecroix, Cédric Leduc, Alan McCall, Mathieu Nédélec, Brian Dawson, Georges Baquet, and Grégory Dupont. "Recovery From Exercise-Induced Muscle Damage: Cold-Water Immersion Versus Whole-Body Cryotherapy." International Journal of Sports Physiology and Performance 12, no. 3 (March 2017): 402–9. http://dx.doi.org/10.1123/ijspp.2016-0186.

Full text
Abstract:
Purpose:To compare the effects of cold-water immersion (CWI) and whole-body cryotherapy (WBC) on recovery kinetics after exercise-induced muscle damage.Methods:Ten physically active men performed single-leg hamstring eccentric exercise comprising 5 sets of 15 repetitions. Immediately postexercise, subjects were exposed in a randomized crossover design to CWI (10 min at 10°C) or WBC (3 min at –110°C) recovery. Creatine kinase concentrations, knee-flexor eccentric (60°/s) and posterior lower-limb isometric (60°) strength, single-leg and 2-leg countermovement jumps, muscle soreness, and perception of recovery were measured. The tests were performed before and immediately, 24, 48, and 72 h after exercise.Results:Results showed a very likely moderate effect in favor of CWI for single-leg (effect size [ES] = 0.63; 90% confidence interval [CI] = –0.13 to 1.38) and 2-leg countermovement jump (ES = 0.68; 90% CI = –0.08 to 1.43) 72 h after exercise. Soreness was moderately lower 48 h after exercise after CWI (ES = –0.68; 90% CI = –1.44 to 0.07). Perception of recovery was moderately enhanced 24 h after exercise for CWI (ES = –0.62; 90% CI = –1.38 to 0.13). Trivial and small effects of condition were found for the other outcomes.Conclusions:CWI was more effective than WBC in accelerating recovery kinetics for countermovement-jump performance at 72 h postexercise. CWI also demonstrated lower soreness and higher perceived recovery levels across 24–48 h postexercise.
APA, Harvard, Vancouver, ISO, and other styles
18

Rinaldi, Kévin, Than Tran Trong, Florence Riera, Katharina Appel, and Olivier Hue. "Immersion with menthol improves recovery between 2 cycling exercises in hot and humid environment." Applied Physiology, Nutrition, and Metabolism 43, no. 9 (September 2018): 902–8. http://dx.doi.org/10.1139/apnm-2017-0525.

Full text
Abstract:
Endurance exercise performance is impaired in a hot and humid environment. This study compared the effects of cold water immersion, with (CMWI) and without (CWI) menthol, on the recovery of cycling performance. Eight heat-acclimatized cyclists (age, 24.1 ± 4.4 years; mass, 65.3 ± 5.2 kg) performed 2 randomized sessions, each consisting of a 20-min cycling trial (T1) followed by 10 min of immersion during recovery and then a second 20-min cycling trial (T2). Mean power output and perceived exertion (RPE) were recorded for both trials. Rectal (Trec) and skin temperatures were measured before and immediately after T1, immersion, and T2. Perceived thermal sensation (TS) and comfort were measured immediately after T1 and T2. Power output was significantly improved in T2 compared with T1 in the CMWI condition (+15.6%). Performance did not change in the CWI condition. After immersion, Trec was lower in CWI (–1.17 °C) than in CMWI (–0.6 °C). TS decreased significantly after immersion in both conditions. This decline was significantly more pronounced in CMWI (5.9 ± 1 to 3.6 ± 0.5) than in CWI (5.6 ± 0.9 to 4.4 ± 1.2). In CMWI, RPE was significantly higher in T1 (6.57 ± 0.9) than in T2 (5.14 ± 1.25). However, there was no difference in TC. This study suggests that menthol immersion probably (i) improves the performance of a repeated 20-min cycling bout, (ii) decreases TS, and (iii) impairs thermoregulation processes.
APA, Harvard, Vancouver, ISO, and other styles
19

Miller, Kevin C., Erik E. Swartz, and Blaine C. Long. "Cold-Water Immersion for Hyperthermic Humans Wearing American Football Uniforms." Journal of Athletic Training 50, no. 8 (August 1, 2015): 792–99. http://dx.doi.org/10.4085/1062-6050-50.6.01.

Full text
Abstract:
Context Current treatment recommendations for American football players with exertional heatstroke are to remove clothing and equipment and immerse the body in cold water. It is unknown if wearing a full American football uniform during cold-water immersion (CWI) impairs rectal temperature (Trec) cooling or exacerbates hypothermic afterdrop. Objective To determine the time to cool Trec from 39.5°C to 38.0°C while participants wore a full American football uniform or control uniform during CWI and to determine the uniform's effect on Trec recovery postimmersion. Design Crossover study. Setting Laboratory. Patients or Other Participants A total of 18 hydrated, physically active, unacclimated men (age = 22 ± 3 years, height = 178.8 ± 6.8 cm, mass = 82.3 ± 12.6 kg, body fat = 13% ± 4%, body surface area = 2.0 ± 0.2 m2). Intervention(s) Participants wore the control uniform (undergarments, shorts, crew socks, tennis shoes) or full uniform (control plus T-shirt; tennis shoes; jersey; game pants; padding over knees, thighs, and tailbone; helmet; and shoulder pads). They exercised (temperature approximately 40°C, relative humidity approximately 35%) until Trec reached 39.5°C. They removed their T-shirts and shoes and were then immersed in water (approximately 10°C) while wearing each uniform configuration; time to cool Trec to 38.0°C (in minutes) was recorded. We measured Trec (°C) every 5 minutes for 30 minutes after immersion. Main Outcome Measure(s) Time to cool from 39.5°C to 38.0°C and Trec. Results The Trec cooled to 38.0°C in 6.19 ± 2.02 minutes in full uniform and 8.49 ± 4.78 minutes in control uniform (t17 = −2.1, P = .03; effect size = 0.48) corresponding to cooling rates of 0.28°C·min−1 ± 0.12°C·min−1 in full uniform and 0.23°C·min−1 ± 0.11°C·min−1 in control uniform (t17 = 1.6, P = .07, effect size = 0.44). The Trec postimmersion recovery did not differ between conditions over time (F1,17 = 0.6, P = .59). Conclusions We speculate that higher skin temperatures before CWI, less shivering, and greater conductive cooling explained the faster cooling in full uniform. Cooling rates were considered ideal when the full uniform was worn during CWI, and wearing the full uniform did not cause a greater postimmersion hypothermic afterdrop. Clinicians may immerse football athletes with hyperthermia wearing a full uniform without concern for negatively affecting body-core cooling.
APA, Harvard, Vancouver, ISO, and other styles
20

Fyfe, Jackson J., James R. Broatch, Adam J. Trewin, Erik D. Hanson, Christos K. Argus, Andrew P. Garnham, Shona L. Halson, Remco C. Polman, David J. Bishop, and Aaron C. Petersen. "Cold water immersion attenuates anabolic signaling and skeletal muscle fiber hypertrophy, but not strength gain, following whole-body resistance training." Journal of Applied Physiology 127, no. 5 (November 1, 2019): 1403–18. http://dx.doi.org/10.1152/japplphysiol.00127.2019.

Full text
Abstract:
We determined the effects of cold water immersion (CWI) on long-term adaptations and post-exercise molecular responses in skeletal muscle before and after resistance training. Sixteen men (22.9 ± 4.6 y; 85.1 ± 17.9 kg; mean ± SD) performed resistance training (3 day/wk) for 7 wk, with each session followed by either CWI [15 min at 10°C, CWI (COLD) group, n = 8] or passive recovery (15 min at 23°C, control group, n = 8). Exercise performance [one-repetition maximum (1-RM) leg press and bench press, countermovement jump, squat jump, and ballistic push-up], body composition (dual X-ray absorptiometry), and post-exercise (i.e., +1 and +48 h) molecular responses were assessed before and after training. Improvements in 1-RM leg press were similar between groups [130 ± 69 kg, pooled effect size (ES): 1.53 ± 90% confidence interval (CI) 0.49], whereas increases in type II muscle fiber cross-sectional area were attenuated with CWI (−1,959 ± 1,675 µM2 ; ES: −1.37 ± 0.99). Post-exercise mechanistic target of rapamycin complex 1 signaling (rps6 phosphorylation) was blunted for COLD at post-training (POST) +1 h (−0.4-fold, ES: −0.69 ± 0.86) and POST +48 h (−0.2-fold, ES: −1.33 ± 0.82), whereas basal protein degradation markers (FOX-O1 protein content) were increased (1.3-fold, ES: 2.17 ± 2.22). Training-induced increases in heat shock protein (HSP) 27 protein content were attenuated for COLD (−0.8-fold, ES: −0.94 ± 0.82), which also reduced total HSP72 protein content (−0.7-fold, ES: −0.79 ± 0.57). CWI blunted resistance training-induced muscle fiber hypertrophy, but not maximal strength, potentially via reduced skeletal muscle protein anabolism and increased catabolism. Post-exercise CWI should therefore be avoided if muscle hypertrophy is desired. NEW & NOTEWORTHY This study adds to existing evidence that post-exercise cold water immersion attenuates muscle fiber growth with resistance training, which is potentially mediated by attenuated post-exercise increases in markers of skeletal muscle anabolism coupled with increased catabolism and suggests that blunted muscle fiber growth with cold water immersion does not necessarily translate to impaired strength development.
APA, Harvard, Vancouver, ISO, and other styles
21

Lorete, Christina J., Riley N. Fontaine, Lauren A. Welsch, and Johanna M. Hoch. "The Effects of Cold Water Immersion on Postexercise Muscle Soreness and Fatigue." International Journal of Athletic Therapy and Training 21, no. 2 (March 2016): 4–11. http://dx.doi.org/10.1123/ijatt.2015-0046.

Full text
Abstract:
Clinical Question:Is there evidence to suggest continuous cold water immersion (CWI) as a postexercise recovery intervention is more effective at reducing perceived muscle fatigue or soreness as measured using a Visual Analog Scale (VAS) when compared with passive rest in physically active adults?Summary of Key Findings:A systematic search of the literature produced 124 studies, with two randomized controlled trials and two cross-over studies meeting the inclusion criteria.Clinical Bottom Line:There is inconsistent, limited-quality evidence to support that the use of CWI postexercise is more effective at reducing perceived muscle fatigue or soreness in physically active adults when compared with passive rest. The results of the included studies were inconsistent regarding the application of continuous CWI for 10–14 min to reduce perceived muscle fatigue and soreness when compared with passive rest. The good-quality evidence found no difference between conditions and the three limited-quality studies identified differences between the conditions.
APA, Harvard, Vancouver, ISO, and other styles
22

Miller, Kevin C., Blaine C. Long, and Jeffrey Edwards. "Necessity of Removing American Football Uniforms From Humans With Hyperthermia Before Cold-Water Immersion." Journal of Athletic Training 50, no. 12 (December 1, 2015): 1240–46. http://dx.doi.org/10.4085/1062-6050-51.1.05.

Full text
Abstract:
Context The National Athletic Trainers' Association and the American College of Sports Medicine have recommended removing American football uniforms from athletes with exertional heat stroke before cold-water immersion (CWI) based on the assumption that the uniform impedes rectal temperature (Trec) cooling. Few experimental data exist to verify or disprove this assumption and the recommendations. Objectives To compare CWI durations, Trec cooling rates, thermal sensation, intensity of environmental symptoms, and onset of shivering when hyperthermic participants wore football uniforms during CWI or removed the uniforms immediately before CWI. Design Crossover study. Setting Laboratory. Patients or Other Participants Eighteen hydrated, physically active men (age = 22 ± 2 years, height = 182.5 ± 6.1 cm, mass = 85.4 ± 13.4 kg, body fat = 11% ± 5%, body surface area = 2.1 ± 0.2 m2) volunteered. Intervention(s) On 2 days, participants exercised in the heat (approximately 40°C, approximately 40% relative humidity) while wearing a full American football uniform (shoes; crew socks; undergarments; shorts; game pants; undershirt; shoulder pads; jersey; helmet; and padding over the thighs, knees, hips, and tailbone [PADS]) until Trec reached 39.5°C. Next, participants immersed themselves in water that was approximately 10°C while wearing either undergarments, shorts, and crew socks (NOpads) or PADS without shoes until Trec reached 38°C. Main Outcome Measure(s) The CWI duration (minutes) and Trec cooling rates (°C/min). Results Participants had similar exercise times (NOpads = 40.8 ± 4.9 minutes, PADS = 43.2 ± 4.1 minutes; t17 = 2.0, P = .10), hypohydration levels (NOpads = 1.5% ± 0.3%, PADS = 1.6% ± 0.4%; t17 = 1.3, P = .22), and thermal-sensation ratings (NOpads = 7.2 ± 0.3, PADS = 7.1 ± 0.5; P &gt; .05) before CWI. The CWI duration (median [interquartile range]; NOpads = 6.0 [5.4] minutes, PADS = 7.3 [9.8] minutes; z = 2.3, P = .01) and Trec cooling rates (NOpads = 0.28°C/min ± 0.14°C/min, PADS = 0.21°C/min ± 0.11°C/min; t17 = 2.2, P = .02) differed between uniform conditions. Conclusions Whereas participants cooled faster in NOpads, we still considered the PADS cooling rate to be acceptable (ie, &gt;0.16°C/min). Therefore, if clinicians experience difficulty removing PADS or CWI treatment is delayed, they may immerse fully equipped hyperthermic football players in CWI and maintain acceptable Trec cooling rates. Otherwise, PADS should be removed preimmersion to ensure faster body core temperature cooling.
APA, Harvard, Vancouver, ISO, and other styles
23

Allan, Robert, Adam P. Sharples, Graeme L. Close, Barry Drust, Sam O. Shepherd, John Dutton, James P. Morton, and Warren Gregson. "Postexercise cold water immersion modulates skeletal muscle PGC-1α mRNA expression in immersed and nonimmersed limbs: evidence of systemic regulation." Journal of Applied Physiology 123, no. 2 (August 1, 2017): 451–59. http://dx.doi.org/10.1152/japplphysiol.00096.2017.

Full text
Abstract:
Mechanisms mediating postexercise cold-induced increases in PGC-1α gene expression in human skeletal muscle are yet to be fully elucidated but may involve local cooling effects on AMPK and p38 MAPK-related signaling and/or increased systemic β-adrenergic stimulation. Therefore, we aimed to examine whether postexercise cold water immersion enhancement of PGC-1α mRNA is mediated through local or systemic mechanisms. Ten subjects completed acute cycling (8 × 5 min at ~80% peak power output) followed by seated-rest (CON) or single-leg cold water immersion (CWI; 10 min, 8°C). Muscle biopsies were obtained preexercise, postexercise, and 3 h postexercise from a single limb in the CON condition but from both limbs in CWI [thereby providing tissue from a CWI and nonimmersed limb (NOT)]. Muscle temperature decreased up to 2 h postexercise following CWI (−5°C) in the immersed limb, with lesser changes observed in CON and NOT (−3°C, P < 0.05). No differences between limbs were observed in p38 MAPK phosphorylation at any time point ( P < 0.05), whereas a significant interaction effect was present for AMPK phosphorylation ( P = 0.031). Exercise (CON) increased gene expression of PGC-1α 3 h postexercise (~5-fold, P < 0.001). CWI augmented PGC-1α expression above CON in both the immersed (CWI; ~9-fold, P = 0.003) and NOT limbs (~12-fold, P = 0.001). Plasma normetanephrine concentration was higher in CWI vs. CON immediately postimmersion (860 vs. 665 pmol/l, P = 0.034). We report for the first time that local cooling of the immersed limb evokes transcriptional control of PGC-1α in the nonimmersed limb, suggesting increased systemic β-adrenergic activation of AMPK may mediate, in part, postexercise cold induction of PGC-1α mRNA. NEW & NOTEWORTHY We report for the first time that postexercise cold water immersion of one limb also enhances PGC-1α expression in a contralateral, nonimmersed limb. We suggest that increased systemic β-adrenergic stimulation, and not localized cooling per se, exerts regulatory effects on local signaling cascades, thereby modulating PGC-1α expression. Therefore, these data have important implications for research designs that adopt contralateral, nonimmersed limbs as a control condition while also increasing our understanding of the potential mechanisms underpinning cold-mediated PGC-1α responses.
APA, Harvard, Vancouver, ISO, and other styles
24

Adams, William M., Erin E. Butke, Junyong Lee, and Mitchell E. Zaplatosch. "Cooling Capacity of Transpulmonary Cooling and Cold-Water Immersion After Exercise-Induced Hyperthermia." Journal of Athletic Training 56, no. 4 (February 4, 2021): 383–88. http://dx.doi.org/10.4085/1062-6050-0146.20.

Full text
Abstract:
Context Cold-water immersion (CWI) may not be feasible in some remote settings, prompting the identification of alternative cooling methods as adjunct treatment modalities for exertional heat stroke (EHS). Objective To determine the differences in cooling capacities between CWI and the inhalation of cooled air. Design Randomized controlled clinical trial. Setting Laboratory. Patients or Other Participants A total of 12 recreationally active participants (7 men, 5 women; age = 26 ± 4 years, height = 170.6 ± 10.1 cm, mass = 76.0 ± 18.0 kg, body fat = 18.5% ± 9.7%, peak oxygen uptake = 42.7 ± 8.9 mL·kg−1·min−1). Intervention(s) After exercise in a hot environment (40°C and 40% relative humidity), participants were randomized to 3 cooling conditions: cooling during passive rest (PASS; control), CWI, and the Polar Breeze thermal rehabilitation machine (PB) with which participants inspired cooled air (22.2°C ± 1.0°C). Main Outcome Measure(s) Rectal temperature (TREC) and heart rate were continuously measured throughout cooling until TREC reached 38.25°C. Results Cooling rates during CWI (0.18°C·min−1 ± 0.06°C·min−1) were greater than those during PASS (mean difference [95% CI] of 0.16°C·min−1 [0.13°C·min−1, 0.19°C·min−1]; P &lt; .001) and PB (0.15°C·min−1 [0.12°C·min−1, 0.16°C·min−1]; P &lt; .001). Elapsed time to reach a TREC of 38.25°C was also faster with CWI (9.71 ± 3.30 minutes) than PASS (−58.1 minutes [−77.1, −39.9 minutes]; P &lt; .001) and PB (−46.8 minutes [−65.5, −28.2 minutes]; P &lt; .001). Differences in cooling rates and time to reach a TREC of 38.25°C between PASS and PB were not different (P &gt; .05). Conclusions Transpulmonary cooling via cooled-air inhalation did not promote an optimal cooling rate (&gt;0.15°C·min−1) for the successful treatment of EHS. In remote settings where EHS is a risk, access and use of treatment methods via CWI or cold-water dousing are imperative to ensuring survival. Trial Registry ClinicalTrials.gov (NCT0419026).
APA, Harvard, Vancouver, ISO, and other styles
25

Santos, Vanessa Batista da Costa, Camila dos Santos Cardoso, Camila Pelegrin Figueiredo, and Christiane de Souza Guerino Macedo. "Effect of cryotherapy on the ankle temperature in athletes: ice pack and cold water immersion." Fisioterapia em Movimento 28, no. 1 (March 2015): 23–30. http://dx.doi.org/10.1590/0103-5150.028.001.ao02.

Full text
Abstract:
Introduction Cryotherapy is often used for rehabilitation of injured athletes. Objective To compare the effectiveness of ice pack (IP) and cold water immersion (CWI) on lowering the ankle skin surface temperature in athletes. Materials and methods Thirteen athletes (seven women and six men), age 19.53 (± 2.9) years. IP and CWI were applied on the anterior talofibular ligament (ATFL) of the dominant leg for 30 minutes. The skin surface temperature was measured with an infrared digital thermometer prior to the application and during cryotherapy (10, 15, 20, 25 and 30 minutes) and up to two hours of rewarming. During rewarming, the athletes remained at rest and the temperature was measured every 1 minute until 10 minutes, every 5 minutes for up to an hour and every 15 minutes until 2 hours. Results The two types of cold application were effective in lowering the skin surface temperature after the 30-minute procedure. Significant differences were observed among the following temperatures: pre-application (IP = 29.8 ± 2.4 °C and CWI = 27.5 ± 3 °C – P < 0.05); after 30 minutes (IP = 5 ± 2.4 °C and CWI = 7.8 ± 3 °C – P < 0.01). For rewarming, after 25 minutes (IP = 20.8 ± 3.3 °C and CWI = 18.2 ± 2.7 °C – P < 0.04); after 45 minutes (IP = 24.5 ± 2.3 °C and IP = 22.1 ± 3.5 °C – P < 0.05); after 75 minutes (IP = 26.4 ± 2.2 °C and CWI = 24 ± 2.7 °C – P < 0.02). Conclusion After the 30-minute application, both IP and CWI produced the appropriate temperature; however the application of CWI produced the lowest temperature during rewarming.
APA, Harvard, Vancouver, ISO, and other styles
26

Takács, Tamás, Zoltán Rakonczay Jr., Ilona S. Varga, Béla Iványi, Yvette Mándi, Imre Boros, and János Lonovics. "Comparative effects of water immersion pretreatment on three different acute pancreatitis models in rats." Biochemistry and Cell Biology 80, no. 2 (April 1, 2002): 241–51. http://dx.doi.org/10.1139/o02-006.

Full text
Abstract:
Cells respond to stress by upregulating the synthesis of cytoprotective heat shock proteins (HSPs) and antioxidant enzymes. The aim of this study was to compare the effects of cold (CWI) or hot water immersion (HWI) stress on three different acute pancreatitis models (cholecystokinin octapeptide (CCK), sodium taurocholate (TC), and L-arginine (Arg)). We examined the levels of pancreatic HSP60, HSP72, and antioxidants after the water immersion stress. Male Wistar rats were injected with CCK, TC, or Arg at the peak level of pancreatic HSP synthesis, as determined by Western blot analysis. HWI significantly elevated HSP72 expression and CWI significantly increased HSP60 expression in the pancreas. Water immersion stress decreased the levels of pancreatic antioxidants. CWI and HWI pretreatment ameliorated most of the examined laboratory and morphological parameters of CCK-induced pancreatitis. CWI pretreatment decreased pancreatic edema and the serum amylase level; however, the morphological damage was more severe in TC-induced acute pancreatitis. Overall, CWI and HWI pretreatment only decreased the serum cytokine concentrations in Arg-induced pancreatitis. CWI and HWI resulted in differential induction of pancreatic HSP60 and HSP72 and the depletion of antioxidants. The findings suggest the possible roles of HSP60 and (or) HSP72 (but not that of the antioxidant enzymes) in the protection against CCK- and TC-induced acute pancreatitis. Unexpectedly, CWI pretreatment was detrimental to the morphological parameters of TC-induced pancreatitis. It was demonstrated that CWI and HWI pretreatment only influenced cytokine synthesis in Arg-induced pancreatitis.Key words: heat shock proteins, water immersion, cholecystokinin octapeptide, sodium taurocholate, L-arginine, pancreatitis.
APA, Harvard, Vancouver, ISO, and other styles
27

Taipale, Ritva S., Johanna K. Ihalainen, Phillip J. Jones, Antti A. Mero, Keijo Häkkinen, and Heikki Kyröläinen. "Cold-water immersion combined with active recovery is equally as effective as active recovery during 10 weeks of high-intensity combined strength and endurance training in men." Biomedical Human Kinetics 11, no. 1 (January 1, 2019): 189–92. http://dx.doi.org/10.2478/bhk-2019-0026.

Full text
Abstract:
SummaryStudy aim: The purpose of this study was to compare the effects of cold-water immersion (CWI) vs. active recovery performed after each individual strength and endurance training session over a 10-week period of high-intensity combined strength and endurance training.Materials and methods: Seventeen healthy men completed 10 weeks of high-intensity combined strength and endurance training. One group (AR, n = 10) completed active recovery that included 15 minutes of running at 30–40% VO2max after every strength training session while the other group (CWI, n = 7) completed 5 minutes of active recovery (at the same intensity as the AR group) followed by 10 minutes of cold-water (12 ± 1°C) immersion. During CWI, the subjects were seated passively during the 10 minutes of cold-water immersion and the water level remained just below the pectoral muscles. Muscle strength and power were measured by isometric bilateral, 1 repetition maximum, leg press (ISOM LP) and countermovement jump (CMJ) height. Endurance performance was measured by a 3000 m running time trial. Serum testosterone, cortisol, and IGF-1 were assessed from venous blood samples.Results: ISOM LP and CMJ increased significantly over the training period, but 3000 m running time increased only marginally. Serum testosterone, cortisol, and IGF-1 remained unchanged over the intervention period. No differences between the groups were observed.Conclusions: AR and CWI were equally effective during 10 weeks of high-intensity combined strength and endurance training. Thus, physically active individuals participating in high-intensity combined strength and endurance training should use the recovery method they prefer.
APA, Harvard, Vancouver, ISO, and other styles
28

Castellani, John W., Andrew J. Young, James E. Kain, and Michael N. Sawka. "Thermoregulatory responses to cold water at different times of day." Journal of Applied Physiology 87, no. 1 (July 1, 1999): 243–46. http://dx.doi.org/10.1152/jappl.1999.87.1.243.

Full text
Abstract:
This study examined how time of day affects thermoregulation during cold-water immersion (CWI). It was hypothesized that the shivering and vasoconstrictor responses to CWI would differ at 0700 vs. 1500 because of lower initial core temperatures (Tcore) at 0700. Nine men were immersed (20°C, 2 h) at 0700 and 1500 on 2 days. No differences ( P > 0.05) between times were observed for metabolic heat production (M˙, 150 W ⋅ m−2), heat flow (250 W ⋅ m−2), mean skin temperature (T sk, 21°C), and the mean body temperature-change in M˙(ΔM˙) relationship. Rectal temperature (Tre) was higher ( P < 0.05) before (Δ = 0.4°C) and throughout CWI during 1500. The change in Tre was greater ( P < 0.05) at 1500 (−1.4°C) vs. 0700 (−1.2°C), likely because of the higher Tre-T skgradient (0.3°C) at 1500. These data indicate that shivering and vasoconstriction are not affected by time of day. These observations raise the possibility that CWI may increase the risk of hypothermia in the early morning because of a lower initial Tcore.
APA, Harvard, Vancouver, ISO, and other styles
29

Miller, Kevin C., Timothy A. Di Mango, and Grace E. Katt. "Cooling Rates of Hyperthermic Humans Wearing American Football Uniforms When Cold-Water Immersion Is Delayed." Journal of Athletic Training 53, no. 12 (December 1, 2018): 1200–1205. http://dx.doi.org/10.4085/1062-6050-398-17.

Full text
Abstract:
Context Treatment delays can be contributing factors in the deaths of American football athletes from exertional heat stroke. Ideally, clinicians begin cold-water immersion (CWI) to reduce rectal temperature (Trec) to &lt;38.9°C within 30 minutes of collapse. If delays occur, experts recommend Trec cooling rates that exceed 0.15°C/min. Whether treatment delays affect CWI cooling rates or perceptual variables when football uniforms are worn is unknown. Objective To answer 3 questions: (1) Does wearing a football uniform and delaying CWI by 5 minutes or 30 minutes affect Trec cooling rates? (2) Do Trec cooling rates exceed 0.15°C/min when treatment delays have occurred and individuals wear football uniforms during CWI? (3) How do treatment delays affect thermal sensation and Environmental Symptoms Questionnaire responses? Design Crossover study. Setting Laboratory. Patients or Other Participants Ten physically active men (age = 22 ± 2 y, height = 183.0 ± 6.9 cm, mass = 78.9 ± 6.0 kg). Intervention(s) On 2 days, participants wore American football uniforms and exercised in the heat until Trec was 39.75°C. Then they sat in the heat, with equipment on, for either 5 or 30 minutes before undergoing CWI (10.6°C ± 0.1°C) until Trec reached 37.75°C. Main Outcome Measure(s) Rectal temperature and CWI duration were used to calculate cooling rates. Thermal sensation was measured pre-exercise, postexercise, postdelay, and post-CWI. Responses to the Environmental Symptoms Questionnaire were obtained pre-exercise, postdelay, and post-CWI. Results The Trec cooling rates exceeded recommendations and were unaffected by treatment delays (5-minute delay = 0.20°C/min ± 0.07°C/min, 30-minute delay = 0.19°C/min ± 0.05°C/min; P = .4). Thermal sensation differed between conditions only postdelay (5-minute delay = 6.5 ± 0.6, 30-minute delay = 5.5 ± 0.7; P &lt; .05). Environmental Symptoms Questionnaire responses differed between conditions only postdelay (5-minute delay = 27 ± 15, 30-minute delay = 16 ± 12; P &lt; .05). Conclusions Treatment delays and football equipment did not impair CWI's effectiveness. Because participants felt cooler and better after the 30-minute delay despite still having elevated Trec, clinicians should use objective measurements (eg, Trec) to guide their decision making for patients with possible exertional heat stroke.
APA, Harvard, Vancouver, ISO, and other styles
30

Argus, Christos K., James R. Broatch, Aaron C. Petersen, Remco Polman, David J. Bishop, and Shona Halson. "Cold-Water Immersion and Contrast Water Therapy: No Improvement of Short-Term Recovery After Resistance Training." International Journal of Sports Physiology and Performance 12, no. 7 (August 2017): 886–92. http://dx.doi.org/10.1123/ijspp.2016-0127.

Full text
Abstract:
Context:An athlete’s ability to recover quickly is important when there is limited time between training and competition. As such, recovery strategies are commonly used to expedite the recovery process.Purpose:To determine the effectiveness of both cold-water immersion (CWI) and contrast water therapy (CWT) compared with control on short-term recovery (<4 h) after a single full-body resistance-training session.Methods:Thirteen men (age 26 ± 5 y, weight 79 ± 7 kg, height 177 ± 5 cm) were assessed for perceptual (fatigue and soreness) and performance measures (maximal voluntary isometric contraction [MVC] of the knee extensors, weighted and unweighted countermovement jumps) before and immediately after the training session. Subjects then completed 1 of three 14-min recovery strategies (CWI, CWT, or passive sitting [CON]), with the perceptual and performance measures reassessed immediately, 2 h, and 4 h postrecovery.Results:Peak torque during MVC and jump performance were significantly decreased (P < .05) after the resistance-training session and remained depressed for at least 4 h postrecovery in all conditions. Neither CWI nor CWT had any effect on perceptual or performance measures over the 4-h recovery period.Conclusions:CWI and CWT did not improve short-term (<4-h) recovery after a conventional resistance-training session.
APA, Harvard, Vancouver, ISO, and other styles
31

Seco-Calvo, Jesús, Juan Mielgo-Ayuso, César Calvo-Lobo, and Alfredo Córdova. "Cold Water Immersion as a Strategy for Muscle Recovery in Professional Basketball Players During the Competitive Season." Journal of Sport Rehabilitation 29, no. 3 (March 1, 2020): 301–9. http://dx.doi.org/10.1123/jsr.2018-0301.

Full text
Abstract:
Context: Despite prior studies that have addressed the recovery effects of cold-water immersion (CWI) in different sports, there is a lack of knowledge about longitudinal studies across a full season of competition assessing these effects. Objective: To analyze the CWI effects, as a muscle recovery strategy, in professional basketball players throughout a competitive season. Design: A prospective cohort design. Setting: Elite basketball teams. Participants: A total of 28 professional male basketball players divided into 2 groups: CWI (n = 12) and control (n = 16) groups. Main Outcome Measures: Muscle metabolism serum markers were measured during the season in September—T1, November—T2, March—T3, and April—T4. Isokinetic peak torque strength and ratings of perceived exertion were measured at the beginning and at the end of the season. CWI was applied immediately after every match and after every training session before matches. Results: All serum muscular markers, except myoglobin, were higher in the CWI group than the control group (P < .05). The time course of changes in muscle markers over the season also differed between the groups (P < .05). In the CWI group, ratings of perceived exertion decreased significantly from the beginning (T1–T2) to the end (T3–T4). Isokinetic torque differed between groups at the end of the season (60°/s peak torque: P < .001 and ; and 180°/s peak torque: P < .001 and ) and had changed significantly over the season in the CWI group (P < .05). Conclusions: CWI may improve recovery from muscle damage in professional basketball players during a regular season.
APA, Harvard, Vancouver, ISO, and other styles
32

Roberts, Llion A., Makii Muthalib, Jamie Stanley, Glen Lichtwark, Kazunori Nosaka, Jeff S. Coombes, and Jonathan M. Peake. "Effects of cold water immersion and active recovery on hemodynamics and recovery of muscle strength following resistance exercise." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 309, no. 4 (August 15, 2015): R389—R398. http://dx.doi.org/10.1152/ajpregu.00151.2015.

Full text
Abstract:
Cold water immersion (CWI) and active recovery (ACT) are frequently used as postexercise recovery strategies. However, the physiological effects of CWI and ACT after resistance exercise are not well characterized. We examined the effects of CWI and ACT on cardiac output (Q̇), muscle oxygenation (SmO2), blood volume (tHb), muscle temperature (Tmuscle), and isometric strength after resistance exercise. On separate days, 10 men performed resistance exercise, followed by 10 min CWI at 10°C or 10 min ACT (low-intensity cycling). Q̇ (7.9 ± 2.7 l) and Tmuscle (2.2 ± 0.8°C) increased, whereas SmO2 (−21.5 ± 8.8%) and tHb (−10.1 ± 7.7 μM) decreased after exercise ( P < 0.05). During CWI, Q̇ (−1.1 ± 0.7 l) and Tmuscle (−6.6 ± 5.3°C) decreased, while tHb (121 ± 77 μM) increased ( P < 0.05). In the hour after CWI, Q̇ and Tmuscle remained low, while tHb also decreased ( P < 0.05). By contrast, during ACT, Q̇ (3.9 ± 2.3 l), Tmuscle (2.2 ± 0.5°C), SmO2 (17.1 ± 5.7%), and tHb (91 ± 66 μM) all increased ( P < 0.05). In the hour after ACT, Tmuscle, and tHb remained high ( P < 0.05). Peak isometric strength during 10-s maximum voluntary contractions (MVCs) did not change significantly after CWI, whereas it decreased after ACT (−30 to −45 Nm; P < 0.05). Muscle deoxygenation time during MVCs increased after ACT ( P < 0.05), but not after CWI. Muscle reoxygenation time after MVCs tended to increase after CWI ( P = 0.052). These findings suggest first that hemodynamics and muscle temperature after resistance exercise are dependent on ambient temperature and metabolic demands with skeletal muscle, and second, that recovery of strength after resistance exercise is independent of changes in hemodynamics and muscle temperature.
APA, Harvard, Vancouver, ISO, and other styles
33

Luhring, Katherine E., Cory L. Butts, Cody R. Smith, Jeffrey A. Bonacci, Ramon C. Ylanan, Matthew S. Ganio, and Brendon P. McDermott. "Cooling Effectiveness of a Modified Cold-Water Immersion Method After Exercise-Induced Hyperthermia." Journal of Athletic Training 51, no. 11 (November 1, 2016): 946–51. http://dx.doi.org/10.4085/1062-6050-51.12.07.

Full text
Abstract:
Context: Recommended treatment for exertional heat stroke includes whole-body cold-water immersion (CWI). However, remote locations or monetary or spatial restrictions can challenge the feasibility of CWI. Thus, the development of a modified, portable CWI method would allow for optimal treatment of exertional heat stroke in the presence of these challenges. Objective: To determine the cooling rate of modified CWI (tarp-assisted cooling with oscillation [TACO]) after exertional hyperthermia. Design: Randomized, crossover controlled trial. Setting: Environmental chamber (temperature = 33.4°C ± 0.8°C, relative humidity = 55.7% ± 1.9%). Patients or Other Participants: Sixteen volunteers (9 men, 7 women; age = 26 ± 4.7 years, height = 1.76 ± 0.09 m, mass = 72.5 ± 9.0 kg, body fat = 20.7% ± 7.1%) with no history of compromised thermoregulation. Intervention(s): Participants completed volitional exercise (cycling or treadmill) until they demonstrated a rectal temperature (Tre) ≥39.0°C. After exercise, participants transitioned to a semirecumbent position on a tarp until either Tre reached 38.1°C or 15 minutes had elapsed during the control (no immersion [CON]) or TACO (immersion in 151 L of 2.1°C ± 0.8°C water) treatment. Main Outcome Measure(s): The Tre, heart rate, and blood pressure (reported as mean arterial pressure) were assessed precooling and postcooling. Statistical analyses included repeated-measures analysis of variance with appropriate post hoc t tests and Bonferroni correction. Results: Before cooling, the Tre was not different between conditions (CON: 39.27°C ± 0.26°C, TACO: 39.30°C ± 0.39°C; P = .62; effect size = −0.09; 95% confidence interval [CI] = −0.2, 0.1). At postcooling, the Tre was decreased in the TACO (38.10°C ± 0.16°C) compared with the CON condition (38.74°C ± 0.38°C; P &lt; .001; effect size = 2.27; 95% CI = 0.4, 0.9). The rate of cooling was greater during the TACO (0.14 ± 0.06°C/min) than the CON treatment (0.04°C/min ± 0.02°C/min; t15 = −8.84; P &lt; .001; effect size = 2.21; 95% CI = −0.13, −0.08). These differences occurred despite an insignificant increase in fluid consumption during exercise preceding CON (0.26 ± 0.29 L) versus TACO (0.19 ± 0.26 L; t12 = 1.73; P = .11; effect size = 0.48; 95% CI = −0.02, 0.14) treatment. Decreases in heart rate did not differ between the TACO and CON conditions (t15 = −1.81; P = .09; effect size = 0.45; 95% CI = −22, 2). Mean arterial pressure was greater at postcooling with TACO (84.2 ± 6.6 mm Hg) than with CON (67.0 ± 9.0 mm Hg; P &lt; .001; effect size = 2.25; 95% CI = 13, 21). Conclusions: The TACO treatment provided faster cooling than did the CON treatment. When location, monetary, or spatial restrictions are present, TACO represents an effective alternative to traditional CWI in the emergency treatment of patients with exertional hyperthermia.
APA, Harvard, Vancouver, ISO, and other styles
34

Stephens, Jessica M., Shona L. Halson, Joanna Miller, Gary J. Slater, Dale W. Chapman, and Christopher D. Askew. "Effect of Body Composition on Physiological Responses to Cold-Water Immersion and the Recovery of Exercise Performance." International Journal of Sports Physiology and Performance 13, no. 3 (March 1, 2018): 382–89. http://dx.doi.org/10.1123/ijspp.2017-0083.

Full text
Abstract:
Purpose: To explore the influence of body composition on thermal responses to cold-water immersion (CWI) and the recovery of exercise performance. Methods: Male subjects were stratified into 2 groups: low fat (LF; n = 10) or high fat (HF; n = 10). Subjects completed a high-intensity interval test (HIIT) on a cycle ergometer followed by a 15-min recovery intervention (control [CON] or CWI). Core temperature (Tc), skin temperature, and heart rate were recorded continuously. Performance was assessed at baseline, immediately post-HIIT, and 40 min postrecovery using a 4-min cycling time trial (TT), countermovement jump (CMJ), and isometric midthigh pull (IMTP). Perceptual measures (thermal sensation [TS], total quality of recovery [TQR], soreness, and fatigue) were also assessed. Results: Tc and TS were significantly lower in LF than in HF from 10 min (Tc, LF 36.5°C ± 0.5°C, HF 37.2°C ± 0.6°C; TS, LF 2.3 ± 0.5 arbitrary units [a.u.], HF 3.0 ± 0.7 a.u.) to 40 min (Tc, LF 36.1°C ± 0.6°C, HF 36.8°C ±0.7°C; TS, LF 2.3 ± 0.6 a.u., HF 3.2 ± 0.7 a.u.) after CWI (P < .05). Recovery of TT performance was significantly enhanced after CWI in HF (10.3 ± 6.1%) compared with LF (3.1 ± 5.6%, P = .01); however, no differences were observed between HF (6.9% ±5.7%) and LF (5.4% ± 5.2%) with CON. No significant differences were observed between groups for CMJ, IMTP, TQR, soreness, or fatigue in either condition. Conclusion: Body composition influences the magnitude of Tc change during and after CWI. In addition, CWI enhanced performance recovery in the HF group only. Therefore, body composition should be considered when planning CWI protocols to avoid overcooling and maximize performance recovery.
APA, Harvard, Vancouver, ISO, and other styles
35

Jajtner, Adam R., Jay R. Hoffman, Adam M. Gonzalez, Phillip R. Worts, Maren S. Fragala, and Jeffrey R. Stout. "Comparison of the Effects of Electrical Stimulation and Cold-Water Immersion on Muscle Soreness After Resistance Exercise." Journal of Sport Rehabilitation 24, no. 2 (May 2015): 99–108. http://dx.doi.org/10.1123/jsr.2013-0113.

Full text
Abstract:
Context:Resistance training is a common form of exercise for competitive and recreational athletes. Enhancing recovery from resistance training may improve the muscle-remodeling processes, stimulating a faster return to peak performance.Objective:To examine the effects of 2 different recovery modalities, neuromuscular electrical stimulation (NMES) and cold-water immersion (CWI), on performance and biochemical and ultrasonographic measures.Participants:Thirty resistance-trained men (23.1 ± 2.9 y, 175.2 ± 7.1 cm, 82.1 ± 8.4 kg) were randomly assigned to NMES, CWI, or control (CON).Design and Setting:All participants completed a high-volume lower-body resistance-training workout on d 1 and returned to the human performance laboratory 24 (24H) and 48 h (48H) postexercise for follow-up testing.Measures:Blood samples were obtained preexercise (PRE) and immediately (IP), 30 min (30P), 24 h (24H), and 48 h (48H) post. Subjects were examined for performance changes in the squat exercise (total repetitions and average power per repetition), biomarkers of inflammation, and changes in cross-sectional area and echo intensity (EI) of the rectus femoris (RF) and vastus lateralis muscles.Results:No differences between groups were observed in the number of repetitions (P = .250; power: P = .663). Inferential-based analysis indicated that increases in C-reactive protein concentrations were likely increased by a greater magnitude after CWI compared with CON, while NMES possibly decreased more than CON from IP to 24H. Increases in interleukin-10 concentrations between IP and 30P were likely greater in CWI than NMES but not different from CON. Inferential-based analysis of RF EI indicated a likely decrease for CWI between IP and 48H. No other differences between groups were noted in any other muscle-architecture measures.Conclusions:Results indicated that CWI induced greater increases in pro- and anti-inflammatory markers, while decreasing RF EI, suggesting that CWI may be effective in enhancing short-term muscle recovery after high-volume bouts of resistance exercise.
APA, Harvard, Vancouver, ISO, and other styles
36

Hayter, Kane J., Kenji Doma, Moritz Schumann, and Glen B. Deakin. "The comparison of cold-water immersion and cold air therapy on maximal cycling performance and recovery markers following strength exercises." PeerJ 4 (March 28, 2016): e1841. http://dx.doi.org/10.7717/peerj.1841.

Full text
Abstract:
This study examined the effects of cold-water immersion (CWI) and cold air therapy (CAT) on maximal cycling performance (i.e. anaerobic power) and markers of muscle damage following a strength training session. Twenty endurance-trained but strength-untrained male (n = 10) and female (n = 10) participants were randomised into either: CWI (15 min in 14 °C water to iliac crest) or CAT (15 min in 14 °C air) immediately following strength training (i.e. 3 sets of leg press, leg extensions and leg curls at 6 repetition maximum, respectively). Creatine kinase, muscle soreness and fatigue, isometric knee extensor and flexor torque and cycling anaerobic power were measured prior to, immediately after and at 24 (T24), 48 (T48) and 72 (T72) h post-strength exercises. No significant differences were found between treatments for any of the measured variables (p > 0.05). However, trends suggested recovery was greater in CWI than CAT for cycling anaerobic power at T24 (10% ± 2%, ES = 0.90), T48 (8% ± 2%, ES = 0.64) and T72 (8% ± 7%, ES = 0.76). The findings suggest the combination of hydrostatic pressure and cold temperature may be favourable for recovery from strength training rather than cold temperature alone.
APA, Harvard, Vancouver, ISO, and other styles
37

Broatch, James R., Aaron Petersen, and David J. Bishop. "Cold-water immersion following sprint interval training does not alter endurance signaling pathways or training adaptations in human skeletal muscle." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 313, no. 4 (October 1, 2017): R372—R384. http://dx.doi.org/10.1152/ajpregu.00434.2016.

Full text
Abstract:
We investigated the underlying molecular mechanisms by which postexercise cold-water immersion (CWI) may alter key markers of mitochondrial biogenesis following both a single session and 6 wk of sprint interval training (SIT). Nineteen men performed a single SIT session, followed by one of two 15-min recovery conditions: cold-water immersion (10°C) or a passive room temperature control (23°C). Sixteen of these participants also completed 6 wk of SIT, each session followed immediately by their designated recovery condition. Four muscle biopsies were obtained in total, three during the single SIT session (preexercise, postrecovery, and 3 h postrecovery) and one 48 h after the last SIT session. After a single SIT session, phosphorylated (p-)AMPK, p-p38 MAPK, p-p53, and peroxisome proliferator-activated receptor-γ coactivator-1α ( PGC-1α) mRNA were all increased ( P < 0.05). Postexercise CWI had no effect on these responses. Consistent with the lack of a response after a single session, regular postexercise CWI had no effect on PGC-1α or p53 protein content. Six weeks of SIT increased peak aerobic power, maximal oxygen consumption, maximal uncoupled respiration (complexes I and II), and 2-km time trial performance ( P < 0.05). However, regular CWI had no effect on changes in these markers, consistent with the lack of response in the markers of mitochondrial biogenesis. Although these observations suggest that CWI is not detrimental to endurance adaptations following 6 wk of SIT, they question whether postexercise CWI is an effective strategy to promote mitochondrial biogenesis and improvements in endurance performance.
APA, Harvard, Vancouver, ISO, and other styles
38

Nunes, Renan Felipe Hartmann, Rob Duffield, Fábio Yuzo Nakamura, Ewertton de Souza Bezerra, Raphael Luiz Sakugawa, Irineu Loturco, Franciane Bobinski, Daniel Fernandes Martins, and Luiz Guilherme Antonacci Guglielmo. "Recovery following Rugby Union matches: effects of cold water immersion on markers of fatigue and damage." Applied Physiology, Nutrition, and Metabolism 44, no. 5 (May 2019): 546–56. http://dx.doi.org/10.1139/apnm-2018-0542.

Full text
Abstract:
We investigated the effect of postmatch cold-water immersion (CWI) on markers of muscle damage, neuromuscular fatigue, and perceptual responses within 72 h after a rugby match. Twenty-two professional male rugby players were randomized into CWI (10 °C/10 min; n = 11) or control (CON: 30 min seated; n = 11) groups. Activity profile from Global Positioning Satellite systems and postmatch rating of perceived exertion were measured to determined match load. Biochemical (tumor necrosis factor alpha (TNF-α), interleukin-6), neuromuscular performance (squat (SJ) and countermovement jumps (CMJ), peak power output (PPO), rate of force development (RFD), stiffness, 10- and 30-m sprint time, and perceptual markers (soreness, perceived recovery) were obtained before and immediately after the match, and then at 30 min, 24 h, 48 h, and 72 h after the match. Magnitude-based inference and Cohen’s effect size (ES) were used to analyze change over time and between groups. Thus, the higher/beneficial, similar/trivial, or lower/harmful differences were evaluated as follows: <1%, almost certainly not; 1% to 5%, very unlikely; 5% to 25%, unlikely; 25% to 75%, possible; 75% to 95%, likely; 95% to 99%, very likely; >99%, almost certainly. Changes were unclear for the match loads, sprint times, and perceptual markers between groups. Higher %ΔSJ at 24 h (very likely (ES = 0.75)) and in %ΔPPO_SJ at 48 h (likely (ES = 0.51)) were observed in CWI than in CON. Values in %ΔRDF_CMJ were higher immediately after (likely (ES = 0.83)), 30 min after (very likely (ES = 0.97)), and 24 h after the match (likely (ES = 0.93)) in CWI than in CON. Furthermore, %Δlog TNF-α were lower in the CWI group than in the CON group immediately after (almost certainly (ES = −0.76)), 24 h after (very likely (ES = −1.09)), and 72 h after the match (likely (ES = −0.51)), and in Δstiffness_SJ at 30 min after (likely (ES = −0.67)) and 48 h after the match (very likely (ES = −0.97)). Also, different within-groups effects throughout postmatch were reported. Implementing postmatch CWI-based strategies improved the recovery of markers of inflammation and fatigue in rugby players, despite no change in markers of speed or perceptual recovery.
APA, Harvard, Vancouver, ISO, and other styles
39

Duffield, Rob, Alistair Murphy, Aaron Kellett, and Machar Reid. "Recovery From Repeated On-Court Tennis Sessions: Combining Cold-Water Immersion, Compression, and Sleep Interventions." International Journal of Sports Physiology and Performance 9, no. 2 (March 2014): 273–82. http://dx.doi.org/10.1123/ijspp.2012-0359.

Full text
Abstract:
Purpose:To investigate the effects of combining cold-water immersion (CWI), full-body compression garments (CG), and sleep-hygiene recommendations on physical, physiological, and perceptual recovery after 2-a-day on-court training and match-play sessions.Methods:In a crossover design, 8 highly trained tennis players completed 2 sessions of on-court tennis-drill training and match play, followed by a recovery or control condition. Recovery interventions included a mixture of 15 min CWI, 3 h of wearing full-body CG, and following sleep-hygiene recommendations that night, while the control condition involved postsession stretching and no regulation of sleeping patterns. Technical performance (stroke and error rates), physical performance (accelerometry, countermovement jump [CMJ]), physiological (heart rate, blood lactate), and perceptual (mood, exertion, and soreness) measures were recorded from each on-court session, along with sleep quantity each night.Results:While stroke and error rates did not differ in the drill session (P > .05, d < 0.20), large effects were evident for increased time in play and stroke rate in match play after the recovery interventions (P > .05, d > 0.90). Although accelerometry values did not differ between conditions (P > .05, d < 0.20), CMJ tended to be improved before match play with recovery (P > .05, d = 0.90). Furthermore, CWI and CG resulted in faster postsession reductions in heart rate and lactate and reduced perceived soreness (P > .05, d > 1.00). In addition, sleep-hygiene recommendations increased sleep quantity (P > .05, d > 2.00) and maintained lower perceived soreness and fatigue (P < .05, d > 2.00).Conclusions:Mixed-method recovery interventions (CWI and CG) used after tennis sessions increased ensuing time in play and lower-body power and reduced perceived soreness. Furthermore, sleep-hygiene recommendations helped reduce perceived soreness.
APA, Harvard, Vancouver, ISO, and other styles
40

Poirier, Martin P., Sean R. Notley, Andreas D. Flouris, and Glen P. Kenny. "Physical characteristics cannot be used to predict cooling time using cold-water immersion as a treatment for exertional hyperthermia." Applied Physiology, Nutrition, and Metabolism 43, no. 8 (August 2018): 857–60. http://dx.doi.org/10.1139/apnm-2017-0619.

Full text
Abstract:
We examined if physical characteristics could be used to predict cooling time during cold water immersion (CWI, 2 °C) following exertional hyperthermia (rectal temperature ≥39.5 °C) in a physically heterogeneous group of men and women (n = 62). Lean body mass was the only significant predictor of cooling time following CWI (R2 = 0.137; P < 0.001); however, that prediction did not provide the precision (mean residual square error: 3.18 ± 2.28 min) required to act as a safe alternative to rectal temperature measurements.
APA, Harvard, Vancouver, ISO, and other styles
41

Roonkiani, Saman Khakpoor, Mohsen Ebrahimi, and Ali Shamsi Majelan. "Effect of cold water immersion on muscle damage indexes after simulated soccer training in young soccer players." Biomedical Human Kinetics 12, no. 1 (January 1, 2020): 236–41. http://dx.doi.org/10.2478/bhk-2020-0030.

Full text
Abstract:
Summary Study aim: To investigate the effect of cold water immersion (CWI) on muscle damage indexes after simulated soccer activity in young soccer players. Material and methods: Eighteen professional male soccer players were randomly divided into two groups: CWI (n = 10, age 19.3 ± 0.5, body mass index 22.2 ± 1.3) and control (n = 8, age 19.4 ± 0.8, body mass index 21.7 ± 1.5). Both groups performed a simulated 90-minute soccer-specific aerobic field test (SAFT90). Then, the CWI group subjects immersed themselves for 10 minutes in 8°C water, while the control group subjects sat passively for the same time period. Blood samples were taken before, immediately after, 10 minutes, 24 hours and 48 hours after the training session in a fasted state. Blood lactate, creatine kinase (CK) and lactate dehydrogenase (LDH) enzyme levels were measured. Results: Lactate, CK and LDH levels increased significantly after training (p < 0.001). There were significant interactions between groups and subsequent measurements for CK (p = 0.0012) and LDH (p = 0.0471). There was no significant difference in lactate level between the two groups at any aforementioned time. Conclusion: It seems that CWI after simulated 90-minute soccer training can reduce the values of muscle damage indexes in soccer players.
APA, Harvard, Vancouver, ISO, and other styles
42

D’Souza, Randall F., Nina Zeng, James F. Markworth, Vandre C. Figueiredo, Llion A. Roberts, Truls Raastad, Jeff S. Coombes, Jonathan M. Peake, David Cameron-Smith, and Cameron J. Mitchell. "Divergent effects of cold water immersion versus active recovery on skeletal muscle fiber type and angiogenesis in young men." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 314, no. 6 (June 1, 2018): R824—R833. http://dx.doi.org/10.1152/ajpregu.00421.2017.

Full text
Abstract:
Resistance training (RT) increases muscle fiber size and induces angiogenesis to maintain capillary density. Cold water immersion (CWI), a common postexercise recovery modality, may improve acute recovery, but it attenuates muscle hypertrophy compared with active recovery (ACT). It is unknown if CWI following RT alters muscle fiber type expression or angiogenesis. Twenty-one men strength trained for 12 wk, with either 10 min of CWI ( n = 11) or ACT ( n = 10) performed following each session. Vastus lateralis biopsies were collected at rest before and after training. Type IIx myofiber percent decreased ( P = 0.013) and type IIa myofiber percent increased with training ( P = 0.012), with no difference between groups. The number of capillaries per fiber increased from pretraining in the CWI group ( P = 0.004) but not the ACT group ( P = 0.955). Expression of myosin heavy chain genes ( MYH1 and MYH2), encoding type IIx and IIa fibers, respectively, decreased in the ACT group, whereas MYH7 (encoding type I fibers) increased in the ACT group versus CWI ( P = 0.004). Myosin heavy chain IIa protein increased with training ( P = 0.012) with no difference between groups. The proangiogenic vascular endothelial growth factor protein decreased posttraining in the ACT group versus CWI ( P < 0.001), whereas antiangiogenic Sprouty-related, EVH1 domain-containing protein 1 protein increased with training in both groups ( P = 0.015). Expression of microRNAs that regulate muscle fiber type (miR-208b and -499a) and angiogenesis (miR-15a, -16, and -126) increased only in the ACT group ( P < 0.05). CWI recovery after each training session altered the angiogenic and fiber type-specific response to RT through regulation at the levels of microRNA, gene, and protein expression.
APA, Harvard, Vancouver, ISO, and other styles
43

Magalhães, Flávio de Castro, Paula Fernandes Aguiar, Rosalina Tossige-Gomes, Sílvia Mourão Magalhães, Vinícius de Oliveira Ottone, Tiago Fernandes, Edilamar Menezes Oliveira, Marco Fabrício Dias-Peixoto, Etel Rocha-Vieira, and Fabiano Trigueiro Amorim. "High-intensity interval training followed by postexercise cold-water immersion does not alter angiogenic circulating cells, but increases circulating endothelial cells." Applied Physiology, Nutrition, and Metabolism 45, no. 1 (January 2020): 101–11. http://dx.doi.org/10.1139/apnm-2019-0041.

Full text
Abstract:
High-intensity interval training (HIIT) induces vascular adaptations that might be attenuated by postexercise cold-water immersion (CWI). Circulating angiogenic cells (CAC) participate in the vascular adaptations and circulating endothelial cells (CEC) indicate endothelial damage. CAC and CEC are involved in vascular adaptation. Therefore, the aim of the study was to investigate postexercise CWI during HIIT on CAC and CEC and on muscle angiogenesis-related molecules. Seventeen male subjects performed 13 HIIT sessions followed by 15 min of passive recovery (n = 9) or CWI at 10 °C (n = 8). HIIT comprised cycling (8–12 bouts, 90%–110% peak power). The first and the thirteenth sessions were similar (8 bouts at 90% of peak power). Venous blood was drawn before exercise (baseline) and after the recovery strategy (postrecovery) in the first (pretraining) and in the thirteenth (post-training) sessions. For CAC and CEC identification lymphocyte surface markers (CD133, CD34, and VEGFR2) were used. Vastus lateralis muscle biopsies were performed pre- and post-training for protein (p-eNOSser1177) and gene (VEGF and HIF-1) expression analysis related to angiogenesis. CAC was not affected by HIIT or postexercise CWI. Postexercise CWI increased acute and baseline CEC number. Angiogenic protein and genes were not differently modulated by post-CWI. HIIT followed by either recovery strategy did not alter CAC number. Postexercise CWI increased a marker of endothelial damage both acutely and chronically, suggesting that this postexercise recovery strategy might cause endothelial damage. Novelty HIIT followed by CWI did not alter CAC. HIIT followed by CWI increased CEC. Postexercise CWI might cause endothelial damage.
APA, Harvard, Vancouver, ISO, and other styles
44

Angelopoulos, Pavlos, Anastasios Diakoronas, Dimitrios Panagiotopoulos, Maria Tsekoura, Panagiota Xaplanteri, Dimitra Koumoundourou, Farzaneh Saki, Evdokia Billis, Elias Tsepis, and Konstantinos Fousekis. "Cold-Water Immersion and Sports Massage Can Improve Pain Sensation but Not Functionality in Athletes with Delayed Onset Muscle Soreness." Healthcare 10, no. 12 (December 5, 2022): 2449. http://dx.doi.org/10.3390/healthcare10122449.

Full text
Abstract:
This study aimed to investigate the effects of cold-water immersion (CWI) and sports massage on delayed-onset muscle soreness (DOMS) in amateur athletes. Sixty male amateur athletes were randomised into four equal groups (n = 15) receiving either CWI, sports massage, their combination, or served as controls after applying plyometric training to their lower extremities. The main outcomes measures were pain, exertion, rectus femoris perimeter, knee flexion range of motion, knee extensors isometric strength and serum creatine phosphokinase (CPK) levels examined before the plyometric training, immediately after the treatment, and 24, 48 and 72 h post exercise. We observed no significant differences between study groups in the most tested variables. CWI improved pain compared to the combined application of CWI and sports massage, and the control group both on the second and third day post exercise. Sports massage combined with CWI also led to a significant reduction in pain sensation compared to the control group. In conclusion the treatment interventions used were effective in reducing pain but were unable to affect other important adaptations of DOMS. Based on the above, sports scientists should reconsider the wide use of these interventions as a recovery strategy for athletes with DOMS.
APA, Harvard, Vancouver, ISO, and other styles
45

Haddad, Hani Al, Jonathan Parouty, and Martin Buchheit. "Effect of Daily Cold Water Immersion on Heart Rate Variability and Subjective Ratings of Well-Being in Highly Trained Swimmers." International Journal of Sports Physiology and Performance 7, no. 1 (March 2012): 33–38. http://dx.doi.org/10.1123/ijspp.7.1.33.

Full text
Abstract:
Purpose:We investigated the effect of daily cold water immersion (CWI), during a typical training week, on parasympathetic activity and subjective ratings of well-being.Methods:Over two different weeks, eight highly trained swimmers (4 men; 19.6 ± 3.2 y) performed their usual training load (5 d/wk, approx. 21 h/wk). Last training session of each training day was immediately followed by 5 min of seated recovery, in randomized order, with CWI (15°C) or without (CON). Each morning before the first training session (6:30 AM) during the two experimental weeks, subjective ratings of well-being (eg, quality of sleep) were assessed and the R-R intervals were recorded for 5 min in supine position. A vagal-related index (ie, natural logarithm of the square root of the mean of the sum of the squares of differences between adjacent normal R-R intervals; Ln rMSSD) was calculated from the last 3-min segment.Results:Compared with CON, CWI effect on Ln rMSSD was rated as possibly beneficial on day 2 [7.0% (–3; 19)], likely beneficial on day 3 [20.0% (1.5; 43.5)], very likely beneficial on day 4 [30.4% (12.2; 51.6)] and likely beneficial on day 5 [24.1% (–0.4; 54.8)]. Cold water immersion was associated with a likely greater quality of sleep on day 2 [30.0% (2.7; 64.6)], very likely on day 3 [31.0% (5.0; 63.1)] and likely on day 4 [38.6% (11.4; 72.4)] when compared with CON.Conclusion:Five minutes of CWI following training can reduce the usual exercise-induced decrease in parasympathetic activity and is associated with improved rating of perceived sleep quality.
APA, Harvard, Vancouver, ISO, and other styles
46

Martínez-Guardado, Ismael, Daniel Rojas-Valverde, Randall Gutiérrez-Vargas, Alexis Ugalde Ramírez, Juan Carlos Gutiérrez-Vargas, and Braulio Sánchez-Ureña. "Intermittent Pneumatic Compression and Cold Water Immersion Effects on Physiological and Perceptual Recovery during Multi-Sports International Championship." Journal of Functional Morphology and Kinesiology 5, no. 3 (June 30, 2020): 45. http://dx.doi.org/10.3390/jfmk5030045.

Full text
Abstract:
Background: Congested-fixture championships are common during the selection of the athletes and teams participating in the Olympic Games. Throughout these tournaments, it is fundamental to perform optimally, rest well, and recover between competitions. This study aimed to (a) explore the effectiveness of the use of intermittent pneumatic compression (IPC) and cold water immersion (CWI) to recover muscle mechanical function (MuscleMechFx), hydration status (HydS), pain perception (PainPercep), rate of perceived exertion (RPE), sleep hours, and sleep quality (SleepQual) during a regional multi-sports international championship and (b) compare these results by sex. Methods: A total of 52 basketball and handball players were exposed to a recovery protocol after the competition as follows: IPC, sequential 20 min at 200 mmHg, and CWI, continuous 12 min at 12 °C. Results: MuscleMechFx presented differences by match and sex (p = 0.058) in time of contraction of biceps femoris; SleepQual and sleep hours were different between matches (<0.01). Conclusions: IPC + CWI seems to be effective to maintain some MuscleMechFx, HydS, and recovery and pain perception during a congested multi-sport tournament.
APA, Harvard, Vancouver, ISO, and other styles
47

Miller, Kevin C., Tyler Truxton, and Blaine Long. "Temperate-Water Immersion as a Treatment for Hyperthermic Humans Wearing American Football Uniforms." Journal of Athletic Training 52, no. 8 (August 1, 2017): 747–52. http://dx.doi.org/10.4085/1062-6050-52.5.05.

Full text
Abstract:
Context: Cold-water immersion (CWI; 10°C) can effectively reduce body core temperature even if a hyperthermic human is wearing a full American football uniform (PADS) during treatment. Temperate-water immersion (TWI; 21°C) may be an effective alternative to CWI if resources for the latter (eg, ice) are unavailable. Objective: To measure rectal temperature (Trec) cooling rates, thermal sensation, and Environmental Symptoms Questionnaire (ESQ) scores of participants wearing PADS or shorts, undergarments, and socks (NOpads) before, during, and after TWI. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Thirteen physically active, unacclimatized men (age = 22 ± 2 years, height = 182.3 ± 5.2 cm, mass = 82.5 ± 13.4 kg, body fat = 10% ± 4%, body surface area = 2.04 ± 0.16 m2). Intervention(s): Participants exercised in the heat (40°C, 50% relative humidity) on 2 days while wearing PADS until Trec reached 39.5°C. Participants then underwent TWI while wearing either NOpads or PADS until Trec reached 38°C. Thermal sensation and ESQ responses were collected at various times before and after exercise. Main Outcome Measure(s): Temperate-water immersion duration (minutes), Trec cooling rates (°C/min), thermal sensation, and ESQ scores. Results: Participants had similar exercise times (NOpads = 38.1 ± 8.1 minutes, PADS = 38.1 ± 8.5 minutes), hypohydration levels (NOpads = 1.1% ± 0.2%, PADS = 1.2% ± 0.2%), and thermal sensation ratings (NOpads = 7.1 ± 0.4, PADS = 7.3 ± 0.4) before TWI. Rectal temperature cooling rates were similar between conditions (NOpads = 0.12°C/min ± 0.05°C/min, PADS = 0.13°C/min ± 0.05°C/min; t12 = 0.82, P = .79). Thermal sensation and ESQ scores were unremarkable between conditions over time. Conclusions: Temperate-water immersion produced acceptable (ie, &gt;0.08°C/min), though not ideal, cooling rates regardless of whether PADS or NOpads were worn. If a football uniform is difficult to remove or the patient is noncompliant, clinicians should begin water-immersion treatment with the athlete fully equipped. Clinicians should strive to use CWI to treat severe hyperthermia, but when CWI is not feasible, TWI should be the next treatment option because its cooling rate was higher than the rates of other common modalities (eg, ice packs, fanning).
APA, Harvard, Vancouver, ISO, and other styles
48

Christiansen, Danny, David J. Bishop, James R. Broatch, Jens Bangsbo, Michael J. McKenna, and Robyn M. Murphy. "Cold-water immersion after training sessions: effects on fiber type-specific adaptations in muscle K+ transport proteins to sprint-interval training in men." Journal of Applied Physiology 125, no. 2 (August 1, 2018): 429–44. http://dx.doi.org/10.1152/japplphysiol.00259.2018.

Full text
Abstract:
Effects of regular use of cold-water immersion (CWI) on fiber type-specific adaptations in muscle K+ transport proteins to intense training, along with their relationship to changes in mRNA levels after the first training session, were investigated in humans. Nineteen recreationally active men (24 ± 6 yr, 79.5 ± 10.8 kg, 44.6 ± 5.8 ml·kg−1·min−1) completed six weeks of sprint-interval cycling, either without (passive rest; CON) or with training sessions followed by CWI (15 min at 10°C; COLD). Muscle biopsies were obtained before and after training to determine abundance of Na+, K+-ATPase isoforms (α1–3, β1–3) and phospholemman (FXYD1) and after recovery treatments (+0 h and +3 h) on the first day of training to measure mRNA content. Training increased ( P < 0.05) the abundance of α1 and β3 in both fiber types and β1 in type-II fibers and decreased FXYD1 in type-I fibers, whereas α2 and α3 abundance was not altered by training ( P > 0.05). CWI after each session did not influence responses to training ( P > 0.05). However, α2 mRNA increased after the first session in COLD (+0 h, P < 0.05) but not in CON ( P > 0.05). In both conditions, α1 and β3 mRNA increased (+3 h; P < 0.05) and β2 mRNA decreased (+3 h; P < 0.05), whereas α3, β1, and FXYD1 mRNA remained unchanged ( P > 0.05) after the first session. In summary, Na+,K+-ATPase isoforms are differently regulated in type I and II muscle fibers by sprint-interval training in humans, which, for most isoforms, do not associate with changes in mRNA levels after the first training session. CWI neither impairs nor improves protein adaptations to intense training of importance for muscle K+ regulation. NEW & NOTEWORTHY Although cold-water immersion (CWI) after training and competition has become a routine for many athletes, limited published evidence exists regarding its impact on training adaptation. Here, we show that CWI can be performed regularly without impairing training-induced adaptations at the fiber-type level important for muscle K+ handling. Furthermore, sprint-interval training invoked fiber type-specific adaptations in K+ transport proteins, which may explain the dissociated responses of whole-muscle protein levels and K+ transport function to training previously reported.
APA, Harvard, Vancouver, ISO, and other styles
49

Truxton, Tyler T., and Kevin C. Miller. "Can Temperate-Water Immersion Effectively Reduce Rectal Temperature in Exertional Heat Stroke? A Critically Appraised Topic." Journal of Sport Rehabilitation 26, no. 5 (September 2017): 447–51. http://dx.doi.org/10.1123/jsr.2015-0200.

Full text
Abstract:
Clinical Scenario:Exertional heat stroke (EHS) is a medical emergency which, if left untreated, can result in death. The standard of care for EHS patients includes confirmation of hyperthermia via rectal temperature (Trec) and then immediate cold-water immersion (CWI). While CWI is the fastest way to reduce Trec, it may be difficult to lower and maintain water bath temperature in the recommended ranges (1.7°C–15°C [35°F–59°F]) because of limited access to ice and/or the bath being exposed to high ambient temperatures for long periods of time. Determining if Trec cooling rates are acceptable (ie, >0.08°C/min) when significantly hyperthermic humans are immersed in temperate water (ie, ≥20°C [68°F]) has applications for how EHS patients are treated in the field.Clinical Question:Are Trec cooling rates acceptable (≥0.08°C/min) when significantly hyperthermic humans are immersed in temperate water?Summary of Findings:Trec cooling rates of hyperthermic humans immersed in temperate water (≥20°C [68°F]) ranged from 0.06°C/min to 0.19°C/min. The average Trec cooling rate for all examined studies was 0.11±0.06°C/min.Clinical Bottom Line:Temperature water immersion (TWI) provides acceptable (ie, >0.08°C/min) Trec cooling rates for hyperthermic humans post-exercise. However, CWI cooling rates are higher and should be used if feasible (eg, access to ice, shaded treatment areas).Strength of Recommendation:The majority of evidence (eg, Level 2 studies with PEDro scores ≥5) suggests TWI provides acceptable, though not ideal, Trec cooling. If possible, CWI should be used instead of TWI in EHS scenarios.
APA, Harvard, Vancouver, ISO, and other styles
50

Kwiecien, Susan Y., Malachy P. McHugh, Stuart Goodall, Kirsty M. Hicks, Angus M. Hunter, and Glyn Howatson. "Exploring the Efficacy of a Safe Cryotherapy Alternative: Physiological Temperature Changes From Cold-Water Immersion Versus Prolonged Cooling of Phase-Change Material." International Journal of Sports Physiology and Performance 14, no. 9 (October 1, 2019): 1288–96. http://dx.doi.org/10.1123/ijspp.2018-0763.

Full text
Abstract:
Purpose: To evaluate the effectiveness between cold-water immersion (CWI) and phase-change-material (PCM) cooling on intramuscular, core, and skin-temperature and cardiovascular responses. Methods: In a randomized, crossover design, 11 men completed 15 min of 15°C CWI to the umbilicus and 2-h recovery or 3 h of 15°C PCM covering the quadriceps and 1 h of recovery, separated by 24 h. Vastus lateralis intramuscular temperature at 1 and 3 cm, core and skin temperature, heart-rate variability, and thermal comfort were recorded at baseline and 15-min intervals throughout treatment and recovery. Results: Intramuscular temperature decreased (P < .001) during and after both treatments. A faster initial effect was observed from 15 min of CWI (Δ: 4.3°C [1.7°C] 1 cm; 5.5°C [2.1°C] 3 cm; P = .01). However, over time (2 h 15 min), greater effects were observed from prolonged PCM treatment (Δ: 4.2°C [1.9°C] 1 cm; 2.2°C [2.2°C] 3 cm; treatment × time, P = .0001). During the first hour of recovery from both treatments, intramuscular temperature was higher from CWI at 1 cm (P = .013) but not 3 cm. Core temperature deceased 0.25° (0.32°) from CWI (P = .001) and 0.28°C (0.27°C) from PCM (P = .0001), whereas heart-rate variability increased during both treatments (P = .001), with no differences between treatments. Conclusions: The magnitude of temperature reduction from CWI was comparable with PCM, but intramuscular temperature was decreased for longer during PCM. PCM cooling packs offer an alternative for delivering prolonged cooling whenever application of CWI is impractical while also exerting a central effect on core temperature and heart rate.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography