Dissertations / Theses on the topic 'Cold kinetic deposition (cold spray)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 21 dissertations / theses for your research on the topic 'Cold kinetic deposition (cold spray).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Sámel, Maroš. "Využití technologie studené kinetické depozice na materiálech používaných v elektrotechnice." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442477.
Full textRech, S., A. Surpi, S. Vezzu, A. Patelli, A. Trentin, J. Glor, Jenny Frodelius, Lars Hultman, and Per Eklund. "Cold-spray deposition of Ti2AlC coatings." Linköpings universitet, Tunnfilmsfysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-92686.
Full textPereira, de Magalhaes e. Couto Miguel. "Cold Spray Deposition of WC-Co Cermets." Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/285313.
Full textEn primer lugar, el objetivo principal de este trabajo de investigación fue proporcionar un nuevo método de deposición para depositar cermets de WC-Co. Esta nueva tecnología proporcionó nuevos recubrimientos sin ninguna descomposición de la microestructura del polvo inicial y por lo tanto la mejora de las presentes aplicaciones de WC-Co en la gran industria. La deposición de cermets de WC-Co resistentes al desgaste ha sido siempre una de las principales aplicaciones de las técnicas de proyección térmica convencionales como por ejemplo High Velocity Oxy-Fuel (HVOF). Las demandas de la industria en términos de producción y la necesidad y constante búsqueda de mejores propiedades mecánicas y electroquímicas conducen al objetivo principal y la motivación de esta tesis: la producción de nuevos y mejores recubrimientos de WC-Co sobre varios sustratos utilizando una técnica de deposición nueva, Cold Gas Spraying (CGS). El hecho de que antes de la publicación del primer artículo que nació de este trabajo de investigación no se había depositado previamente con éxito este tipo de materiales por CGS fue también uno de los principales puntos de motivación. Por esta razón, el lector encontrará, en la integridad del documento, los trabajos de investigación que fueron publicados durante estos años de programa de doctorado y cumplen los objetivos principales de esta tesis titulada "Deposición de cermets de WC-Co por Proyección Fría".
Xie, Jing. "Simulation of cold spray particle deposition process." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0044/document.
Full textCold spray is a rapidly developing coating technology for depositing materials in the solid state. The cold spray particle deposition process was simulated by modeling the high velocity impacts of spherical particles onto a flat substrate under various conditions. We, for the first time, proposed the Couple Eulerian Lagrangian (CEL) numerical approach to solve the high strain rate deformation problem. The capability of the CEL numerical approach in modeling the Cold Spray deposition process was verified through a systematic parameter study, including impact velocity, initial particle temperature, friction coefficient and materials combination. The simulation results by using the CEL numerical approach agree with the experimental results published in the literature. Comparing with other numerical approaches, which are Lagrangian, ALE and SPH, the CEL analyses are generally more accurate and more robust in higher deformation regimes. Besides simulating the single particle impact problem, we also extended our study into the simulation of multiple impacts. A FCC-like particles arrangement model that inspired by the crystal structure was built to investigate the porosity rate and residual stress of deposited particles under various conditions. We observed not only the 3D profiles of voids, but also their distributions and developments during different procedures. Higher impact velocity and higher initial temperature of particles are both of benefit to produce a denser cold spray coating. The compressive residual stresses existed in the interface between the particle and substrate is mainly caused by the large and fast plastic deformation. Another simplified model for multiple impacts was created for the simulation of surface erosion. A severe surface erosion is the result of a high impact velocity, a high friction coefficient and a low contact angle. Two element failure models suitable for high-strain-rate dynamic problems were introduced in this study. For a ductile material as Copper, it followed two fracture modes in our study, which are tensile failure mode and shear failure mode. The former one mainly occurred beneath the substrate surface and the periphery of substrate craters, nevertheless the latter one was found predominately at the surface of craters. Four steps were found during the propagation of crack: void formation; crack formation; crack growth; coalescence and failure. A simple criterion equation was derived based on the simulation results for predicting the initiation of damage, which the erosion velocity v_{ero} is a function of contact angle and erosion velocity for normal impact v_{pi/2}. The equivalent plastic strain could also be a parameter for identifying the onset of damage, identified as being 1.042 for Copper in our study
Leazer, Jeremy D. "Processing-microstructure-property relationships for cold spray powder deposition of Al-Cu alloys." Thesis, Monterey, California: Naval Postgraduate School, 2015. http://hdl.handle.net/10945/45887.
Full textThis thesis presents research on the cold gas-dynamic spray process applied to the deposition of aluminum-copper alloy coatings. Cold spray deposition is a process utilized to create corrosion protection coatings and to perform additive repair for aluminum structures. This thesis utilized a series of Al-Cu binary alloy powders, from 2–5 weight percent copper and characterized their chemistry and microstructure. The powders were deposited using the cold spray approach to study the systematic increase of the alloying agent on the deposition process and coating characteristics. Deposition efficiency, critical velocity, coating thickness, hardness, porosity, and microstructure were all characterized as functions of carrier gas pressure, carrier gas temperature and feedstock powder copper composition. This thesis has demonstrated that all of the aluminum copper powders utilized can be successfully deposited via the low-pressure cold spray process with helium as the carrier gas. The copper content of the powders has a direct effect on the volume fraction of Al2Cu intermetallics, and on the coating hardness, while having no measurable effect on critical velocity for deposition or the coating thickness per pass.
Sabela, Jakub. "Struktura a mechanické vlastnosti nástřiku Ti-6Al-4V připraveného metodou Cold Spray." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-400850.
Full textDelloro, Francesco. "Méthodes morphologique et par éléments finis combinées pour une nouvelle approche de la modélisation 3D du dépôt par projection dynamique par gaz froid (« cold spray »)." Thesis, Paris, ENMP, 2015. http://www.theses.fr/2015ENMP0017/document.
Full textThis study on the cold spray process aimed at achieving an original coating build-up model, capable of predicting the resulting microstructure as a function of powder morphology and process parameters. The work focused on three main interrelated subjects: 3D powder characterization, simulation of individual impacts on a flat substrate by the finite element method and deposition build-up modeling.An innovative method based on microtomographical observations was used for 3D characterization of the powder. Image analysis allowed to separate single powder particles and to gather them into a 3D collection containing approximatively 18 000 objects. Their size and shape were quantitatively measured. A cluster analysis method (K-means) was then applied to this data set to divide the particles into 7 classes based on their shape.The second main research topic consisted in performing particle impact simulations on a flat substrate by the finite element method (using the commercial software Abaqus). The use of dedicated meshing tools allowed to simulate the impact of real particles, as observed by microtomography. Scripting techniques were used to carry out a large number of these simulations but, due to limited robustness of the procedure, only few of them were successfully conducted.The third research area focused on the development of a deposition build-up model (in 2D to allow a simpler implementation). Data from finite element results were interpolated and used in an iterative simulation, where impacting particles were deposited one by one. Different approaches were tested but the development of the model could not be completed in the framework of this thesis.Model validation could be performed on finite element simulations. The two kinds of splats (Ta on Cu and Ta on Ta) were considered separately. Concerning the first, direct microtomographical imaging could be applied, due to the heterogeneity of materials. Splats were observed, individually separated and gathered in a 3D collection as done before with powder particles. Simulated and observed splats could then be compared on a statistical basis. No particular discrepancy was observed, confirming the impact simulation method used. The second kind of splats (Ta on Ta) was complicated by the homogeneity of the materials, preventing the use of microtomography. The deposition (before spraying) of a contrast layer between Ta substrate and Ta particle was tried by different techniques. The only method giving exploitable results was the chemical vapor deposition of a Fe layer onto the powder particles. However, the small number of adherent particles and the weak contrast obtained in the images prevented the use of the methods already applied to powder particles and Ta splats onto Cu.The optimization of powder granulometry and shape (towards a specific application) is one of the main expected applications of the deposition build-up model, together with the simulation of composite powders (typically, metal and oxide). The involvement of phase transformation phenomena into the model could extend its application to the whole family of thermal spray processes (plasma, HVOF, etc.) or to other additive manufacturing techniques. In general, the philosophy behind our modeling approach could be applied to every manufacturing/coating technique where the supply material is in powder form and undergoes a certain transformation during the process. Finally, the coupling of such a model with homogenization techniques would allow the prediction of macroscopic properties depending on deposit microstructure (e.g. thermal or electrical conductivity)
Bolduc, Mathieu. "Deposition of Commercially Pure Titanium Powder Using Low Pressure Cold Spray and Pulsed Gas Dynamic Spray for Aerospace Repairs." Thesis, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/24249.
Full textAkhtar, Kareem. "A Numerical Study of Supersonic Rectangular Jet Impingement and Applications to Cold Spray Technology." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/71711.
Full textPh. D.
Tsaknopoulos, Kyle Leigh. "Computational Thermodynamic and Kinetic Modeling and Characterization of Phase Transformations in Rapidly Solidified Aluminum Alloy Powders." Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-dissertations/516.
Full textŠteiniger, Jakub. "Hodnocení využití technologie studené kinetické depozice na materiálech používaných v elektrotechnice." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442436.
Full textMatiash, Dmytro. "Opravy kontaktních ploch součástí pomocí technologie studené kinetizace." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-416612.
Full textBunel, Margaux. "Influence du traitement thermique des poudres sur le dépôt sur projection dynamique par gaz froid (« cold spray ») d’alliage d’aluminium 2024 pour la fabrication additive." Thesis, Université Paris sciences et lettres, 2020. http://www.theses.fr/2020UPSLM051.
Full textCold spray is a process where powder particles are sprayed at a high speed onto a substrate. From deformation the powder particles adhere to the substrate, which result in deposition build-up. The cold sprayed coatings show high mechanical properties, are very dense, can be thick and have a high deposition efficiency, which makes cold spray an ideal process for additive manufacturing. However, deposition efficiency for aluminum alloys such as those commonly used in different industrial sectors, are insufficient for additive manufacturing to be economically viable. In this study, a heat treatment of the powder is carried out in order to modify the properties of the powder particles to improve the deposition efficiency. The influence of the type of cold spray facilities and of spraying parameters was studied from the measurement of the particle velocity (DPV2000) and from assessing the properties of the various coatings. The coatings made of the heat treated powders compared with those made of untreated powders using similar conditions for both were used to show the influence of the modification of the particles. Additive manufacturing requires the understanding of how powder particle build-up to achieve given shapes. A model of deposition, at a macroscopic scale, based on experimental data was developed to predict the shape of the deposit. The results of these simulations were compared to experimental deposits to check thickness, shape and the surface state
Couto, Miguel Pereira de Magalhães e. "Cold spray deposition of WC-Co." Dissertação, 2011. http://hdl.handle.net/10216/64690.
Full textCouto, Miguel Pereira de Magalhães e. "Cold spray deposition of WC-Co." Master's thesis, 2011. http://hdl.handle.net/10216/64690.
Full textBarbosa, Maria Manuel Fernandes. "Cold spray deposition of Titanium onto aluminium substrates." Dissertação, 2009. http://hdl.handle.net/10216/59769.
Full textBush, Trenton. "Cold Gas Dynamic Spray – Characterization of Polymeric Deposition." 2016. https://scholarworks.umass.edu/masters_theses_2/413.
Full textBarbosa, Maria Manuel Fernandes. "Cold spray deposition of Titanium onto aluminium substrates." Master's thesis, 2009. http://hdl.handle.net/10216/59769.
Full textShah, Sagar P. "Numerical Simulation of High Velocity Impact of a Single Polymer Particle during Cold Spray Deposition." 2016. https://scholarworks.umass.edu/masters_theses_2/446.
Full textRigali, Jeffrey. "Electroless Deposition & Electroplating of Nickel on Chromium-Nickel Carbide Powder." 2017. https://scholarworks.umass.edu/masters_theses_2/550.
Full text"Nozzle Design for Vacuum Aerosol Deposition of Nanostructured Coatings." Master's thesis, 2017. http://hdl.handle.net/2286/R.I.45486.
Full textDissertation/Thesis
Masters Thesis Electrical Engineering 2017