Academic literature on the topic 'Cohomologie des groupes condensés'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cohomologie des groupes condensés.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cohomologie des groupes condensés"
Sambou, Salomon, and Mansour Sané. "Quelques résultats d'isomorphisme entre groupes de cohomologie." Annales Polonici Mathematici 104, no. 1 (2012): 97–103. http://dx.doi.org/10.4064/ap104-1-7.
Full textBarge, Jean. "Cohomologie des groupes et corps d'invariants multiplieatifs." Mathematische Annalen 283, no. 3 (September 1989): 519–28. http://dx.doi.org/10.1007/bf01442744.
Full textGuin, Daniel. "Cohomologie et homologie non abÉliennes des groupes." Journal of Pure and Applied Algebra 50, no. 2 (February 1988): 109–37. http://dx.doi.org/10.1016/0022-4049(88)90110-7.
Full textBarge, Jean, and Fabien Morel. "Cohomologie des groupes linéaires, K-théorie de Milnor et groupes de Witt." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 328, no. 3 (February 1999): 191–96. http://dx.doi.org/10.1016/s0764-4442(99)80120-7.
Full textBarge, J. "Cohomologie des groupes et corps d'invariants multiplicatifs tordus." Commentarii Mathematici Helvetici 72, no. 1 (May 1997): 1–15. http://dx.doi.org/10.1007/pl00000360.
Full textMagneron, Bernard. "Cohomologie des groupes et des espaces de transformation." Journal of Algebra 112, no. 2 (February 1988): 326–48. http://dx.doi.org/10.1016/0021-8693(88)90094-4.
Full textDeligne, P. "Extensions centrales de groupes algébriques simplement connexes et cohomologie galoisienne." Publications mathématiques de l'IHÉS 84, no. 1 (December 1996): 35–89. http://dx.doi.org/10.1007/bf02698835.
Full textWouters, Tim. "L'invariant de Suslin en caractéristique positive." Journal of K-theory 5, no. 3 (June 2010): 559–602. http://dx.doi.org/10.1017/is010005019jkt117.
Full textBrion, Michel. "Repr�sentations des groupes r�ductifs dans des espaces de cohomologie." Mathematische Annalen 301, no. 1 (January 1995): 821–22. http://dx.doi.org/10.1007/bf01446661.
Full textTCHOUDJEM, A. "Cohomologie des fibrés en droites sur les compactifications des groupes réductifs." Annales Scientifiques de l’École Normale Supérieure 37, no. 3 (May 2004): 415–48. http://dx.doi.org/10.1016/j.ansens.2003.11.001.
Full textDissertations / Theses on the topic "Cohomologie des groupes condensés"
Artusa, Marco. "Sur des théorèmes de dualité pour la cohomologie condensée du groupe de Weil d'un corps p-adique." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0228.
Full textThe goal of this thesis is twofold. First, we build a topological cohomology theory for the Weil group of p-adic fields. Secondly, we use this theory to prove duality theorems for such fields, which manifest as Pontryagin duality between locally compact abelian groups. These results improve existing duality theorems and give them a topological flavour. Condensed Mathematics allow us to reach these objectives, providing a framework where it is possible to do algebra with topological objects. We define and study a cohomology theory for condensed groups and pro-condensed groups, and we apply it to the Weil group of a p-adic field, considered as a pro-condensed group. The resulting cohomology groups are proved to be locally compact abelian groups of finite ranks in some special cases. This allows us to enlarge the local Tate duality to a more general category of non-necessarily discrete coefficients, where it takes the form of a Pontryagin duality between locally compact abelian groups. In the last part of the thesis, we use the same framework to recover a Weil-version of the Tate duality with coefficients in abelian varieties and more generally in 1-motives, expressing those dualities as perfect pairings between condensed abelian groups. To do this, we associate to every algebraic group, resp. 1-motive, a condensed abelian group, resp. a complex of condensed abelian groups, with an action of the (pro-condensed) Weil group. We call this association the condensed Weil-´etale realisation. We show the existence of a condensed Poincar´e pairing for abelian varieties and we prove a condensed-Weil version of the Tate duality with coefficients in abelian varieties, which improves the correspondent result of Karpuk. Lastly, we exhibit a condensed Poincar´e pairing for 1-motives. We show that this pairing is compatible with the weight filtration and we prove a duality theorem with coefficients in 1-motives, which improves a result of Harari-Szamuely
Basbois, Nicolas. "La naissance de la cohomologie des groupes." Phd thesis, Université de Nice Sophia-Antipolis, 2009. http://tel.archives-ouvertes.fr/tel-00430204.
Full textBonneau, Philippe. "Groupes quantiques." Dijon, 1993. http://www.theses.fr/1993DIJOS022.
Full textSequeira-Manzino, Emiliano. "Cohomologie Lp et d'Orlicz relative et applications aux groupes d'Heintze." Thesis, Lille 1, 2020. https://pepite-depot.univ-lille.fr/LIBRE/EDSPI/2020/2020LILUI053.pdf.
Full textThis work has two parts. In the first we define the $L^p$-cohomology of certain Gromov-hyperbolic spaces relative to a point on its boundary at infinity. This is done in two different contexts. First we consider a simplicial version, defined for simplicial complexes with bounded geometry. In a similar way as in the classical case we prove the quasi-isometry invariance under a contractibility condition. Then we define a relative version of the de Rham $L^p$-cohomology in the case of Riemannian manifolds. We study the relationship between these two definitions, which allows to conclude that this second version is also invariant under certain hypothesis. As an application we study the $L^p$-cohomology relative to a special point on the boundary of Heintze groups of the form $\R^{n-1}\rtimes_\alpha\R$, where the derivation $\alpha$ has positive eigenvalues $\lambda_1\leq\cdots\leq\lambda_{n-1}$. As a consequence the numbers $\frac{\lambda_1}{\mathrm{tr}(\alpha)},\ldots,\frac{\lambda_{n-1}}{\mathrm{tr}(\alpha)}$ are invariant by quasi-isometries. In the second part we work with Orlicz cohomology, which is a generalization of $L^p$-cohomology. We also define a relative version and adapt the proof of the quasi-isometry invariance in the simplicial case. As the main result of this part we prove the equivalence between the simplicial (relative) Orlicz cohomology and the (relative) Orlicz-de Rham cohomology for Lie groups. An important consequence of this is the quasi-isometry invariance of Orlicz-de Rham cohomology in the case of contractible Lie groups
Louvet, Nicolas. "Phénomènes de rigidité pour un réseau dans un produit de groupes." Metz, 1998. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1998/Louvet.Nicolas.SMZ9841.pdf.
Full textLouvet, Nicolas Bekka M. Bachir. "Phénomènes de rigidité pour un réseau dans un produit de groupes /." [S.l.] : [s.n.], 1998. ftp://ftp.scd.univ-metz.fr/pub/Theses/1998/Louvet.Nicolas.SMZ9841.pdf.
Full textRousseau, Cédric. "Déformations d'actions de groupes et de certains réseaux résolubles." Valenciennes, 2006. http://ged.univ-valenciennes.fr/nuxeo/site/esupversions/9d5ce0c1-8f64-4c8e-8316-a2f3833238d9.
Full textThe criterion for local rigidity given by Weil in 1964 is at the beginning of many group cohomology calculations in order to study the deformations of lattices in Lie groups. By introducing by analogy the concept of infinitesimal rigidity, Zimmer suggests the same type of calculations for the deformations of group actions on differentiable manifolds. We deal in this work with situations not very studied hitherto for these two concepts of rigidity : the standard action on the torus T2 of an infinite index subgroup of SL(2,ℤ) generated by a hyperbolic matrix. We will define the concept of Sobolev Ws-infinitesimal rigidity for this action and we will show that this one is Ws-infinitesimally rigid only if s is strictly lower than 1, and from there, that this action is not differentiably infinitesimally rigid. The deformations of a certain lattice in a non-nilpotent solvable Lie group G. We will determine the dimension of the cohomology space H1(,g) supposed “to measure” the defect of rigidity of this lattice, then, by the precise description of its deformations, we will show that, although not being locally rigid in G, the group , considered as a subgroup of SL(n+1,ℝ), is locally SL(n+1,ℝ)-rigid in G in the sense that any small enough deformation of in G is conjugated to by an element of SL(n+1, ℝ)
Tchoudjem, Alexis. "Représentations d'algèbres de Lie dans des groupes de cohomologie à support." Université Joseph Fourier (Grenoble), 2002. http://www.theses.fr/2002GRE10235.
Full textTouzé, Antoine Franjou Vincent. "Cohomologie rationnelle du groupe linéaire et extensions de bifoncteurs." [S.l.] : [s.n.], 2008. http://castore.univ-nantes.fr/castore/GetOAIRef?idDoc=37741.
Full textNguyen, Tuong-Huy. "Cohomologie des variétés de Coxeter pour le groupe linéaire : algèbre d'endomorphismes, compactification." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS031/document.
Full textDeligne-Lusztig varieties associated to Coxeter elements, or more simply Coxeter Varieties denoted by $YY(dot{c})$, are good candidates to realize the derived equivalence needed for the Broué's conjecture. The conjecture implies that the varieties should have disjoint cohomology as well as gives a description of the endomorphisms algebra.For linear groups, we describe the cohomology of the Coxeter varieties and hence show that it agrees with the conditions implied by Broué's conjecture. To do so, we prove it is possible to apply a og transitivityfg result allowing us to restrict to og smallerfg Coxeter varieties. Then, we apply a result obtained by Lusztig on varieties $XX(c)$, which are quotient varieties of $YY(dot{c})$ by some finite groups.In the last part of the thesis, we use the description of the cohomology of Coxeter varieties to connect the cohomology of the compactification $overline{YY}(dot{c})$ and the cohomology of the compactification $overline{XX}(c)$
Books on the topic "Cohomologie des groupes condensés"
Mimura, M. Topology of lie groups, I and II. Providence, R.I: American Mathematical Society, 1991.
Find full textMilgram, R. James, and Alejandro Adem. Cohomology of Finite Groups. Springer London, Limited, 2013.
Find full textMilgram, R. James, and Alejandro Adem. Cohomology of Finite Groups. Springer London, Limited, 2013.
Find full textKarpilovsky, Gregory. Group Representations : Volume 5. North-Holland, 1996.
Find full textKarpilovsky, Gregory. Group Representations : Volume 3. North-Holland, 1994.
Find full textThomas, C. B. Characteristic Classes and the Cohomology of Finite Groups. University of Cambridge ESOL Examinations, 2011.
Find full textThomas, C. B. Characteristic Classes and the Cohomology of Finite Groups. Cambridge University Press, 2008.
Find full textCohen, Daniel E. Groups of Cohomological Dimension One. Springer London, Limited, 2006.
Find full textBook chapters on the topic "Cohomologie des groupes condensés"
Serre, Jean-Pierre. "Cohomologie des groupes profinis." In Cohomologie Galoisienne, 1–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/bfb0108759.
Full textSerre, Jean-Pierre. "Cohomologie des groupes discrets." In Springer Collected Works in Mathematics, 532–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-37726-6_83.
Full textSerre, Jean-Pierre. "Cohomologie des groupes discrets." In Springer Collected Works in Mathematics, 593–685. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-37726-6_88.
Full textSerre, Jean-Pierre. "Cohomologie des extensions de groupes." In Springer Collected Works in Mathematics, 5–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-39816-2_3.
Full textSerre, Jean-Pierre. "Cohomologie galoisienne des groupes algébriques linéaires." In Springer Collected Works in Mathematics, 152–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-37726-6_53.
Full textSerre, Jean-Pierre. "Une relation dans la cohomologie des p-groupes." In Springer Collected Works in Mathematics, 159–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-41978-2_12.
Full textSerre, Jean-Pierre. "Cohomologie à supports compacts des immeubles de Bruhat-Tits; applications à la cohomologie des groupes S-arithmétiques." In Springer Collected Works in Mathematics, 694–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-37726_91.
Full textSerre, Jean-Pierre. "Adjonction de coins aux espaces symétriques; applications à la cohomologie des groupes arithmétiques." In Springer Collected Works in Mathematics, 691–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-37726_90.
Full textSerre, Jean-Pierre. "Détermination des p-puissances réduites de Steenrod dans la cohomologie des groupes classiques. Applications." In Springer Collected Works in Mathematics, 21–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-39816-2_8.
Full text"CHAPITRE 2 GROUPES MODIFIÉS À LA TATE, COHOMOLOGIE DES GROUPES CYCLIQUES." In Cohomologie galoisienne, 39–64. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2067-2-004.
Full text