Academic literature on the topic 'Cohomologie completée'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cohomologie completée.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cohomologie completée"
Déglise, F., and N. Mazzari. "THE RIGID SYNTOMIC RING SPECTRUM." Journal of the Institute of Mathematics of Jussieu 14, no. 4 (June 13, 2014): 753–99. http://dx.doi.org/10.1017/s1474748014000152.
Full textHuyghe, Christine, and Tobias Schmidt. "𝒟-modules arithmétiques sur la variété de drapeaux." Journal für die reine und angewandte Mathematik (Crelles Journal) 2019, no. 754 (September 1, 2019): 1–15. http://dx.doi.org/10.1515/crelle-2017-0021.
Full textEmmanouil, Ioannis. "Balance in complete cohomology." Journal of Pure and Applied Algebra 218, no. 4 (April 2014): 618–23. http://dx.doi.org/10.1016/j.jpaa.2013.08.001.
Full textAsadollahi, Javad, and Shokrollah Salarian. "Complete Cohomologies and Some Homological Invariants." Algebra Colloquium 14, no. 01 (March 2007): 155–66. http://dx.doi.org/10.1142/s1005386707000156.
Full textHu, Jiangsheng, Dongdong Zhang, Tiwei Zhao, and Panyue Zhou. "Complete Cohomology for Extriangulated Categories." Algebra Colloquium 28, no. 04 (November 8, 2021): 701–20. http://dx.doi.org/10.1142/s1005386721000547.
Full textDembegioti, Fotini. "On the zeroeth complete cohomology." Journal of Pure and Applied Algebra 203, no. 1-3 (December 2005): 119–32. http://dx.doi.org/10.1016/j.jpaa.2005.03.008.
Full textErdmann, Karin, and Magnus Hellstrøm-Finnsen. "Hochschild cohomology of some quantum complete intersections." Journal of Algebra and Its Applications 17, no. 11 (November 2018): 1850215. http://dx.doi.org/10.1142/s0219498818502158.
Full textDimca, Alexandru. "Residues and cohomology of complete intersections." Duke Mathematical Journal 78, no. 1 (April 1995): 89–100. http://dx.doi.org/10.1215/s0012-7094-95-07805-3.
Full textAleksandrov, A. G. "COHOMOLOGY OF A QUASIHOMOGENEOUS COMPLETE INTERSECTION." Mathematics of the USSR-Izvestiya 26, no. 3 (June 30, 1986): 437–77. http://dx.doi.org/10.1070/im1986v026n03abeh001155.
Full textMazzeo, Rafe, Álvaro Pelayo, and Tudor S. Ratiu. "L2-cohomology and complete Hamiltonian manifolds." Journal of Geometry and Physics 87 (January 2015): 305–13. http://dx.doi.org/10.1016/j.geomphys.2014.07.012.
Full textDissertations / Theses on the topic "Cohomologie completée"
Rodriguez, Camargo Juan Esteban. "Locally analytic completed cohomology of Shimura varieties and overconvergent BGG maps." Thesis, Lyon, 2022. http://www.theses.fr/2022LYSEN027.
Full textIn this thesis, we study the Hodge-Tate structure of the proétale cohomology of Shimura varieties. This document is divided in four main issues. First, we construct an integral model of the perfectoid modular curve. Using this formal scheme, we prove some vanishing results for the coherent cohomology of the perfectoid modular curve, we also provide a description of the dual completed cohomology as an inverse limit of integral modular forms of weight 2 by normalized traces. Secondly, we construct the overconvergent Eichler-Shimura map for the first coherent cohomology group, complementing the work of Andreatta-Iovita-Stevens. More precisely, we construct a map from the overconvergent cohomology with compact support of Boxer-Pilloni to the locally analytic modular symbols of Ash-Stevens. We reinterpret the construction of these maps in terms of the Hodge-Tate period map and the perfectoid modular curve. Thirdly, in a joint work with Joaquín Rodrigues Jacinto, we develop the classical theory of locally analytic representations of p-adic Lie groups in the context of condensed mathematics. Inspired from foundational works of Lazard, Schneider-Teitelbaum and Emerton, we define a notion of solid locally analytic representation for a compact p-adic Lie group. We prove that the category of solid locally analytic representations can be described as modules over algebras of analytic distributions. As an application, we prove a cohomological comparison theorem between solid group cohomology, solid group cohomology of the (derived) locally analytic vectors, and Lie algebra cohomology. Finally, we generalize the work of Lue Pan to arbitrary Shimura varieties. We construct a geometric Sen operator for a particular class of proetale modules over the structural sheaf which we call relative locally analytic. We prove that this Sen operator is related with the p-adic Simpson correspondence, and that it computes proétale cohomology. We apply this theory to Shimura varieties, obtaining that the computation of proétale cohomology can be translated in terms of Lie algebra cohomology over the flag variety via the Hodge-Tate period map. In particular, we prove that the Cp-extension of scalars of the locally analytic completed cohomology can be described as the analytic cohomology of the infinite-at-p level Shimura variety, of the locally analytic sections of the structural sheaf. This implies a rational version of the Calegari-Emerton conjectures for any Shimura variety without the hypothesis of the infinite-at-p level Shimura variety to be perfectoid. Then, we study the isotypic components of the locally analytic completed cohomology for the action of a Borel subalgebra. Using the interpretation as Lie algebra cohomology over the flag variety, we construct overconvergent BGG maps generalizing the previous work for the modular curve. In addition, we give a local proof of the classical Hodge-Tate decompositions for Shimura varieties, using the dual BGG resolution and the Hodge-Tate period map
Jaloux, Christophe. "Cohomologie des variétés feuilletées." Phd thesis, Université Claude Bernard - Lyon I, 2008. http://tel.archives-ouvertes.fr/tel-00358710.
Full textPaganin, Matteo. "On some generalizations of Tate Cohomology: an overview." Pontificia Universidad Católica del Perú, 2016. http://repositorio.pucp.edu.pe/index/handle/123456789/97253.
Full textEste artículo es una revisión del desarrollo y generalizaciones de la cohomología de Tate. El número de tales generalizaciones es alto y la literatura en torno a muchas de ellas es vasta. Por consiguiente, no pretendemos dar un recuento completo de las ramas que se desprenden de las ideas originales de Tate; esto más bien representa un bosquejo de cómo estas ideas se han ido desarrollando.
Pillet, Basile. "Géométrie complexe globale et infinitésimale de l'espace des twisteurs d'une variété hyperkählérienne." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S021/document.
Full textThe purpose of this thesis is to construct geometric objects on a manifold C parametrizing rational curves in the twistor space of a hyperkähler manifold. We shall establish a correspondence between the complex geometry of the twistor space and some differential properties of C (differential operators and curvature of a complex riemannian structure inherited from the base hyperkähler manifold). The first chapters gather some classical results of the theory of hyperkähler manifolds and their twistor spaces. In the chapters 4, 5 and 6, we construct an equivalence of categories between bundles on the twistor space which are trivial on each line and bundles with a connexion of C satisfying certain curvature conditions. The chapter 7 extends this correspondence on the cohomological level whereas the chapter 8 explores its infinitesimal version ; it links curvature of the connexion with thickening (in the sense of LeBrun) of the bundle along the lines
Biolley, Anne-Laure. "Cohomologie de Floer, hyperbolicités symplectique et pseudo-complexe." Palaiseau, Ecole polytechnique, 2003. http://www.theses.fr/2003EPXX0052.
Full textNucinkis, Brita Erna Anita. "Complete cohomological functors and finiteness conditions." Thesis, Queen Mary, University of London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246487.
Full textBeaudouin, Thomas. "Etude de la cohomologie d'algèbres de Leibniz via des suites spectrales." Thesis, Nantes, 2017. http://www.theses.fr/2017NANT4102/document.
Full textThis thesis is devoted to the study of different spectral sequences for the cohomology of Leibniz alebras in general or in certain specific examples. Some of the results are motivated by work of G.Hochschild and J.-P. Serre for Lie algebras and groups as well as the thesis of A.V. Gnedbaye on the homology of Leibniz algebras with values in a special kind of modules. In the first chapter we define the notion of aLeibniz algebras as a generalization of a Lie algebras with a non-antisymmetric bracket. We also prove some basic properties of Leibniz algebras. The second chapter is a general introduction to spectral sequences, especially those defined from a filtration of a complex. Among other topics, we consider the notion of convergence of a spectral sequence. In the third chapter four different filtrations of Loday’s complex defining Leibniz cohomology are studied. We compute the first pages for the spectral sequences arising from each of these filtrations. As a consequence we derive some properties of Leibniz cohomology. The last chapter give some other applications of the results obtain in Chapter 3
Biolley, Anne-Laure. "Cohomologie de Floer, hyperbolicités symplectique et pseudocmplexe." Phd thesis, Ecole Polytechnique X, 2008. http://pastel.archives-ouvertes.fr/pastel-00000702.
Full textJoshi, Janhavi. "On the L² Cohomology of Complete Kähler Convex Manifolds." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1277942962.
Full textAnel, Mathieu. "Champs de modules des catégories linéaires et abéliennes." Phd thesis, Université Paul Sabatier - Toulouse III, 2006. http://tel.archives-ouvertes.fr/tel-00085627.
Full textLe résultat principal de la thèse est que, sous des conditions de finitude des objets classifiés, ces champs sont géométriques au sens de C.~Simpson. En particulier, on trouve que les complexes tangents de ces champs en une catégorie $C$, i.e. les objets classifiant les déformations au premier ordre de $C$, sont donnés par des tronqués du complexe de cohomologie de Hochschild de $C$.
En plus, il existe une suite naturelle de morphismes surjectifs de champs :
$$\ukcatiso \tto \ukcateq \tto \ukcatmor \tto \ukab$$
dont on montre que celui du milieu est étale, et celui de droite une équivalence.
Books on the topic "Cohomologie completée"
Roe, John. Coarse cohomology and index theory on complete Riemannian manifolds. Providence, RI: American Mathematical Society, 1993.
Find full textHaesemeyer, Christian, and Charles A. Weibel. The Norm Residue Theorem in Motivic Cohomology. Princeton University Press, 2019. http://dx.doi.org/10.23943/princeton/9780691191041.001.0001.
Full textVoisin, Claire. Chow Rings, Decomposition of the Diagonal, and the Topology of Families (AM-187). Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691160504.001.0001.
Full textHuybrechts, D. K3 Surfaces. Oxford University Press, 2007. http://dx.doi.org/10.1093/acprof:oso/9780199296866.003.0010.
Full textHuybrechts, D. Spherical and Exceptional Objects. Oxford University Press, 2007. http://dx.doi.org/10.1093/acprof:oso/9780199296866.003.0008.
Full textBook chapters on the topic "Cohomologie completée"
Avramov, Luchezar L., and Daniel R. Grayson. "Resolutions and Cohomology over Complete Intersections." In Computations in Algebraic Geometry with Macaulay 2, 131–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04851-1_7.
Full textDolbeault, par P. "Sur le groupe de cohomologie entière de dimension deux d'une variété analytique complexe." In Forme differenziali e loro integrali, 139–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-10952-2_5.
Full text"Cohomology of complete intersections." In A Survey of the Hodge Conjecture, 119–38. Providence, Rhode Island: American Mathematical Society, 2016. http://dx.doi.org/10.1090/crmm/010/09.
Full textLu, H., C. N. Pope, X. J. Wang, and K. W. Xu. "The Complete Cohomology of the W3 String." In W-Symmetry, 838–55. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789812798244_0039.
Full text"Complete resolutions and the category of acyclic projective complexes." In Maximal Cohen–Macaulay Modules and Tate Cohomology, 7–9. Providence, Rhode Island: American Mathematical Society, 2021. http://dx.doi.org/10.1090/surv/262/04.
Full text