To see the other types of publications on this topic, follow the link: Cohomogeneity.

Journal articles on the topic 'Cohomogeneity'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Cohomogeneity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

DANCER, ANDREW, and ANDREW SWANN. "QUATERNIONIC KAHLER MANIFOLDS OF COHOMOGENEITY ONE." International Journal of Mathematics 10, no. 05 (August 1999): 541–70. http://dx.doi.org/10.1142/s0129167x99000215.

Full text
Abstract:
Classification results are given for (i) compact quaternionic Kähler manifolds with a cohomogeneity-one action of a semi-simple group, (ii) certain complete hyperKähler manifolds with a cohomogeneity-two action of a semi-simple group preserving each complex structure, (iii) compact 3-Sasakian manifolds which are cohomogeneity one with respect to a group of 3-Sasakian symmetries. Information is also obtained about non-compact quaternionic Kähler manifolds of cohomogeneity one and the cohomogeneity of adjoint orbits in complex semi-simple Lie algebras.
APA, Harvard, Vancouver, ISO, and other styles
2

Deng, Shaoqiang, and Jifu Li. "Some cohomogeneity one Einstein–Randers metrics on 4-manifolds." International Journal of Geometric Methods in Modern Physics 14, no. 03 (February 14, 2017): 1750044. http://dx.doi.org/10.1142/s021988781750044x.

Full text
Abstract:
The Page metric on [Formula: see text] is a cohomogeneity one Einstein–Riemannian metric, and is the only known cohomogeneity one Einstein–Riemannian metric on compact [Formula: see text]-manifolds. It has been a long standing problem whether there exists another cohomogeneity one Einstein–Riemannian metric on [Formula: see text]-manifolds. In this paper, we construct some examples of cohomogeneity one Einstein–Randers metrics on simply connected 4-manifolds. This shows that, although cohomogeneity one Einstein–Riemmian 4-manifolds are rare, non-Riemannian examples may exist at large.
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Jifu, Zhiguang Hu, and Shaoqiang Deng. "Cohomogeneity One Randers Metrics." Canadian Mathematical Bulletin 59, no. 3 (September 1, 2016): 575–84. http://dx.doi.org/10.4153/cmb-2015-009-5.

Full text
Abstract:
AbstractAn action of a Lie group G on a smooth manifold M is called cohomogeneity one if the orbit space M/G is of dimension 1. A Finsler metric F on M is called invariant if F is invariant under the action of G. In this paper, we study invariant Randers metrics on cohomogeneity one manifolds. We first give a sufficient and necessary condition for the existence of invariant Randers metrics on cohomogeneity one manifolds. Then we obtain some results on invariant Killing vector fields on the cohomogeneity one manifolds and use them to deduce some sufficient and necessary conditions for a cohomogeneity one Randers metric to be Einstein.
APA, Harvard, Vancouver, ISO, and other styles
4

Galaz-García, Fernando, and Masoumeh Zarei. "Cohomogeneity one Alexandrov spaces in low dimensions." Annals of Global Analysis and Geometry 58, no. 2 (July 7, 2020): 109–46. http://dx.doi.org/10.1007/s10455-020-09716-7.

Full text
Abstract:
Abstract Alexandrov spaces are complete length spaces with a lower curvature bound in the triangle comparison sense. When they are equipped with an effective isometric action of a compact Lie group with one-dimensional orbit space, they are said to be of cohomogeneity one. Well-known examples include cohomogeneity-one Riemannian manifolds with a uniform lower sectional curvature bound; such spaces are of interest in the context of non-negative and positive sectional curvature. In the present article we classify closed, simply connected cohomogeneity-one Alexandrov spaces in dimensions 5, 6 and 7. This yields, in combination with previous results for manifolds and Alexandrov spaces, a complete classification of closed, simply connected cohomogeneity-one Alexandrov spaces in dimensions at most 7.
APA, Harvard, Vancouver, ISO, and other styles
5

Julio-Batalla, Jurgen, and Jimmy Petean. "Nodal solutions of Yamabe-type equations on positive Ricci curvature manifolds." Proceedings of the American Mathematical Society 149, no. 10 (July 23, 2021): 4419–29. http://dx.doi.org/10.1090/proc/15548.

Full text
Abstract:
We consider a closed cohomogeneity one Riemannian manifold ( M n , g ) (M^n,g) of dimension n ≥ 3 n\geq 3 . If the Ricci curvature of M M is positive, we prove the existence of infinite nodal solutions for equations of the form − Δ g u + λ u = λ u q -\Delta _g u + \lambda u = \lambda u^q with λ > 0 \lambda >0 , q > 1 q>1 . In particular for a positive Einstein manifold which is of cohomogeneity one or fibers over a cohomogeneity one Einstein manifold we prove the existence of infinite nodal solutions for the Yamabe equation, with a prescribed number of connected components of its nodal domain.
APA, Harvard, Vancouver, ISO, and other styles
6

Díaz-Ramos, José Carlos, Miguel Domínguez-Vázquez, and Alberto Rodríguez-Vázquez. "Homogeneous and inhomogeneous isoparametric hypersurfaces in rank one symmetric spaces." Journal für die reine und angewandte Mathematik (Crelles Journal) 2021, no. 779 (August 17, 2021): 189–222. http://dx.doi.org/10.1515/crelle-2021-0043.

Full text
Abstract:
Abstract We conclude the classification of cohomogeneity one actions on symmetric spaces of rank one by classifying cohomogeneity one actions on quaternionic hyperbolic spaces up to orbit equivalence. As a by-product of our proof, we produce uncountably many examples of inhomogeneous isoparametric families of hypersurfaces with constant principal curvatures in quaternionic hyperbolic spaces.
APA, Harvard, Vancouver, ISO, and other styles
7

Cleyton, Richard, and Andrew Swann. "Cohomogeneity-one G2-structures." Journal of Geometry and Physics 44, no. 2-3 (December 2002): 202–20. http://dx.doi.org/10.1016/s0393-0440(02)00074-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Galaz-Garcia, Fernando, and Catherine Searle. "Cohomogeneity one Alexandrov spaces." Transformation Groups 16, no. 1 (February 16, 2011): 91–107. http://dx.doi.org/10.1007/s00031-011-9122-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

AHMADI, P., and S. M. B. KASHANI. "Cohomogeneity one Minkowski space Rn1." Publicationes Mathematicae Debrecen 78, no. 1 (January 1, 2011): 49–59. http://dx.doi.org/10.5486/pmd.2011.4392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dancer, Andrew, and Andrew Swann. "Hyperkähler metrics of cohomogeneity one." Journal of Geometry and Physics 21, no. 3 (February 1997): 218–30. http://dx.doi.org/10.1016/s0393-0440(96)00017-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Fujioka, Atsushi, and Hitoshi Furuhata. "Centroaffine Surfaces of Cohomogeneity One." Bulletin of the Brazilian Mathematical Society, New Series 50, no. 1 (September 28, 2018): 291–313. http://dx.doi.org/10.1007/s00574-018-0120-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Dammerman, Brandon. "Diagonalizing cohomogeneity-one Einstein metrics." Journal of Geometry and Physics 59, no. 9 (September 2009): 1271–84. http://dx.doi.org/10.1016/j.geomphys.2009.06.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Buttsworth, Timothy. "Cohomogeneity-one quasi-Einstein metrics." Journal of Mathematical Analysis and Applications 470, no. 1 (February 2019): 201–17. http://dx.doi.org/10.1016/j.jmaa.2018.09.064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Galaz-García, Fernando, and Masoumeh Zarei. "Cohomogeneity one topological manifolds revisited." Mathematische Zeitschrift 288, no. 3-4 (August 20, 2017): 829–53. http://dx.doi.org/10.1007/s00209-017-1915-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ahmadi, P. "Cohomogeneity One Dynamics on Three Dimensional Minkowski Space." Zurnal matematiceskoj fiziki, analiza, geometrii 15, no. 2 (September 25, 2016): 155–69. http://dx.doi.org/10.15407/mag15.02.155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Böhm, Christoph. "Non-compact cohomogeneity one Einstein manifolds." Bulletin de la Société mathématique de France 127, no. 1 (1999): 135–77. http://dx.doi.org/10.24033/bsmf.2345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Morisawa, Yoshiyuki, Soichi Hasegawa, Tatsuhiko Koike, and Hideki Ishihara. "Cohomogeneity-one-string integrability of spacetimes." Classical and Quantum Gravity 36, no. 15 (July 17, 2019): 155009. http://dx.doi.org/10.1088/1361-6382/ab2e28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Berndt, Jürgen, and Martina Brück. "Cohomogeneity one actions on hyperbolic spaces." Journal für die reine und angewandte Mathematik (Crelles Journal) 2001, no. 541 (January 23, 2001): 209–35. http://dx.doi.org/10.1515/crll.2001.093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Goertsches, Oliver, and Augustin-Liviu Mare. "Equivariant cohomology of cohomogeneity one actions." Topology and its Applications 167 (April 2014): 36–52. http://dx.doi.org/10.1016/j.topol.2014.03.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Vân Lê, Hông. "Compact symplectic manifolds of low cohomogeneity." Journal of Geometry and Physics 25, no. 3-4 (May 1998): 205–26. http://dx.doi.org/10.1016/s0393-0440(97)00018-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Conti, Diego. "Cohomogeneity One Einstein-Sasaki 5-Manifolds." Communications in Mathematical Physics 274, no. 3 (July 13, 2007): 751–74. http://dx.doi.org/10.1007/s00220-007-0286-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Podest�, Fabio. "Immersions of cohomogeneity one Riemannian manifolds." Monatshefte f�r Mathematik 122, no. 3 (September 1996): 215–25. http://dx.doi.org/10.1007/bf01320185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

ABATE, MARCO, and LAURA GEATTI. "COHOMOGENEITY TWO HYPERBOLIC ACYCLIC STEIN MANIFOLDS." International Journal of Mathematics 03, no. 05 (October 1992): 591–608. http://dx.doi.org/10.1142/s0129167x92000278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Berndt, Jürgen, José Carlos Díaz-Ramos, and Mohammad Javad Vanaei. "Cohomogeneity one actions on Minkowski spaces." Monatshefte für Mathematik 184, no. 2 (June 18, 2016): 185–200. http://dx.doi.org/10.1007/s00605-016-0945-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Dancer, Andrew, and McKenzie Y. Wang. "Kähler-Einstein metrics of cohomogeneity one." Mathematische Annalen 312, no. 3 (November 1, 1998): 503–26. http://dx.doi.org/10.1007/s002080050233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Gambioli, Andrea. "SU(3)-manifolds of cohomogeneity one." Annals of Global Analysis and Geometry 34, no. 1 (December 13, 2007): 77–100. http://dx.doi.org/10.1007/s10455-007-9097-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Dancer, Andrew S., and McKenzie Y. Wang. "On Ricci solitons of cohomogeneity one." Annals of Global Analysis and Geometry 39, no. 3 (October 17, 2010): 259–92. http://dx.doi.org/10.1007/s10455-010-9233-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

MIRZAIE, R. "ON EUCLIDEAN G-MANIFOLDS WHICH HAVE TWO DIMENSIONAL ORBIT SPACES." International Journal of Mathematics 22, no. 03 (March 2011): 399–406. http://dx.doi.org/10.1142/s0129167x11006829.

Full text
Abstract:
We show that the orbit space of Euclidean space, under the action of a closed and connected Lie group of isometries is homeomorphic to a plane or closed half-plane, if the action is of cohomogeneity two.
APA, Harvard, Vancouver, ISO, and other styles
29

Podestà, Fabio. "Cohomogeneity one Riemannian manifolds and Killing fields." Differential Geometry and its Applications 5, no. 4 (December 1995): 311–20. http://dx.doi.org/10.1016/0926-2245(95)00021-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Frank, Philipp. "Cohomogeneity one manifolds with positive Euler characteristic." Transformation Groups 18, no. 3 (July 4, 2013): 639–84. http://dx.doi.org/10.1007/s00031-013-9227-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Dancer, A., and M. Wang. "Superpotentials and the Cohomogeneity One Einstein Equations." Communications in Mathematical Physics 260, no. 1 (August 2, 2005): 75–115. http://dx.doi.org/10.1007/s00220-005-1410-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Searle, Catherine. "Cohomogeneity and positive curvature in low dimensions." Mathematische Zeitschrift 214, no. 1 (September 1993): 491–98. http://dx.doi.org/10.1007/bf02572419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Grove, Karsten, and Wolfgang Ziller. "Cohomogeneity one manifolds with positive Ricci curvature." Inventiones Mathematicae 149, no. 3 (September 1, 2002): 619–46. http://dx.doi.org/10.1007/s002220200225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Li, Jifu, Zhiguang Hu, and Shaoqiang Deng. "S-curvature of cohomogeneity one Randers spaces." Journal of Mathematical Analysis and Applications 441, no. 2 (September 2016): 624–34. http://dx.doi.org/10.1016/j.jmaa.2016.03.084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bettiol, Renato G., and Paolo Piccione. "Delaunay-Type Hypersurfaces in Cohomogeneity One Manifolds." International Mathematics Research Notices 2016, no. 10 (August 5, 2015): 3124–62. http://dx.doi.org/10.1093/imrn/rnv231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Gastel, Andreas, and Felix Zorn. "Biharmonic maps of cohomogeneity one between spheres." Journal of Mathematical Analysis and Applications 387, no. 1 (March 2012): 384–99. http://dx.doi.org/10.1016/j.jmaa.2011.09.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Searle, Catherine. "Cohomogeneity and positive curvature in low dimensions." Mathematische Zeitschrift 226, no. 1 (September 16, 1997): 165–67. http://dx.doi.org/10.1007/pl00004642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Schwachhöfer, Lorenz J. "Lower curvature bounds and cohomogeneity one manifolds." Differential Geometry and its Applications 17, no. 2-3 (September 2002): 209–28. http://dx.doi.org/10.1016/s0926-2245(02)00108-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Mirzaie, R. "Cohomogeneity Two Actions on Flat Riemannian Manifolds." Acta Mathematica Sinica, English Series 23, no. 9 (June 21, 2007): 1587–92. http://dx.doi.org/10.1007/s10114-007-0952-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Püttmann, Thomas, and Anna Siffert. "Harmonic self-maps of cohomogeneity one manifolds." Mathematische Annalen 375, no. 1-2 (July 1, 2019): 247–82. http://dx.doi.org/10.1007/s00208-019-01848-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Böhm, Christoph. "Non-existence of cohomogeneity one Einstein metrics." Mathematische Annalen 314, no. 1 (May 1, 1999): 109–25. http://dx.doi.org/10.1007/s002080050288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Villumsen, Martin. "Cohomogeneity-Three HyperKähler Metrics on Nilpotent Orbits." Annals of Global Analysis and Geometry 28, no. 2 (September 2005): 123–56. http://dx.doi.org/10.1007/s10455-005-6636-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

HAMBLETON, IAN, and JEAN-CLAUDE HAUSMANN. "EQUIVARIANT PRINCIPAL BUNDLES OVER SPHERES AND COHOMOGENEITY ONE MANIFOLDS." Proceedings of the London Mathematical Society 86, no. 1 (January 2003): 250–72. http://dx.doi.org/10.1112/s0024611502013722.

Full text
Abstract:
We classify smooth ${\rm SO}(n)$-equivariant principal bundles over $S^n$ in terms of their isotropy representations over the north and south poles. This is an example of a general result classifying equivariant $(\Pi, G)$-bundles over manifolds with cohomogeneity 1.2000 Mathematical Subject Classification: 55R91.
APA, Harvard, Vancouver, ISO, and other styles
44

Schwachhöfer, Lorenz J., and Kristopher Tapp. "Cohomogeneity one disk bundles with normal homogeneous collars." Proceedings of the London Mathematical Society 99, no. 3 (April 24, 2009): 609–32. http://dx.doi.org/10.1112/plms/pdp012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

MIRZAIE, R. "On negatively curved G-manifolds of low cohomogeneity." Hokkaido Mathematical Journal 38, no. 4 (November 2009): 797–803. http://dx.doi.org/10.14492/hokmj/1258554244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

KIM, CHANG-WAN. "POSITIVELY CURVED MANIFOLDS WITH FIXED POINT COHOMOGENEITY ONE." Communications of the Korean Mathematical Society 21, no. 1 (January 1, 2006): 151–63. http://dx.doi.org/10.4134/ckms.2006.21.1.151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Abedi, Hosein, and Seyed Mohammad Bagher Kashani. "COHOMOGENEITY ONE RIEMANNIAN MANIFOLDS OF CONSTANT POSITIVE CURVATURE." Journal of the Korean Mathematical Society 44, no. 4 (July 30, 2007): 799–807. http://dx.doi.org/10.4134/jkms.2007.44.4.799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Console, Sergio, and Carlos Olmos. "Curvature invariants, Killing vector fields, connections and cohomogeneity." Proceedings of the American Mathematical Society 137, no. 03 (October 2, 2008): 1069–72. http://dx.doi.org/10.1090/s0002-9939-08-09669-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chen, Wei, Hong Lü, and Christopher N. Pope. "Separability in cohomogeneity-2 Kerr-NUT-AdS metrics." Journal of High Energy Physics 2006, no. 04 (April 4, 2006): 008. http://dx.doi.org/10.1088/1126-6708/2006/04/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kollross, Andreas. "A classification of hyperpolar and cohomogeneity one actions." Transactions of the American Mathematical Society 354, no. 2 (September 18, 2001): 571–612. http://dx.doi.org/10.1090/s0002-9947-01-02803-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography