Academic literature on the topic 'Cohesive-frictional'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cohesive-frictional.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cohesive-frictional"

1

Parrinello, Francesco, Boris Failla, and Guido Borino. "Cohesive–frictional interface constitutive model." International Journal of Solids and Structures 46, no. 13 (June 2009): 2680–92. http://dx.doi.org/10.1016/j.ijsolstr.2009.02.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Donzé, Frédéric Victor. "Impacts on cohesive frictional geomaterials." European Journal of Environmental and Civil Engineering 12, no. 7-8 (August 2008): 967–85. http://dx.doi.org/10.1080/19648189.2008.9693056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Carter, J. P., J. R. Booker, and S. K. Yeung. "Cavity expansion in cohesive frictional soils." Géotechnique 36, no. 3 (September 1986): 349–58. http://dx.doi.org/10.1680/geot.1986.36.3.349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Luding, Stefan. "Anisotropy in cohesive, frictional granular media." Journal of Physics: Condensed Matter 17, no. 24 (June 3, 2005): S2623—S2640. http://dx.doi.org/10.1088/0953-8984/17/24/017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Muravskii, G. B. "Finite elements for cohesive-frictional material." Finite Elements in Analysis and Design 47, no. 7 (July 2011): 784–95. http://dx.doi.org/10.1016/j.finel.2011.02.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Garagash, Dmitry, Andrew Drescher, and Emmanuel Detournay. "Stationary shock in cohesive-frictional materials." Mechanics of Cohesive-frictional Materials 5, no. 3 (April 2000): 195–214. http://dx.doi.org/10.1002/(sici)1099-1484(200004)5:3<195::aid-cfm91>3.0.co;2-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Muravskii, G. B. "Stresses in cohesive-frictional horizontal layer." ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 92, no. 7 (April 19, 2012): 565–72. http://dx.doi.org/10.1002/zamm.201100060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Venzal, V., S. Morel, T. Parent, and F. Dubois. "Frictional cohesive zone model for quasi-brittle fracture: Mixed-mode and coupling between cohesive and frictional behaviors." International Journal of Solids and Structures 198 (August 2020): 17–30. http://dx.doi.org/10.1016/j.ijsolstr.2020.04.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Singh, D. N., and P. K. Basudhar. "A note on vertical cuts in homogeneous soils." Canadian Geotechnical Journal 30, no. 5 (October 1, 1993): 859–62. http://dx.doi.org/10.1139/t93-076.

Full text
Abstract:
In this note, the modified Lysmer method based on discrete elements and nonlinear programming technique has been extended to study the stability of a vertical cut in both homogeneous cohesive and cohesive–frictional soils to obtain lower bound solutions. For saturated clays under undrained condition, the calculated stability number (3.69) is closer to the upper bound value (3.78) than the lower bound value (3.64) reported in the literature until now. For cohesive–frictional soils, the obtained lower bound limit load compares well with that using a finite-element elastoplastic solution. Key words : lower bound, vertical cut, cohesive soils, stability number, discrete element, nonlinear programming.
APA, Harvard, Vancouver, ISO, and other styles
10

Bićanić, Nenad. "Discontinuous modelling of cohesive-frictional blocky materials." Revue européenne de génie civil 12, no. 7-8 (October 1, 2008): 987–1006. http://dx.doi.org/10.3166/ejece.12.987-1006.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cohesive-frictional"

1

Addetta, Gian Antonio d'. "Discrete models for cohesive frictional materials." Stuttgart Inst. für Baustatik, 2004. http://deposit.d-nb.de/cgi-bin/dokserv?idn=972184996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Beadle, Michael E. "Settlement induced by tunnelling in cohesive-frictional soils." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq21081.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bard, Romain (Romain M. ). "Analysis of the scratch test for cohesive-frictional materials." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61521.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 143-148).
In this thesis we develop analytical solutions for the relations between scratch hardness and strength properties of cohesive-frictional materials of the Mohr-Coulomb and Drucker-Prager type. Based on the lower-bound yield design approach, closed form solutions are derived for frictionless scratch devices, and validated against computational upper bound and elastoplastic Finite Element solutions. The influence of friction at the blade{material interface is also investigated, for which a simple computational optimization is proposed. The model is extended to porous cohesive-frictional materials through the use of a homogenized strength criterion based on the Linear Comparison Composite theory. Relations between scratch hardness, porosity and strength properties are proposed in the form of fitted functions. Illustrated for scratch tests on cement paste, we show that the proposed solutions provide a convenient way to determine estimates of cohesion and friction parameters from scratch data, and may serve as a benchmark to identify the relevance of strength models for scratch test analysis.
by Romain Bard.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
4

Kwok, Leung Cheung. "A study of cohesive-frictional soils under dynamic loading." Thesis, University of Aberdeen, 2013. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=201916.

Full text
Abstract:
Many previous studies have been focused on the behaviour homogeneous granular soils under the quasi-static loading, however, various soil types exist in the field. Therefore, based on the evaluation of these previous studies, an extensive study has been addressed to expose the dynamic behaviour of cohesive-frictional soils associated with the effects of fines content, the effect of moisture content and the type of impact regime. The proposed study mainly investigates the behaviour of sand – clay mixtures to impact loading, both from a loaded plate dropped from different heights and one dropped repeatedly from a fixed height. The Aberdeen beach sand and the Teuchan clay were used for the study and mixed in different proportions to create soils of varying proportions. The six soil samples used have known volumetric proportions of sand : clay and the tests were carried out under the dry condition and two other moisture contents. The results determine the optimal percentage of fines content and its related moisture condition to obtain more stable performance of the granular soils under dynamic compaction. It can be implemented to enhance the quality of ground improvement techniques for the construction. A Soil Model Tester for 2-Dimension program (SM2D) [Chan (1988)] was used to modify the existing material model before being used for Finite Element simulation. The impact test results were used to verify the numerical model developed using an explicit u-w schemebased finite element program, GLADYS2E [Chan et al. (1992, 1994)]. Such use of explicit schemes requires the use of time step lengths which are smaller than a critical value, in order that stability and accuracy of solution are ensured. A semi-empirical formula has been developed for the critical time step determination using MATLAB.
APA, Harvard, Vancouver, ISO, and other styles
5

Ganneau, Francois P. 1979. "From nanohardness to strength properties of cohesive-frictional materials : application to shale materials." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28626.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2004.
Includes bibliographical references (p. 213-221).
Advanced experimental and theoretical micromechanics such as nanoindentation makes it possible today to break down highly heterogeneous materials to the scale where physical chemistry meets (continuum) mechanics, to extract intrinsic material properties that do not change from one material to another, and to upscale the intrinsic material behavior from the sub-microscale to the macroscale. While well established for elastic properties, the extraction of strength properties of cohesive-frictional materials from nanoindentation tests has not been investigated in the same depth. The focus of this thesis is to investigate in depth the link between nanohardness of cohesive-frictional materials and strength properties. To address our objectives, we develop a rational methodology based on limit analysis theorems and implement this methodology in a finite element, based computational environment. By applying this technique to indentation analysis, we show that it is possible to extract the cohesion and the friction angle from two conical indentation tests having different apex angles. The methodology is validated on a model cohesive-frictional material, bulk metallic glass, and a first application to a highly heterogeneous natural composite material, shale materials, is shown. The results are important in particular for the Oil and Gas industry, for which the reduced strength properties (cohesion and friction angle) are critical for the success of drilling operations.
by Francois P. Ganneau.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
6

Cariou, Sophie S. M. Massachusetts Institute of Technology. "The effect of the packing density on the indentation hardness of cohesive-frictional porous materials." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35494.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2006.
Includes bibliographical references (p. 170-178).
Natural composites in general and sedimentary rocks in particular are highly heterogeneous materials which defy a straightforward implementation of the materials science paradigm of microstructure-properties-performance correlation. The application of nanoindentation to natural composites has provided the geomechanics community with a new versatile tool to test in situ phase properties and structures of geomaterials that cannot be recapitulated ex situ in bulk form. But it requires a rigorous indentation analysis to translate indentation data into meaningful mechanical properties. The development and implementation of such an indentation analysis for the strength properties of cohesive-frictional porous materials is the focus of this thesis. We report the development and implementation of a multi-scale indentation analysis based on limit analysis, which makes it possible to infer from an experimental hardness value and the solid's packing density the strength properties of the cohesive-frictional porous material.
(cont.) Making use of most recent advances in non-linear strength homogenization theory, we implement a homogenized cohesive Cam-Clay type elliptical strength criterion which takes into account the strength properties of the constituents (cohesion and friction), the porosity and the microstructure, into a yield design approach to indentation analysis. Making use of the strong duality of the lower and upper bound theorem, we identify the resulting upper bound problem as a Second-Order Conical optimization problem, for which advanced solvers such as MOSEK became recently available. The originality of our approach lies in the combination of finite element discretization and advanced optimization techniques, which is readily implemented in standard tools of computational mechanics, such as MATLAB. The upper bound yield design solutions are benchmarked against solutions from comprehensive elastoplastic contact mechanics finite element solutions and compared with lower bound solutions, which all show an excellent agreement.
(cont.) Furthermore, from a detailed parameter study based on intensive computational simulations, we show that it is possible to condense the indentation hardness-material properties relation of cohesive-frictional porous materials into a single hardness-packing density scaling relation. On this basis, it is possible to use the hardness-packing density scaling relation for reverse analysis of the strength parameters of cohesive-frictional solids from indentation. The procedure is illustrated for shale materials. From hardness values of six shale materials of different packing density and mineralogy, we deduce that the clay fabric in highly compacted shales is most likely a purely cohesive (friction-less) nano-granular material, having a uniaxial strength of roughly 440 MPa.
by Sophie Cariou.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
7

Addetta, Gian Antonio d' [Verfasser]. "Discrete models for cohesive frictional materials / Institut für Baustatik der Universität Stuttgart. Von Gian Antonio D'Addetta." Stuttgart : Inst. für Baustatik, 2004. http://d-nb.info/972184996/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sfantos, Georgios. "Boundary element methods for cohesive-frictional non linear problems : applications to wear, contact and multi-scale damage modelling." Thesis, Imperial College London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.439265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, Sungchul. "On the mechanics of strain localization in plasticity : isotropic and orthotropic, cohesive and frictional, associated and non-associated models." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672321.

Full text
Abstract:
In this thesis, two main topics have been covered: the mechanics of strain localization in plasticity and the performance of several mixed finite elements subjected to plastic strain localization. Throughout the thesis, incompressible and cohesive-frictional, isotropic and orthotropic, elasto- and rigid-plastic solids are analyzed using associated or non-associated flow rules, both in the continuum and the discrete settings. Plastic yielding, strain bifurcation and strain localization are identified in the failure process prior to conducting a detailed analysis of strain localization. The mechanics of strain localization in the continuum and discrete settings, including the constitutive relations, the kinematics for strong and weak discontinuities, and the strain localization conditions are presented. Maxwell’s kinematic condition, the traction rate continuity and the stress rate constraints are explained, thereby distinguishing the correlations and differences between strain bifurcation and strain localization conditions. The analytical prediction of strain localization derived from the stress boundedness condition is proposed and numerically verified through independent simulations. Unlike predicted in classical strain bifurcation analysis, strain localization is independent from the elasticity behavior and is only related to plastic flow. Specifically, the strain localization angle depends on the stress state and plastic potential but not on the yield surface. Uniaxial computational experiments on strips subjected to uniaxial stretching and compressing in plane stress and plane strain to assess the theoretical analysis and Prandtl’s flat punch tests are performed. Numerical results for incompressible and cohesive-frictional, isotropic and orthotropic, associated and non-associated plasticity, with or without inclination angles between the material local axes and the global axes are compelling evidence for the proposed theoretical framework. Various mixed finite elements are used in this thesis. By comparing the numerical outputs, the advantages and disadvantages of the performance of the several mixed finite elements are shown regarding enhanced accuracy, computational efficiency, mesh sensitivity and stress locking.
En esta tesis trata dos temas principales: la mecánica de la localización de deformaciones en plasticidad y el funcionamiento de varios elementos finitos mixtos sometidos a la localización de deformaciones plásticas. A lo largo de la tesis, se estudian sólidos incompresibles y cohesivo-friccionales, isotrópos y ortótropos, elasto- y rígidos-plásticos, utilizando reglas de flujo asociadas o no asociadas, tanto a en formato continuo como discreto. En un análisis detallado del proceso de localización de la deformación, se identifican los puntos de plastificación, bifurcación y localización de la deformación. Se presentan los mecanismos de la localización de deformaciones a nivel continuo y discreto, incluyendo las relaciones constitutivas, la cinemática de las discontinuidades fuertes y débiles y las condiciones de localización de la deformación. Se explican la condición cinemática de Maxwell, la condición de continuidad del incremento de tracción y la condición acotabilidad del incremento de la tensión, su relevancia en la bifurcación de la deformación y las condiciones de localización de la deformación. Se propone y se verifica numéricamente mediante simulaciones independientes la predicción analítica de la localización de la deformación a partir de la condición de acotabilidad de la tensión. A diferencia de lo que predice en el análisis clásico de localización de deformaciones, ésta es independiente del comportamiento elástico y está únicamente relacionada con el flujo plástico. Específicamente, el ángulo de localización de la deformación depende del estado de la tensión y del potencial plástico, pero no de las constantes elásticas ni de la superficie de fluencia. Se realizan experimentos computacionales en placas sometidas a tracción y compresión uniaxial en tensión y deformación plana para evaluar el análisis teórico, así como en tests de punzonamiento de Prandtl. Los resultados numéricos con plasticidad incompresible y cohesivo-friccional, isotrópa y ortotrópica, asociada y no asociada, con o sin ángulos de inclinación entre los ejes locales materiales y los ejes globales proporcionan evidencias convincentes para el marco teórico propuesto. En esta tesis se utilizan varios elementos finitos mixtos. Al comparar los resultados numéricos, se muestran las ventajas y desventajas del funcionamiento de varios elementos finitos mixtos con respecto a su precisión, la eficiencia computacional, la sensibilidad respecto a la alineación de la malla y el bloqueo de tensiones.
Enginyeria civil
APA, Harvard, Vancouver, ISO, and other styles
10

Socié, Adrien. "Modélisation chimio-mécanique de la fissuration de matériaux cimentaires : vieillissement et tenue des enceintes de confinement des centrales nucléaires." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS102.

Full text
Abstract:
L'Institut de Radioprotection et de Sûreté Nucléaire (IRSN) s'intéresse à l'étude des réactions de gonflement interne, dont les Réactions Sulfatiques, et à leur impact sur l'évolution des propriétés du matériau cimentaire. Les Réactions Sulfatiques sont caractérisées par la précipitation de l'ettringite, dans les pores du matériau durci entraînant des gonflements locaux et une fissuration par déformations différentiées. Les fissures créées constituent alors le lieu privilégié de la précipitation d'ettringite et accélèrent le transport des espèces chimiques au sein du milieu poreux. La modification locale des phénomènes de transport induit une accélération de la dégradation du matériau.Ce travail de thèse modélise à l'échelle mésoscopique d'une collection de granulats, le gonflement du béton par les Réactions Sulfatiques et la cinétique de dégradation. Un modèle chimio-mécanique basé sur une description du transport réactif (diffusion d'espèces et réactions chimiques) et mécanique (Modèle de Zones Cohésives) dans un milieu poreux fissuré est proposé et résolu à l'aide d'un couplage étagé générique.Les paramètres chimiques et mécaniques initiaux sont estimés par un calcul d'hydratation et d'homogénéisation analytique.La modélisation chimio-mécanique tridimensionnelle est validée de façon modulaire et appliquée aux Réactions Sulfatiques Externe et Interne. Les effets de la composition du béton et des conditions environnementales chimiques sur la cinétique d'expansion et le faciès de rupture sont étudiés. Les applications mettent en évidence l'influence des granulats et des fissures dans la répartition spatiale inhomogène des zones de précipitation de l'ettringite et les contraintes de gonflement associées
The French "Institut de Radioprotection et de Sûreté Nucléaire" (IRSN) conducts researches on the impact of internal swellings reactions on concrete, such as Sulfate Reactions. Such reactions are characterized by the precipitation of ettringite which induces swellings and cracks by differential strain. These cracks are preferential location for ions diffusion and further ettringite precipitations.The aim of the study is to model the degradation of a mature material by ettringite pressure at the aggregate scale.A chemo-mechanical model based on a coupling between reactive transport (species diffusion and chemical reactions) and mechanics in cracked porous medium is developed and is solved with a generic staggered approach.The initial microstructure and poro-mechanical and diffusion parameters are estimated by hydration computing and analytical homogenization.The coupled chemo-mechanical model is validated and then applied to Sulfate External and Internal Attack.The impact of the concrete composition and the chemical environments on the swelling kinetics and crack path is taken into account. Furthermore, our simulations highlight the influences of inclusions and cracks on the inhomogeneous spatial distribution of precipitation areas of ettringite and associated swelling stress
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Cohesive-frictional"

1

Vermeer, Pieter A., Hans J. Herrmann, Stefan Luding, Wolfgang Ehlers, Stefan Diebels, and Ekkehard Ramm, eds. Continuous and Discontinuous Modelling of Cohesive-Frictional Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44424-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vermeer, P. A., W. Ehlers, H. J. Hermann, and E. Ramm, eds. Modelling of Cohesive-Frictional Materials. CRC Press, 2007. http://dx.doi.org/10.1201/9780203023631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Modelling of Cohesive-Frictional Materials. Taylor & Francis, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ramm, E., W. Ehlers, H. J. Hermann, and P. A. Vermeer. Modelling of Cohesive-Frictional Materials. Taylor & Francis Group, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vermeer, P. A. Continuous and Discontinuous Modelling of Cohesive-Frictional Materials. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Diebels, S., W. Ehlers, H. J. Herrmann, P. A. Vermeer, and S. Luding. Continuous and Discontinuous Modelling of Cohesive-Frictional Materials. Springer London, Limited, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ramm, E., W. Ehlers, P. A. Vermeer, and H. J. Hermann. Modelling of Cohesive-Frictional Materials: Proceedings of Second International Symposium on Continuous and Discontinuous Modelling of Cohesive-Frictional Materials , Held in Stuttgart 27-28 Sept. 2004. Taylor & Francis Group, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ramm, E., W. Ehlers, H. J. Hermann, and P. A. Vermeer. Modelling of Cohesive-Frictional Materials: Proceedings of Second International Symposium on Continuous and Discontinuous Modelling of Cohesive-Frictional Materials , Held in Stuttgart 27-28 Sept. 2004. Taylor & Francis Group, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ramm, E., W. Ehlers, H. J. Hermann, and P. A. Vermeer. Modelling of Cohesive-Frictional Materials: Proceedings of Second International Symposium on Continuous and Discontinuous Modelling of Cohesive-Frictional Materials , Held in Stuttgart 27-28 Sept. 2004. Taylor & Francis Group, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ramm, E., W. Ehlers, H. J. Hermann, P. A. Vermeer, and P. A. Vermeer. Modelling of Cohesive-Frictional Materials: Proceedings of Second International Symposium on Continuous and Discontinuous Modelling of Cohesive-Frictional Materials , held in Stuttgart 27-28 Sept. 2004. Taylor & Francis Group, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Cohesive-frictional"

1

Radjaï, F., I. Preechawuttipong, and R. Peyroux. "Cohesive granular texture." In Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, 149–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44424-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Marcher, T., and P. A. Vermeer. "Macromodelling of softening in non-cohesive soils." In Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, 89–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44424-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Singh, S., R. K. Kandasami, and T. G. Murthy. "Mechanics and Modeling of Cohesive Frictional Granular Materials." In Advances in Laboratory Testing and Modelling of Soils and Shales (ATMSS), 493–500. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52773-4_59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kuhl, E., G. A. D’Addetta, M. Leukart, and E. Ramm. "Microplane modelling and particle modelling of cohesive-frictional materials." In Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, 31–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44424-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gutiérrez, M. A., and R. de Borst. "Computational models for failure in cohesive-frictional materials with stochastically distributed imperfections." In Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, 1–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44424-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Goddard, J. D. "On sticky-sphere assemblies." In Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, 143–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44424-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lanier, J. "Micro-mechanisms of deformation in granular materials: experiments and numerical results." In Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, 163–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44424-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pöschel, T., C. Salueña, and T. Schwager. "Scaling properties of granular materials." In Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, 173–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44424-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mühlhaus, H. B., H. Sakaguchi, L. Moresi, and M. Fahey. "Discrete and continuum modelling of granular materials." In Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, 185–204. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44424-6_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cambou, B., and Ph Dubujet. "Difficulties and limitation of statistical homogenization in granular materials." In Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, 205–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44424-6_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cohesive-frictional"

1

Alehossein, Habib, and Zongyi Qin. "Modelling cohesive, frictional and viscoplastic materials." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM 2015). Author(s), 2016. http://dx.doi.org/10.1063/1.4951768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhu, Qi-zhi, Jian-fu Shao, and Ni Xie. "Homogenization-Based Poroplasticity Damage Formulations for Cohesive-Frictional Geomaterials." In Fifth Biot Conference on Poromechanics. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784412992.205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kandasami, R. K., and T. G. Murthy. "Experimental studies on the mechanics of cohesive frictional granular media." In POWDERS AND GRAINS 2013: Proceedings of the 7th International Conference on Micromechanics of Granular Media. AIP, 2013. http://dx.doi.org/10.1063/1.4812099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yamamoto, K., A. V. Lyamin, D. W. Wilson, and S. W. Sloan. "Stability Analysis Of Circular And Square Excavations In Cohesive–Frictional Soils." In 18th Southeast Asian Geotechnical Conference (18SEAGC) & Inaugural AGSSEA Conference (1AGSSEA). Singapore: Research Publishing Services, 2013. http://dx.doi.org/10.3850/978-981-07-4948-4_090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Carranza-Torres, Carlos, and David Saftner. "Computational Tools for the Analysis of Stability of Embankments in Frictional-Cohesive Soils." In Geo-Congress 2020. Reston, VA: American Society of Civil Engineers, 2020. http://dx.doi.org/10.1061/9780784482841.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Abu-Farsakh, Murad, Khalid Farrag, Izzaldin Almohd, and Ather Mohiuddin. "Bearing and Frictional Contributions to the Pullout Capacity of Geogrid Reinforcements in Cohesive Backfill." In Geo-Frontiers Congress 2005. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40787(166)22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Steward, Eric J., and Marcus Shekouh. "Laboratory Determination of the Time-Dependent Interface Frictional Behavior between Cohesive Soil and Construction Materials." In IFCEE 2015. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479087.170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sanz, B. "Simulation of push-out tests of corroded reinforced concrete specimens by means of cohesive interface elements with frictional behavior." In 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures. IA-FraMCoS, 2019. http://dx.doi.org/10.21012/fc10.235566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, B., and S. Mall. "Investigation of Damage in Unidirectional Ceramic Matrix Composites Using a Cohesive-Shear-Lag Model." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/ad-25300.

Full text
Abstract:
Abstract The present study develops a cohesive-shear-lag model to analyze the cycling stress-strain behavior of unidirectional fiber-reinforced ceramic matrix composites. The model, as a modification to a classical shear-lag model, takes into account matrix cracking, partial interfacial debonding, and partial breakage of fibers. The statistical nature of partial breakage of fibers is modeled by using a cohesive force law. The validity of the model is demonstrated by investigating stress-strain hysteresis loops of a unidirectional fiber-reinforced ceramic-glass matrix composite, SiC/1723. This example demonstrates the capability of the proposed model to characterize damage and deformation mechanisms of ceramic matrix composites under tension-tension cycling loading. The dominant progressive damage mechanism with cycling in this case is shown to be accumulation of fibers breakage, accompanied by increase in interfacial debonding and smoothening of frictional debonded interface.
APA, Harvard, Vancouver, ISO, and other styles
10

Bailly, P., F. Delvare, M. Biessy, and D. Picart. "Dynamic tests on a cohesive and frictional material. Influence of high pressure and high strain rate on compaction and shear." In DYMAT 2009 - 9th International Conferences on the Mechanical and Physical Behaviour of Materials under Dynamic Loading. Les Ulis, France: EDP Sciences, 2009. http://dx.doi.org/10.1051/dymat/2009029.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Cohesive-frictional"

1

William, Kaspar J. Failure Mechanics of Cohesive-Frictional Materials. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada329720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography