Academic literature on the topic 'Coherent Illumination'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Coherent Illumination.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Coherent Illumination"
Klychkova, D. M., and V. P. Ryabukho. "Spatial spectrum of coherence signal for a defocused object images in digital holographic microscopy with partially spatially coherent illumination." Computer Optics 42, no. 3 (July 25, 2018): 414–23. http://dx.doi.org/10.18287/2412-6179-2018-42-3-414-423.
Full textChang, Huibin, Pablo Enfedaque, Yifei Lou, and Stefano Marchesini. "Partially coherent ptychography by gradient decomposition of the probe." Acta Crystallographica Section A Foundations and Advances 74, no. 3 (April 11, 2018): 157–69. http://dx.doi.org/10.1107/s2053273318001924.
Full textSalik, Boaz, Joseph Rosen, and Amnon Yariv. "Nondiffracting images under coherent illumination." Optics Letters 20, no. 17 (September 1, 1995): 1743. http://dx.doi.org/10.1364/ol.20.001743.
Full textChen, Gang, Jian Hua Zhu, Zhen Xiong Luo, Yu Zhao, and Ze Ren Li. "Improvement of Pulsed Holographic Recording Characteristics of Polyvinyl Alcohol/Acrylamide Green-Sensitive Photopolymer." Advanced Materials Research 1035 (October 2014): 492–96. http://dx.doi.org/10.4028/www.scientific.net/amr.1035.492.
Full textWilde, Jeffrey P., Joseph W. Goodman, Yonina C. Eldar, and Yuzuru Takashima. "Coherent superresolution imaging via grating-based illumination." Applied Optics 56, no. 1 (November 17, 2016): A79. http://dx.doi.org/10.1364/ao.56.000a79.
Full textNguyen, T. H., C. Edwards, L. L. Goddard, and G. Popescu. "Quantitative phase imaging with partially coherent illumination." Optics Letters 39, no. 19 (September 17, 2014): 5511. http://dx.doi.org/10.1364/ol.39.005511.
Full textShapiro, Jeffrey H., and Seth Lloyd. "Quantum illumination versus coherent-state target detection." New Journal of Physics 11, no. 6 (June 24, 2009): 063045. http://dx.doi.org/10.1088/1367-2630/11/6/063045.
Full textMa, Rui, Zhao Wang, Egor Manuylovich, Wei Li Zhang, Yong Zhang, Hong Yang Zhu, Jun Liu, Dian Yuan Fan, Yun Jiang Rao, and Anderson S. L. Gomes. "Highly coherent illumination for imaging through opacity." Optics and Lasers in Engineering 149 (February 2022): 106796. http://dx.doi.org/10.1016/j.optlaseng.2021.106796.
Full textMainville, J., F. Bley, F. Livet, E. Geissler, J. F. Legrand, D. Abernathy, G. Grübel, S. G. J. Mochrie, and M. Sutton. "Speckle Structure in Small-Angle Coherent X-ray Scattering." Journal of Applied Crystallography 30, no. 5 (October 1, 1997): 828–32. http://dx.doi.org/10.1107/s0021889897002185.
Full textMoxham, Thomas E. J., Aaron Parsons, Tunhe Zhou, Lucia Alianelli, Hongchang Wang, David Laundy, Vishal Dhamgaye, Oliver J. L. Fox, Kawal Sawhney, and Alexander M. Korsunsky. "Hard X-ray ptychography for optics characterization using a partially coherent synchrotron source." Journal of Synchrotron Radiation 27, no. 6 (October 16, 2020): 1688–95. http://dx.doi.org/10.1107/s1600577520012151.
Full textDissertations / Theses on the topic "Coherent Illumination"
Gadelha, Matheus Abrantes. "An augmented reality pipeline to create scenes with coherent illumination using textured cuboids." Universidade Federal do Rio Grande do Norte, 2014. http://repositorio.ufrn.br/handle/123456789/19823.
Full textApproved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2016-02-23T23:24:05Z (GMT) No. of bitstreams: 1 MatheusAbrantesGadelha_DISSERT.pdf: 18378275 bytes, checksum: 183ee0f2bfbeba61eb2a77787a4cedd6 (MD5)
Made available in DSpace on 2016-02-23T23:24:05Z (GMT). No. of bitstreams: 1 MatheusAbrantesGadelha_DISSERT.pdf: 18378275 bytes, checksum: 183ee0f2bfbeba61eb2a77787a4cedd6 (MD5) Previous issue date: 2014-08-21
Sombras e ilumina??o possuem um papel importante na s?ntese de cenas realistas em Computa??o Gr?fica. A maioria dos sistemas de Realidade Aumentada rastreia marcadores posicionados numa real, obtendo sua posi??o e orienta??o para servir como refer?ncia para o conte?do sint?tico, produzindo a cena aumentada. A exibi??o realista de conte?do aumentado com pistas visuais coerentes ? um objetivo desej?vel em muitas aplica??es de Realidade Aumentada. Contudo, renderizar uma cena aumentada com ilumina??o realista ? um tarefa complexa. Muitas abordagens existentes dependem de uma fase de pr?-processamento n?o automatizada para obter os par?metros de ilumina??o da cena. Outras t?cnicas dependem de marcadores espec?ficos que cont?m probes de luz para realizar a estima??o da ilumina??o do ambiente. Esse estudo se foca na cria??o de um m?todo para criar aplica??es de Realidade Aumentada com ilumina??o coerente e sombras, usando um cub?ide texturizado como marcador, n?o requerendo fase de treinamento para prover informa??o acerca da ilumina??o do ambiente. Um marcador desse tipo pode ser facilmente encontrado em ambientes comuns: a maioria das embalagens de produtos satisfaz essas caracter?sticas. Portanto, ese estudo prop?e uma maneira de estimar a configura??o de uma luz direcional utilizando o rastreamento de m?ltiplas texturas para renderizar cenas de Realidade Aumentada de maneira realista. Tamb?m ? proposto um novo descritor de features visuais que ? usado para realizar o rastreamento de m?ltiplas texturas. Esse descritor extende o descritor bin?rio e ? denominado descritor discreto. Ele supera o atual estado-da-arte em velocidade, enquanto mant?m n?veis similares de precis?o.
Shadows and illumination play an important role when generating a realistic scene in computer graphics. Most of the Augmented Reality (AR) systems track markers placed in a real scene and retrieve their position and orientation to serve as a frame of reference for added computer generated content, thereby producing an augmented scene. Realistic depiction of augmented content with coherent visual cues is a desired goal in many AR applications. However, rendering an augmented scene with realistic illumination is a complex task. Many existent approaches rely on a non automated pre-processing phase to retrieve illumination parameters from the scene. Other techniques rely on specific markers that contain light probes to perform environment lighting estimation. This study aims at designing a method to create AR applications with coherent illumination and shadows, using a textured cuboid marker, that does not require a training phase to provide lighting information. Such marker may be easily found in common environments: most of product packaging satisfies such characteristics. Thus, we propose a way to estimate a directional light configuration using multiple texture tracking to render AR scenes in a realistic fashion. We also propose a novel feature descriptor that is used to perform multiple texture tracking. Our descriptor is an extension of the binary descriptor, named discrete descriptor, and outperforms current state-of-the-art methods in speed, while maintaining their accuracy.
Patrick, Mark Adam. "Illumination Strategies to Reduce Target Orientation Requirements and Speckle in Millimeter Wave Imaging." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1397656078.
Full textKosmeier, Sebastian. "Optical eigenmodes for illumination & imaging." Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3369.
Full textGassenbauer, Václav. "Illumination coherence for ligh transport simulation." Rennes 1, 2011. http://www.theses.fr/2011REN1S098.
Full textLa simulation de la propagation de la lumière dans une scène est une tâche essentielle en synthèse d'images réalistes. Cependant, une simulation correcte de la lumière ainsi que ses différents rebonds dans la scène reste couteuse en temps de calcul. Premièrement, nous proposons l'algorithme de cache de luminance spatial et directionnel SDRC. L'algorithme SDRC tire parti du fait que les variations d'éclairage sont douces sur les surfaces brillantes. L'éclairage en un point de la scène est alors calculé en interpolant l'éclairage indirect connu pour un ensemble d'échantillons de luminance spatialement proches et de directions similaires. Dans la partie suivante, nous présentons un algorithme efficace et précis d'analyse locale en composantes principales LPCA pour réduire la dimension et compresser un grandensemble de données. Pour améliorer l'efficacité de notre nouvel algoritme celui-ci propage les informations issues d'une itération à une itération suivante. En choisissant une meilleure graine initiale pour les centroïdes des clusters dans LPCA, la précision de la méthode est améliorée et produit une meilleure classification des données. Enfin, nous décrivons des travaux en cours de réalisation concernant une méthode de ré-éclairage interactif d'une séquence animée en prenant en compte l'éclairage indirect. Le problème de ré-éclairage est représenté sous la forme d'une grande matrice 3D représentant la propagation de la lumière dans la scène pour plusieurs images de la séquence. Un algorithme adaptatif pré-calcule la propagation de la lumière en exploitant les cohérences potentielles
Boye, Pit. "Nanofocusing Refractive X-Ray Lenses." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-27137.
Full textDiese Dissertation beschäftigt sich mit der Entwicklung und Optimierung der Herstellungsprozesse von refraktiven nanofokussierenden Röntgenlinsen. Diese aus Silizium oder Diamant hergestellten Optiken, sind hervorragend für hochauflösende Röntgen\-mikroskopie geeignet. Ziel dieser Arbeit ist es, einen reproduzierbaren Herstellungsprozess zu erarbeiten, der es erlaubt, Siliziumlinsen von hoher Präzision, Qualität und Quantität zu fertigen. Zusätzlich soll ein Prozess für Diamantlinsen entwickelt und etabliert werden. In der folgenden Arbeit werden die theoretischen Grundlagen von Röntgenstrahlung und deren Wechselwirkung mit Materie beschrieben. Spezielle Aspekte der Synchrotronstrahlung werden hervorgehoben. Wichtig im Zusammenhang mit Röntgenmikroskopie sind die verschieden Optiken. Deren Details, Vor- und Nachteile, insbesondere die der brechenden Linsen, werden genannt. Zur Erzeugung fein gebündelter Röntgenmikrostrahlen im Bereich unter 100nm lateraler Größe benötigt man sehr kurze Brennweiten. Mit brechenden Linsen lässt sich dieses mittels eines kompakten Linsendesigns von vielen hintereinander gestapelten Einzellinsen realisieren. Die so genannten refraktiven nanofokussierenden Linsen (NFLs) besitzen eine parabolische Zylinderform mit lateralen Strukturgrößen im Mikrometerbereich. NFLs werden mittels spezieller Technologien der Mikroprozessierung hergestellt. Diese Mikrostrukturierungsverfahren werden mit ihren jeweiligen Prozessschritten und zugehörenden Technologien vorgestellt. Die Ergebnisse der Optimierung und der endgültige Mikrostrukturierungsprozess für Siliziumlinsen werden dargelegt. Im Anschluss daran werden zwei Experimente erläutert, die beispielhaft für die Anwendung von NFLs stehen. Ersteres ist ein ortsaufgelöstes Fluoreszenzrasterexperiment einer geologischen Probe und das zweite ein kohärentes Röntgen-Beugungsexperiment (CXDI). CXDI ist in der Lage, aus kohärent aufgenommen Beugungsbildern das beleuchtete Objekt zu rekonstruieren. Kombiniert mit einem rasternden Verfahren, welches Ptychographie genannt wird, ist diese Methode in der Lage, die Beleuchtungsfunktion und das Objekt gleichzeitig zu rekonstruieren. Besonderes die rekonstruierte Beleuchtungsfunktion und die Möglichkeit der computergestützten Propagation des Wellenfeldes entlang des fokussierten Strahls, geben aufschlussreiche Informationen über die verwendete Optik. Neue Erkenntnisse über die Linsen und deren Aberrationen können so gewonnen werden. Vergleiche von simulierten mit gemessenen Daten zeigen gute Übereinstimmung. Daran anschließend erfolgt die Beschreibung der Entwicklung eines Fabrikationsprozess für Diamantlinsen. Diamant mit seinen außergewöhnlichen Materialeigenschaften ist besonders gut als Linsenmaterial für refraktive Röntgenlinsen geeignet. Abschliessend wird ein zusammenfassender Überblick über die derzeitigen und die zu erwartenden Entwicklungen bei refraktiven Linsen gegeben
Kraczek, Jeffrey R. "Non Iterative Multi-Aperture and Multi-Illuminator Phasing for High Resolution Coherent Imaging." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1500495301169035.
Full textVacula, Daniel. "Automatizace metody měření povrchových struktur reflexním digitálním holografickým mikroskopem." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-228893.
Full textThouvenin, Olivier. "Optical 3D imaging of subcellular dynamics in biological cultures and tissues : applications to ophthalmology and neuroscience." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC169/document.
Full textThis PhD project aims to explore the relationship that might exist between the dynamic motility and mechanical behavior of different biological systems and their biochemical activity. In particular,we were interested in detecting the electromechanical coupling that may happen in active neurons, and may assist in the propagation of the action potential. With this goal in mind, we have developed two highly sensitive optical microscopes that combine one modality that detects sub-wavelength axial displacements using optical phase imaging and another modality that uses a fluorescence path. Therefore, these multimodal microscopes can combine a motility, a mechanical,a structural and a biochemical contrast at the same time. One of this system is based ona multimodal combination of full-field optical coherence tomography (FF-OCT) and allows the observation of such contrast inside thick and scattering biological tissues. The other setup provides a higher displacement sensitivity, but is limited to measurements in cell cultures. In this manuscript, we mainly discuss the development of both systems and describe the various contrastst hey can reveal. Finally, we have largely used our systems to investigate diverse functions of the eye and to look for electromechanical waves in cell cultures. The thorough description of both biological applications is also provided in the manuscript
Meiniel, William. "Développement et mise en oeuvre de stratégies d'échantillonnage comprimé pour le débruitage et l'acquisition d'images en microscopie à fluorescence et en tomographie en cohérence optique." Electronic Thesis or Diss., Paris, ENST, 2018. http://www.theses.fr/2018ENST0052.
Full textThe mathematical theory of Compressed Sensing (CS) is a recently developed framework that enables the reconstruction of a signal or an image from very few measurements. In this thesis, we investigate how this theory can be implemented in the context of two optical microscopy techniques : fluorescence microscopy, and optical coherence tomography. Both technologies present different limitations which we prove can be tackled by the embedding of CS driven strategies. The latter can be divided into two categories : image processing algorithmic solutions, and optical acquisition techniques
Maršíková, Barbora. "Trojrozměrné zobrazování v holografickém mikroskopu pomocí koherenční brány." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-392840.
Full textBooks on the topic "Coherent Illumination"
Taylor, David K. Non-coherent optical radiation sources. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199655212.003.0022.
Full textCho, Jeasik. A Typology of the Evaluation of Qualitative Research. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199330010.003.0002.
Full textBook chapters on the topic "Coherent Illumination"
Ojeda-Castañeda, Jorge. "Optical Linear Systems Under Coherent Illumination." In Wavefront Shaping and Pupil Engineering, 39–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-63802-6_3.
Full textBerberova, Natalia, Elena Stoykova, Hoonjong Kang, Joo-Sup Park, and Branimir Ivanov. "SLM-Based Fringe Projection Profilometry under Coherent Illumination." In Fringe 2013, 883–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36359-7_164.
Full textAlhakamy, A’aeshah, and Mihran Tuceryan. "Polarization-Based Illumination Detection for Coherent Augmented Reality Scene Rendering in Dynamic Environments." In Advances in Computer Graphics, 3–14. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22514-8_1.
Full textAgour, Mostafa, Khaled Elshaffey, Christoph von Kopylow, Ralf B. Bergmann, and Claas Falldorf. "Measuring the Complex Amplitude of Wave Fields by Means of Phase Retrieval Using Partially Coherent Illumination." In Fringe 2013, 283–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36359-7_47.
Full textDomash, L., P. Levin, and M. A. Fiddy. "Fluctuation Interferometer as High Angular-Resolution Sensor of Laser Illumination." In Coherence and Quantum Optics VI, 237–41. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0847-8_44.
Full textNapieralski, Piotr. "Optimal Frame Coherence for Animation in Global Illumination Environment." In Studies in Computational Intelligence, 187–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78490-6_23.
Full text"Computational Lithography with Coherent Illumination." In Computational Lithography, 58–82. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470618943.ch5.
Full text"Computational Lithography with Partially Coherent Illumination." In Computational Lithography, 101–22. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470618943.ch7.
Full text"Diffuse Global Illumination with Temporally Coherent Light Propagation Volumes." In GPU Pro 2, 203–22. A K Peters/CRC Press, 2016. http://dx.doi.org/10.1201/b11325-19.
Full textFrank, Joachim. "The Envelope of Electron Microscopic Transfer Functions for Partially Coherent Illumination." In Series in Structural Biology, 51–68. World Scientific, 2018. http://dx.doi.org/10.1142/9789813234864_0003.
Full textConference papers on the topic "Coherent Illumination"
Boufounos, Petros T. "Depth sensing using active coherent illumination." In ICASSP 2012 - 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2012. http://dx.doi.org/10.1109/icassp.2012.6289146.
Full textKozacki, Tomasz, Marcin Prytulak, and Romuald Jóźwicki. "Partially coherent illumination in Fresnel digital holography." In Congress on Optics and Optoelectronics, edited by Krzysztof M. Abramski, Antonio Lapucci, and Edward F. Plinski. SPIE, 2005. http://dx.doi.org/10.1117/12.622867.
Full textHu, Jiajun. "Autostereoscopic display with a coherent backlight illumination." In Frontiers in Optics. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/fio.2020.fm5d.5.
Full textSchneider, Bernhard, Benno Albrecht, P. Jaeckle, Denis Neofotistos, S. Soeding, T. Jaeger, and Christoph G. Cremer. "Nanolocalization measurements in spatially modulated illumination microscopy using two coherent illumination beams." In BiOS 2000 The International Symposium on Biomedical Optics, edited by Daniel L. Farkas and Robert C. Leif. SPIE, 2000. http://dx.doi.org/10.1117/12.384227.
Full textZhang, Bosheng, Dennis F. Gardner, Leigh S. Martin, Matthew D. Seaberg, Daniel E. Adams, Margaret Murnane, and Henry Kapteyn. "Coherent Diffraction Imaging with an Apertured Illumination Support." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/cleo_si.2012.cf1l.4.
Full textSharma, Nachieketa K., K. Mishra, S. K. Kamilla, and J. K. Sharma. "Performance of a human eye in coherent illumination." In 2013 Workshop on Recent Advances in Photonics (WRAP). IEEE, 2013. http://dx.doi.org/10.1109/wrap.2013.6917630.
Full textSrinivasan, Pratul P., Ben Mildenhall, Matthew Tancik, Jonathan T. Barron, Richard Tucker, and Noah Snavely. "Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination." In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020. http://dx.doi.org/10.1109/cvpr42600.2020.00810.
Full textHeemels, Alexander, Temitope E. Agbana, Silvania F. Pereira, Jan-Carel Diehl, Michel Verhaegen, and Gleb Vdovin. "Effect of partial coherent illumination on Fourier Ptychography." In Label-free Biomedical Imaging and Sensing (LBIS) 2020, edited by Natan T. Shaked and Oliver Hayden. SPIE, 2020. http://dx.doi.org/10.1117/12.2544766.
Full textSchwider, Johannes. "Partially coherent illumination in interferometry for optical testing." In International Conference on Optical Metrology, edited by Werner P. O. Jueptner and Krzysztof Patorski. SPIE, 1999. http://dx.doi.org/10.1117/12.357761.
Full textGuan, Yizhao, Hiromasa Kume, Shotaro Kadoya, Masaki Michihata, and Satoru Takahashi. "The FDTD Analysis of Near-Field Response for Microgroove Structure With Standing Wave Illumination for the Realization of Coherent Structured Illumination Microscopy." In ASME 2021 16th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/msec2021-60409.
Full textReports on the topic "Coherent Illumination"
Ravizza, F. L. Imaging of Phase Objects using Partially Coherent Illumination. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1122248.
Full text