Academic literature on the topic 'Cognitive Planning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cognitive Planning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cognitive Planning"
Audi, Robert. "Intention, cognitive commitment, and planning." Synthese 86, no. 3 (March 1991): 361–78. http://dx.doi.org/10.1007/bf00485266.
Full textShi, Xiaowei. "Cognitive Responses in Advice Planning." Journal of Language and Social Psychology 32, no. 3 (December 26, 2012): 311–34. http://dx.doi.org/10.1177/0261927x12470112.
Full textHanssen, Gro Sandkjaer, and Inger-Lise Saglie. "Cognitive Closure in Urban Planning." Planning Theory & Practice 11, no. 4 (December 2010): 499–521. http://dx.doi.org/10.1080/14649357.2010.525373.
Full textFernandez Davila, Jorge Luis, Dominique Longin, Emiliano Lorini, and Frédéric Maris. "A Simple Framework for Cognitive Planning." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 7 (May 18, 2021): 6331–39. http://dx.doi.org/10.1609/aaai.v35i7.16786.
Full textChown, Eric, Lashon B. Booker, and Stephen Kaplan. "Perception, action planning, and cognitive maps." Behavioral and Brain Sciences 24, no. 5 (October 2001): 882. http://dx.doi.org/10.1017/s0140525x01240102.
Full textButcher, Stephen. "Embodied cognitive geographies." Progress in Human Geography 36, no. 1 (July 13, 2011): 90–110. http://dx.doi.org/10.1177/0309132511412997.
Full textOettinger, A., J. H. Smith-Spark, F. D. Castillo, V. E. L. Monaghan, J. Fox, and D. W. Glasspool. "Supporting Medical Planning by Mitigating Cognitive Load." Methods of Information in Medicine 46, no. 06 (2007): 636–40. http://dx.doi.org/10.3414/me0441.
Full textUlengin, F., and I. Topcu. "Cognitive Map: KBDSS Integration in Transportation Planning." Journal of the Operational Research Society 48, no. 11 (November 1997): 1065. http://dx.doi.org/10.2307/3010302.
Full textRatwani, R., L. Lartigue, L. Chung, D. Pepple, K. Todd, J. Zanol, E. Freedy, and D. Horvath. "Improving Cognitive Effectiveness in Counterinsurgency Operational Planning." Proceedings of the Human Factors and Ergonomics Society Annual Meeting 55, no. 1 (September 1, 2011): 419–23. http://dx.doi.org/10.1177/1071181311551086.
Full textBiedenweg, Kelly, David Trimbach, Jackie Delie, and Bessie Schwarz. "Using cognitive mapping to understand conservation planning." Conservation Biology 34, no. 6 (November 27, 2020): 1364–72. http://dx.doi.org/10.1111/cobi.13627.
Full textDissertations / Theses on the topic "Cognitive Planning"
Dean, Janet Blevins. "Cognitive dysorganization, prospective memory, and planning." Columbus, Ohio : Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1059929529.
Full textTitle from first page of PDF file. Document formatted into pages; contains xiv, 146 p.; also includes graphics. Includes abstract and vita. Advisor: Herbert Mirels, Dept. of Psychology. Includes bibliographical references (p. 106-118).
Morales, Alcaide Fernando. "Towards cognitive in-operation network planning." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/620635.
Full textEls serveis d’internet de nova generació tals com la televisió en viu o el vídeo sota demanda requereixen d’un gran ample de banda i d’ultra-baixa latència. L’increment continu del volum, dinamicitat i requeriments d’aquests serveis està generant nous reptes pels teleoperadors de xarxa. Per reduir costs, els proveïdors de contingut estan disposant aquests més a prop dels usuaris finals, aconseguint així una entrega de contingut feta a mida. Conseqüentment, estem presenciant una dinamicitat mai vista en el tràfic de xarxes de metro amb canvis en la direcció i el volum del tràfic al llarg del dia. Actualment, s’està duent a terme un gran esforç cap a la realització de xarxes 5G. Aquest esforç es tradueix en cercar noves arquitectures de xarxa que suportin l’assignació dinàmica de recursos, complint requeriments de servei estrictes i minimitzant el cost total de la propietat. En aquest sentit, recentment s’ha demostrat com l’aplicació de “in-operation network planning” permet exitosament suportar diversos casos d’ús de reconfiguració de xarxa en escenaris prospectius. No obstant, és necessari dur a terme més recerca per tal d’estendre “in-operation network planning” des d’un esquema reactiu d’optimització cap a un nou esquema proactiu basat en l’analítica de dades provinents del monitoritzat de la xarxa. El concepte de xarxes cognitives es també troba al centre d’atenció, on un elevat coneixement de la xarxa s’obtindria com a resultat d’introduir analítica de dades en la infraestructura del teleoperador. Mitjançant un coneixement predictiu sobre el tràfic de xarxa, els mecanismes de in-operation network planning es podrien millorar per adaptar la xarxa eficientment basant-se en predicció de tràfic, assolint així el que anomenem com a “cognitive in-operation network Planning”. En aquesta tesi ens centrem en l’estudi de mecanismes que permetin establir “el cognitive in-operation network Planning” en xarxes de core. En particular, ens centrem en reconfigurar dinàmicament topologies de xarxa virtual (VNT) a la capa MPLS, cobrint una sèrie d’objectius detallats. Primer comencem estudiant mecanismes pel modelat de fluxos de tràfic de xarxa, des del seu monitoritzat i transformació fins a l’estimació de models predictius de tràfic. Posteriorment, i mitjançant aquests models predictius, tractem un esquema cognitiu per adaptar periòdicament la VNT utilitzant matrius de tràfic basades en predicció de parells origen-destí (OD). Aquesta optimització, anomenada VENTURE, és resolta eficientment fent servir heurístiques dedicades i és posteriorment avaluada sota escenaris de tràfic de xarxa dinàmics. A continuació, estenem VENTURE considerant la dinamicitat dels fluxos de tràfic de xarxes de metro, el qual representa un escenari rellevant de dinamicitat de tràfic. Aquesta extensió involucra millores per coordinar els operadors de metro i core amb l’objectiu d’aconseguir una ràpida adaptació de models de tràfic OD. Finalment, proposem dues arquitectures de xarxa necessàries per aplicar els mecanismes anteriors en entorns experimentals, emprant protocols estat-de-l’art com són OpenFlow i IPFIX. La metodologia emprada per avaluar el treball anterior consisteix en una primera avaluació numèrica fent servir un simulador de xarxes íntegrament dissenyat i desenvolupat per a aquesta tesi. Després d’aquesta validació basada en simulació, la factibilitat experimental de les arquitectures de xarxa proposades és avaluada en un entorn de proves distribuït.
Combrink, Aneri. "Cognitive development in planning theory / A. Combrink." Thesis, North-West University, 2010. http://hdl.handle.net/10394/4564.
Full textThesis (M.Art. et Scien. (Town and Regional Planning))--North-West University, Potchefstroom Campus, 2011.
Tosello, Elisa. "Cognitive Task Planning for Smart Industrial Robots." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3421918.
Full textQuesta ricerca presenta una nuova struttura di Pianificazione Cognitiva delle Attività ideata per Robot Industriali Intelligenti. La struttura rende Cognitivo un manipolatore industriale mobile applicando le tecnologie offerte dal Web Semantico. Viene inoltre introdotto un nuovo algoritmo di Navigazione tra Oggetti Removibili per robot che navigano e manipolano all’interno di una fabbrica. L’obiettivo di Industria 4.0 è quello di creare Fabbriche Intelligenti: fabbriche modulari dotate di sistemi cyber-fisici in grado di customizzare i prodotti pur mantenendo una produzione di massa altamente flessibile. Tali sistemi devono essere in grado di comunicare e cooperare tra loro e con gli agenti umani in tempo reale, attraverso l’Internet delle Cose. Devono sapersi autonomamente ed intelligentemente adattare ai costanti cambiamenti dell’ambiente che li circonda. Devono saper navigare autonomamente all’interno della fabbrica, anche spostando ostacoli che occludono percorsi liberi, ed essere in grado di manipolare questi oggetti anche se visti per la prima volta. Devono essere in grado di imparare dalle loro azioni e da quelle eseguite da altri agenti. La maggior parte dei robot industriali mobili naviga secondo traiettorie generate a priori. Seguono filielettrificatiincorporatinelterrenoolineedipintesulpavimento. Pianificareapriorièfunzionale se l’ambiente è immutevole e i cicli produttivi sono caratterizzati da criticità temporali. E’ preferibile adottare una pianificazione dinamica se, invece, l’area di lavoro ed i compiti assegnati cambiano frequentemente: i robot devono saper navigare autonomamente senza tener conto dei cambiamenti circostanti. Si consideri il comportamento umano: l’uomo ragiona sulla possibilità di spostare ostacolise unaposizione obiettivo nonè raggiungibileose talespostamento puòaccorciare la traiettoria da percorrere. Questo problema viene detto Navigazione tra Oggetti Removibili ed è noto alla robotica di soccorso. Questo lavoro traspone il problema in uno scenario industriale e prova ad affrontare i suoi due obiettivi principali: l’elevata dimensione dello spazio di ricerca ed il trattamento dell’incertezza. L’algoritmo proposto vuole dare priorità di esplorazione alle aree meno esplorate, per questo estende l’algoritmo noto come Kinodynamic Motion Planning by Interior-Exterior Cell Exploration. L’estensione non impone l’elusione degli ostacoli. Assegna ad ogni cella un’importanza che combina lo sforzo necessario per raggiungerla con quello necessario per liberarla da eventuali ostacoli. L’algoritmo risultante è scalabile grazie alla sua indipendenza dalla dimensione della mappa e dal numero, forma e posizione degli ostacoli. Non impone restrizioni sulle azioni da eseguire: ogni oggetto può venir spinto o afferrato. Allo stato attuale, l’algoritmo assume una completa conoscenza del mondo circonstante. L’ambiente è però riconfigurabile di modo che l’algoritmo possa venir facilmente esteso alla risoluzione di problemi di Navigazione tra Oggetti Removibili in ambienti ignoti. L’algoritmo gestisce i feedback dati dai sensori per correggere le incertezze. Solitamente la Robotica separa la risoluzione dei problemi di pianificazione del movimento da quelli di manipolazione. La Navigazione tra Ostacoli Removibili forza il loro trattamento combinato introducendo la necessità di manipolare oggetti diversi, spesso ignoti, durante la navigazione. Adottare prese pre calcolate non fa fronte alla grande quantità e diversità di oggetti esistenti. Questa tesi propone un Framework di Conoscenza Semantica a supporto dell’algoritmo sopra esposto. Essodàairobotlacapacitàdiimparareamanipolareoggettiedisseminareleinformazioni acquisite durante il compimento dei compiti assegnati. Il Framework si compone di un’Ontologia e di un Engine. L’Ontologia estende lo Standard IEEE formulato per Ontologie per la Robotica e l’Automazione andando a definire le manipolazioni apprese e gli oggetti rilevati. È accessibile a qualsiasi robot connesso al Cloud. Può venir considerato I) una raccolta di dati per l’esecuzione efficiente ed affidabile di azioni ripetute; II) un archivio Web per lo scambio di informazioni tra robot e la velocizzazione della fase di apprendimento. Ad ora, non esistono altre ontologie sulla manipolazione che rispettino lo Standard IEEE. Indipendentemente dallo standard, l’Ontologia propostadifferiscedaquelleesistentiperiltipodiinformazionisalvateeperilmodoefficienteincui un agente può accedere a queste informazioni: attraverso un algoritmo di Cascade Hashing molto veloce. L’Engine consente il calcolo e il salvataggio delle manipolazioni non ancora in Ontologia. Si basa su tecniche di Reinforcement Learning che evitano il training massivo su basi di dati a larga scala, favorendo l’interazione uomo-robot. Infatti, viene data ai robot la possibilità di imparare dagli umani attraverso un framework di Apprendimento Robotico da Dimostrazioni. Il sistema finale è flessibile ed adattabile a robot diversi operanti in diversi ambienti industriali. È caratterizzato da una struttura modulare in cui ogni blocco è completamente riutilizzabile. Ogni blocco si basa sul sistema open-source denominato Robot Operating System. Non tutti i controllori industriali sono disegnati per essere compatibili con questa piattaforma. Viene quindi presentato il metodo che è stato adottato per aprire i controllori dei robot industriali e crearne un’interfaccia ROS.
Nitschke, Kai [Verfasser], Christoph [Akademischer Betreuer] Kaller, and Markus [Akademischer Betreuer] Heinrichs. "The neural and cognitive foundations of human planning." Freiburg : Universität, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:25-freidok-132951.
Full textNitschke, Kai Verfasser], Christoph [Akademischer Betreuer] [Kaller, and Markus [Akademischer Betreuer] Heinrichs. "The neural and cognitive foundations of human planning." Freiburg : Universität, 2017. http://d-nb.info/1143154479/34.
Full textTimmer, Peter Robin. "Expression of operator planning horizons : a cognitive engineering approach." Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325012.
Full textDonnici, Margherita. "Weekend in Rome: A Cognitive Training Exercise based on Planning." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16198/.
Full textRazavian, Adam A. "Cognitive Based Adaptive Path Planning Algorithm for Autonomous Robotic Vehicles." NSUWorks, 2004. http://nsuworks.nova.edu/gscis_etd/793.
Full textPrice, Philip Sidney. "Validity of planning, attention, simultaneous, and successive cognitive processing tasks /." The Ohio State University, 1987. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487585645577074.
Full textBooks on the topic "Cognitive Planning"
Hoc, J. M. Cognitive psychology of planning. London: Academic, 1988.
Find full textHoc, Jean-Michel. Cognitive psychology of planning. London: Academic Press, 1988.
Find full text1958-, Morris Robin, and Ward Geoff 1968-, eds. The cognitive psychology of planning. Hove, UK: Psychology Press, 2004.
Find full textSchneider, Justine. Planning for elderly people with cognitive impairment. Canterbury: University of Kent, Personal Social Services Research Unit, 1993.
Find full text1942-, Kar Binod C., and Parrila Rauno K. 1961-, eds. Cognitive planning: The psychological basis of intelligent behavior. New Delhi: Sage Publications, 1996.
Find full textPsychologie cognitive de la planification. Grenoble: Presses universitaires de Grenoble, 1987.
Find full textL, Friedman Sarah, Scholnick Ellin Kofsky, and Cocking Rodney R, eds. Blueprints for thinking: The role of planning in cognitive development. Cambridge [Cambridgeshire]: Cambridge University Press, 1987.
Find full textMenon, Anoop Ramachandran. Essays on cognition in strategy. Ann Arbor, MI: ProQuest, UMI Dissertation Publishing, 2013.
Find full textLaster, Janet F. Toward excellence in vocational education: Using cognitive psychology in curriculum planning. Columbus, Ohio: The National Center for Research in Vocational Education, The Ohio State University, 1985.
Find full textStubbart, Charles I. Designing strategic planning systems: Cognitive elaboration, cognitive reduction, and the quality of strategic thinking under conditions of uncertainty, complexity, conflicting interests, and emotional involvement. [Urbana]: College of Commerce and Business Administration,University of Illinois at Urbana-Champaign, 1986.
Find full textBook chapters on the topic "Cognitive Planning"
Bercher, Pascal, Daniel Höller, Gregor Behnke, and Susanne Biundo. "User-Centered Planning." In Cognitive Technologies, 79–100. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43665-4_5.
Full textBoles, David B. "Tools and planning." In Cognitive Evolution, 168–89. 1 Edition. | New York, NY : Routledge, 2019.: Routledge, 2019. http://dx.doi.org/10.4324/9780429028038-12.
Full textBoles, David B. "Tools and planning." In Cognitive Evolution, 180–205. 2nd ed. New York: Routledge, 2022. http://dx.doi.org/10.4324/9781003137863-14.
Full textHaken, Hermann, and Juval Portugali. "Cognitive Planning and Professional Planning." In Springer Series in Synergetics, 235–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63457-5_15.
Full textZacharias, Franziska. "Application in Planning." In Cognitive Systems Monographs, 93–123. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25182-5_6.
Full textBrenner, Michael, Christian Plagemann, Bernhard Nebel, Wolfram Burgard, and Nick Hawes. "Planning and Failure Detection." In Cognitive Systems Monographs, 223–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11694-0_6.
Full textKucner, Tomasz Piotr, Achim J. Lilienthal, Martin Magnusson, Luigi Palmieri, and Chittaranjan Srinivas Swaminathan. "Motion Planning Using MoDs." In Cognitive Systems Monographs, 115–41. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41808-3_5.
Full textRoth, Emilie M., Elizabeth P. DePass, Ronald Scott, Robert Truxler, Stephen F. Smith, and Jeffrey L. Wampler. "Designing Collaborative Planning Systems." In Cognitive Systems Engineering, 247–68. Boca Raton : Taylor & Francis, CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315572529-14.
Full textWerner, Perla, and Silke Schicktanz. "Competence and cognitive deterioration." In Planning Later Life, 89–103. Milton Park, Abingdon, Oxon ; New York, NY: Routledge, 2017.: Routledge, 2017. http://dx.doi.org/10.4324/9781315600772-7.
Full textRichter, Felix, and Susanne Biundo. "Addressing Uncertainty in Hierarchical User-Centered Planning." In Cognitive Technologies, 101–21. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43665-4_6.
Full textConference papers on the topic "Cognitive Planning"
Lorini, Emiliano, Nicolas Sabouret, Brian Ravenet, Jorge Fernandez, and Céline Clavel. "Cognitive Planning in Motivational Interviewing." In 14th International Conference on Agents and Artificial Intelligence. SCITEPRESS - Science and Technology Publications, 2022. http://dx.doi.org/10.5220/0010895400003116.
Full textHuang, Ying, Yingxu Wang, and Omar Zatarain. "Dynamic Path Optimization for Robot Route Planning." In 2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC). IEEE, 2019. http://dx.doi.org/10.1109/iccicc46617.2019.9146050.
Full textOhwada, Hayato, Masato Okada, and Katsutoshi Kanamori. "Flexible route planning for amusement parks navigation." In 2013 12th IEEE International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC). IEEE, 2013. http://dx.doi.org/10.1109/icci-cc.2013.6622277.
Full textLopez, Sonia, Jose-Antonio Cervantes, Felix Ramos, and Yingxu Wang. "A cognitive model of motor planning for virtual creatures." In 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC). IEEE, 2015. http://dx.doi.org/10.1109/icci-cc.2015.7259415.
Full textJiang, Xiao, Pingyuan Cui, Rui Xu, Ai Gao, and Shengying Zhu. "An action guided constraint satisfaction technique for planning problem." In 2016 IEEE 15th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC). IEEE, 2016. http://dx.doi.org/10.1109/icci-cc.2016.7862031.
Full textRahmes, Mark, Richard Clouse, Jay Virts, George Yakimovicz, Bernard Rees, and Wade Talbert. "Cognitive mission planning and system orchestration." In 2017 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2017. http://dx.doi.org/10.1109/iccnc.2017.7876223.
Full textDoulamis, Nikolaos. "Evacuation Planning through Cognitive Crowd Tracking." In 2009 16th International Conference on Systems, Signals and Image Processing. IEEE, 2009. http://dx.doi.org/10.1109/iwssip.2009.5367704.
Full textCavdar, Derya, H. Birkan Yilmaz, Tuna Tugcu, and Fatih Alagoz. "Resource planning in cognitive radio networks." In 2009 6th International Symposium on Wireless Communication Systems (ISWCS 2009). IEEE, 2009. http://dx.doi.org/10.1109/iswcs.2009.5285240.
Full textFernandez, Jorge, Dominique Longin, Emiliano Lorini, and Frédéric Maris. "An Implemented System for Cognitive Planning." In 14th International Conference on Agents and Artificial Intelligence. SCITEPRESS - Science and Technology Publications, 2022. http://dx.doi.org/10.5220/0010846300003116.
Full textHo, Mark, Jonathan Cohen, and Thomas Griffiths. "Construal Set Selection and Rigidity in Planning." In 2022 Conference on Cognitive Computational Neuroscience. San Francisco, California, USA: Cognitive Computational Neuroscience, 2022. http://dx.doi.org/10.32470/ccn.2022.1146-0.
Full textReports on the topic "Cognitive Planning"
Camilo, Cláudia, Andréia Salmazo, Margari da Vaz Garrido, and Maria Manuela Calheiros. Parents’ executive functioning in parenting outcomes: A meta-analytic review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, March 2023. http://dx.doi.org/10.37766/inplasy2023.3.0067.
Full textFlower, Linda, John R. Hayes, Karen A. Schriver, Christina Haas, and Linda Carey. Planning in Writing: The Cognition of a Constructive Process. Fort Belvoir, VA: Defense Technical Information Center, May 1989. http://dx.doi.org/10.21236/ada210434.
Full textLytvynova, Svitlana H. Хмаро орієнтоване навчальне середовище загальноосвітнього навчального закладу. [б. в.], August 2018. http://dx.doi.org/10.31812/0564/2451.
Full text