Academic literature on the topic 'Cogeneration'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cogeneration.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cogeneration"
Bianchi, M., G. Negri di Montenegro, and A. Peretto. "Inverted Brayton Cycle Employment for Low-Temperature Cogenerative Applications." Journal of Engineering for Gas Turbines and Power 124, no. 3 (June 19, 2002): 561–65. http://dx.doi.org/10.1115/1.1447237.
Full textFinke, Cody E., Hugo F. Leandri, Evody Tshijik Karumb, David Zheng, Michael R. Hoffmann, and Neil A. Fromer. "Economically advantageous pathways for reducing greenhouse gas emissions from industrial hydrogen under common, current economic conditions." Energy & Environmental Science 14, no. 3 (2021): 1517–29. http://dx.doi.org/10.1039/d0ee03768k.
Full textJarosz, Zbigniew, Magdalena Kapłan, Kamila Klimek, Barbara Dybek, Marcin Herkowiak, and Grzegorz Wałowski. "An Assessment of the Development of a Mobile Agricultural Biogas Plant in the Context of a Cogeneration System." Applied Sciences 13, no. 22 (November 17, 2023): 12447. http://dx.doi.org/10.3390/app132212447.
Full textBattista, Gabriele, Emanuele de Lieto Vollaro, Andrea Vallati, and Roberto de Lieto Vollaro. "Technical–Financial Feasibility Study of a Micro-Cogeneration System in the Buildings in Italy." Energies 16, no. 14 (July 20, 2023): 5512. http://dx.doi.org/10.3390/en16145512.
Full textStipanuk, David M., and Thomas G. Denlea. "Cogeneration." Cornell Hotel and Restaurant Administration Quarterly 27, no. 3 (November 1986): 51–61. http://dx.doi.org/10.1177/001088048602700313.
Full text., Hariyanto, Enny Rosmawar Purba, Pratiwi ., and Budi Prasetyo. "Energy Saving through Implementation and Optimization of Small and Medium Scale Cogeneration Technology." KnE Energy 2, no. 2 (December 1, 2015): 94. http://dx.doi.org/10.18502/ken.v2i2.362.
Full textAdamik, Piotr. "Evaluation of the use of cogeneration bonus as a support mechanism for the transformation of the heating system in Poland in 2019-2020." Ekonomia i Środowisko - Economics and Environment 80, no. 1 (April 20, 2022): 39–52. http://dx.doi.org/10.34659/eis.2022.80.1.439.
Full textZiębik, Andrzej, and Paweł Gładysz. "Optimal coefficient of the share of cogeneration in the district heating system cooperating with thermal storage." Archives of Thermodynamics 32, no. 3 (December 1, 2011): 71–87. http://dx.doi.org/10.2478/v10173-011-0014-4.
Full textGiannini, Eugenia. "Cogeneration Economics." Energies 15, no. 14 (July 21, 2022): 5302. http://dx.doi.org/10.3390/en15145302.
Full textHATEM, FALAH F. "Using Alternative Cogeneration Plants in Iraqi Petroleum Industry." Journal of Engineering 20, no. 12 (July 9, 2023): 117–31. http://dx.doi.org/10.31026/j.eng.2014.12.08.
Full textDissertations / Theses on the topic "Cogeneration"
Velayuthan, Manohar. "Cogeneration power plant." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0012/MQ52488.pdf.
Full textPsaltas, Michael A. "Hybrid cogeneration desalination process." Thesis, University of Surrey, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.576090.
Full textScholz, Matthew John. "Microbial Cogeneration of Biofuels." Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/145446.
Full textBenelmir, Riad. "Second analysis of a cogeneration cycle." Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/20000.
Full textBASTOS, WALTER NOVELLO. "COGENERATION IN AIR SEPARATION CRIOGENIC PLANTS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1999. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=25011@1.
Full textThe energy shortage and the cogeneration market present a unique opportunity for energy cost reduction of an industry by simultaneously making use of electric and thermal energy generated with the same fuel. This thesis analyzes an integrated cogeneration system adapted to an air separation criogenic plant which has electric energy as a basic input, besides the available and costless air from the atmosphere. It has been shown to be feasible with the big savings inthe operational cost of the plant. A thermal and economic study, carried on by using the first and second Law of thermodynamics demonstrated the economic feasibility of the cogeneration system, and proposed modifications to be done in the studied criogenic plant, a typical T240- NA MPL3 plant. The thermodynamic analysis showed that the second law efficiency of the processes could be improved, together with a 12 percent electric energy consumption reduction. Four cogeneration schemes were analyzed with both the first and second laws of thermodynamics and, then, the economic analysis was performed. Rankine, Brayton, OTTO and combined gas-steam basic cycles were used in this analysis. The combined gas-steam cycle was shown to be more economically feasible than others. Thermal and electric loads were well balanced, resulting in a higher second law efficiency. Although the initial investiment for the modification was higher, the savings resulted to be higher, turning into a high rate of return of the investment. This analysis was judged to be preliminary. More precise results require a deepers analysis with more detailed information.
Colpan, Can Ozgur. "Exergy Analysis Of Combined Cycle Cogeneration Systems." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12605993/index.pdf.
Full textDeJong, Bretton. "Cogeneration in the new deregulated energy environment." Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/17549.
Full textVAL, LUIZ GUSTAVO DO. "CRITICAL ANALYSIS OF THE COGENERATION PLANT PERFORMANCE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2001. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=26481@1.
Full textNo presente trabalho, foi desenvolvido uma metodologia teórico-experimental para a avaliação de plantas de cogeração, incluindo o confronto com os dados dos fabricantes dos equipamentos, a análise de incerteza de medição dos principais parâmetros e a análise termoeconômica. Como resultado, o trabalho visa apresentar critérios mais otimizados para especificação e operação de sistemas de cogeração. Para o seu desenvolvimento, foram analisadas a planta da Companhia Cervejaria Brahma, localizada em Campo Grande, RJ, que é constituída de três turbinas a gás de 4,90 MW acopladas a três caldeiras de recuperação que utilizam Pós-Queima, com capacidade nominal de até 36000 kg/h, cada uma, e a planta do Parque Gráfico do InfoGlobo, localizada na rodovia Washington Luis, Duque de Caxias, RJ, que é constituída de dois motores alternativos de combustão interna de 2,90 MW, duas caldeiras de recuperação e um chiller de absorção de 800 TR s. Para a Companhia Cervejaria Brahma, foi utilizado a metodologia do balanço de massa das reações químicas, usando as medições das emissões e da composição do gás natural na planta, para obtenção da vazão mássica do ar admitido pela turbina e, consequentemente, a vazão mássica dos gases de exaustão. Essa metodologia foi empregada devido a não existência de um medidor de vazão de ar nas turbinas, que é um parâmetro essencial para avaliação do desempenho da planta. Esta metodologia também foi empregada, para a avaliação das caldeiras de recuperação que utilizam queima adicional de combustível. Foi realizada, também, a análise de incertezas dos resultado de desempenho obtidos na planta, de modo a identificar problemas operacionais como, o economizador sujo da caldeira de recuperação. Também, pode-se ver verificar, que o aproveitamento global do combustível utilizado, para geração de energia elétrica e térmica pelo lado da água foi inferior ao aproveitamento deste, para geração de energia elétrica e térmica pelo lado dos gases. A menor diferença encontrada destes valores na escala percentual, foi de 6 porcento. Como esta diferença não é desprezível, chega-se à conclusão que a medida do desempenho da planta de cogeração deve ser feito com base na energia térmica transferida para a água, e não a que é transferida dos gases, como normalmente é feito, sem levar em consideração as perdas térmicas. Por fim, foi realizado uma análise técnico-econômica da utilização dos equipamento empregados na planta, com a finalidade de determinação de custo-benefício. Para o Parque Gráfico do InfoGlobo, foi realizada uma simulação do desempenho dos equipamentos utilizados nesta planta, devido a impossibilidade de se obter dados experimentais em determinados pontos da planta. Para isto, foram utilizados dados de projeto dos equipamentos, admitindo que estes pouco variam com as condições ambientais. Desta forma, não foram realizadas as análises de incertezas dos resultados encontrados. Com a metodologia empregada, pôde-se identificar problemas operacionais como o fato de que a bomba da água de alimentação de caldeira, estar fora doe seu ponto de projeto. De um modo geral, o percentual de aproveitamento da energia do combustível varia muito durante o dia, indicando um acoplamento insatisfatório entre a demanda e oferta de energia. Foi desenvolvido um modelo computacional, para a simulação da turbina a gás de eixo duplo THM 1203 Hispano Suiza, modo a obter todos os parâmetros essenciais que possam ser utilizados para o projeto de sistemas de cogeração. É previsto neste modelo a operação em cargas parciais com a variação das condições ambientais.
A theoretical-experimental methodology was developped in this work for evaluating the performance of cogeneration plants, including the data comparison with manufacturer specifications, uncertainty analysis of main parameters and thermoeconomic analysis. As a result, this work aims the establishment of an optimized criteriumfor especifying and operating cogeneration systems. Two existing cogeneration plants were analyzed in this work, (a) Companhia Cervejaria Brahma, located in Campo Grande, RJ, consisting of three 4,90 MW gas turbine generators, three heat recovery boilers, including after burners, with a nominal capacity of 36000 kg/h of steam, each one, and (b) Parque Gráfico do InfoGlobo, located in the Wshington Luis Highway, Duque de Caxias, RJ, consisting of two 2,90 MW reciprocating engine gas generators, two heat recovery boilers and 800 TR absorption chiller. A chemical reaction mass balance methodologywas used in the BRAHMA plant.It uses the measurement of pollutant emissions and natural gas compositionfor estimating the turbine inlet air and exhaust gas flow rates, which are important for evaluating the plant performance. Thei methodology was preferred due to the fact that no air and exhaust gas flow rate measurement instrument was installed in the plant, which is usually the case. This methodology was also used for evaluating the performance of heat recovery boilers with after burners. An uncertainty analysis procedure was developed and used to identify operational problems like fouling, reducing the effectiveness of the heat recovery economizer. One of the main results of this work was the fact that as least a 6 percentual point difference between the gas and the steam sides was measured for the overall fuel chemical energy usage, demonstrating the need of a more careful analysis of component performance for designing and specifying a cogeneration plant, which takes into account the heat losses. Thus, one suggests that the heat transfer to the water be specified, rather than the one from the hot gases. A technical-economic analysis of the plant was carried on, and its cost-benefit determined. Due to difficuties in obtaining experimental data, a simulation procedure had to be used for analyzing the performance of the InfoGlobo plant. Design data for several equipments were used in the calculations, supposing that they do not vary too much with ambient conditions. Thus, the uncertainty analysis was not carried on. The used methodology identified the fact that the boiler feedwater pump was not operating in the design point. In a general way, it was observed that the overall fuel chemical energy usage varies too much along the day, indicating a mismatching between load and energy supply. Finally, as a tool for the plant analysis, a computational model was developped for estimating the cogeneration plant component parameters, to be used for design purposes. Partial load operation of the turbines is contemplated in this model, as a function of ambient conditions.
Monge, Zaratiegui Iñigo. "Profitability of cogeneration in a chemical industry." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-24251.
Full textHwang, Michael Yichun. "Cogeneration Heat Sink for a Photovoltaic System." Thesis, The University of Arizona, 2010. http://hdl.handle.net/10150/146053.
Full textBooks on the topic "Cogeneration"
Cogeneration. Reston, Va: Reston Pub. Co., 1985.
Find full textUnited States. Federal Energy Regulatory Commission, ed. Cogeneration. Washington D.C: Dept. of Energy, Federal Energy Regulatory Commission, 1985.
Find full textGuinn, Gerald R. Cogeneration: Profit from energy :Alabama cogeneration manual. Montgomery, Ala: Energy Division, Alabama Dept. of Economic and Community Affairs, 1987.
Find full text1924-, Payne F. William, ed. Cogeneration sourcebook. Atlanta, Ga: Fairmont Press, 1985.
Find full textEngineers, MacLaren, and Ontario Ministry of Energy, eds. Cogeneration sourcebook. Toronto: Ministry of Energy, 1988.
Find full textLimaye, Dilip R. Industrial cogeneration applications. Lilburn, GA: Fairmont Press, 1987.
Find full textCogeneration planner's handbook. Lilburn, GA: Fairmont Press, 1991.
Find full textL, Baughman Martin, University of Texas at Austin. Center for Energy Studies., and University of Texas at Austin. Bureau of Economic Geology., eds. Cogeneration in Texas. Austin, Tex: The Center, 1986.
Find full textR, Limaye Dilip, ed. Planning cogeneration systems. Atlanta, GA: Fairmont Press, 1985.
Find full textOrlando, J. A. Cogeneration design guide. Atlanta, Ga: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 1996.
Find full textBook chapters on the topic "Cogeneration"
Gülen, S. Can. "Cogeneration." In Applied Second Law Analysis of Heat Engine Cycles, 155–59. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003247418-10.
Full textPetrecca, Giovanni. "Cogeneration Plants." In Energy Conversion and Management, 141–62. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06560-1_9.
Full textShariat-Zadeh, Minoo. "Cogeneration Plants." In Smart Microgrids, 95–129. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372679-5.
Full textPetrecca, Giovanni. "Cogeneration Plants." In Industrial Energy Management: Principles and Applications, 173–99. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3160-9_9.
Full textBuonicore, Anthony J. "Cogeneration Systems." In Energy Savings Calculations for Commercial Building Energy Efficiency Upgrades, 210–21. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781032692777-11.
Full textPilatowsky, I., R. J. Romero, C. A. Isaza, S. A. Gamboa, P. J. Sebastian, and W. Rivera. "Energy and Cogeneration." In Cogeneration Fuel Cell-Sorption Air Conditioning Systems, 1–24. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84996-028-1_1.
Full textKolanowski, Bernard F. "History of Cogeneration." In Small-Scale Cogeneration Handbook, 7–12. New York: River Publishers, 2021. http://dx.doi.org/10.1201/9781003207382-2.
Full textKolanowski, Bernard F. "Uses of Cogeneration." In Small-Scale Cogeneration Handbook, 23–26. New York: River Publishers, 2021. http://dx.doi.org/10.1201/9781003207382-4.
Full textKolanowski, Bernard F. "Financing Cogeneration Projects." In Small-Scale Cogeneration Handbook, 75–80. New York: River Publishers, 2021. http://dx.doi.org/10.1201/9781003207382-11.
Full textKolanowski, Bernard F. "Cogeneration in Europe." In Small-Scale Cogeneration Handbook, 171–76. New York: River Publishers, 2021. http://dx.doi.org/10.1201/9781003207382-22.
Full textConference papers on the topic "Cogeneration"
Dalnoky, J. J., and A. David. "Cogeneration Financing Issues." In Symposium on Energy, Finance, and Taxation Policies. Society of Petroleum Engineers, 1986. http://dx.doi.org/10.2118/14641-ms.
Full textBianchi, M., G. Negri di Montenegro, and A. Peretto. "Inverted Brayton Cycle Employment for Low Temperature Cogenerative Applications." In ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0315.
Full textZabihian, Farshid, Alan S. Fung, and Fabio Schuler. "Modeling of Gas Turbine-Based Cogeneration System." In ASME 2012 6th International Conference on Energy Sustainability collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/es2012-91148.
Full textBorzea, Mihai, Gheorghe Fetea, and Radu Codoban. "Implementation and Operation of a Cogeneration Plant for Steam Injection in Oil Field." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50518.
Full textSpacek, Michal, and Zdenek Hradilek. "Modelling of Cogeneration Units." In 2019 20th International Scientific Conference on Electric Power Engineering (EPE). IEEE, 2019. http://dx.doi.org/10.1109/epe.2019.8778103.
Full textKerr, R., and J. Chin. "Cogeneration District Energy Systems." In Technical Meeting / Petroleum Conference of The South Saskatchewan Section. Petroleum Society of Canada, 1993. http://dx.doi.org/10.2118/ss-93-17.
Full textMarion, Flore A., Sophie V. Masson, Frederik J. Betz, and David H. Archer. "Cogeneration System Performance Modeling." In ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/es2008-54256.
Full textParise, J. A. R., J. V. C. Vargas, and R. Pitanga Marques. "Fuel Cells and Cogeneration." In ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2005. http://dx.doi.org/10.1115/fuelcell2005-74181.
Full textBianchi, M., G. Negri di Montenegro, and A. Peretto. "Thermo-Economic Optimization of a Cogeneration Plant With Below Ambient Pressure Discharge Gas Turbine." In ASME Turbo Expo 2001: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/2001-gt-0209.
Full textVotava, Jan, Jan Kyncl, and Libor Straka. "Optimization of local cogeneration stations." In 2018 19th International Scientific Conference on Electric Power Engineering (EPE). IEEE, 2018. http://dx.doi.org/10.1109/epe.2018.8396037.
Full textReports on the topic "Cogeneration"
Pina, Eduardo A., Luis M. Serra, Miguel A. Lozano, Adrián Hernández, and Ana Lázaro. Solar DH – network hydraulics and supply points. IEA SHC Task 55, October 2020. http://dx.doi.org/10.18777/ieashc-task55-2020-0008.
Full textKollross, Todd, and Mike Connolly. INNOVATIVE HYBRID GAS/ELECTRIC CHILLER COGENERATION. Office of Scientific and Technical Information (OSTI), June 2004. http://dx.doi.org/10.2172/831192.
Full textNowakowski, G. Innovative hybrid gas/electric chiller cogeneration. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/774502.
Full textJohnson, Clay, Jim Mandon, Thomas DeGiulio, and Ryan Baker. Waste-to-Energy Cogeneration Project, Centennial Park. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1129747.
Full textNone, None. Assessment of replicable innovative industrial cogeneration applications. Office of Scientific and Technical Information (OSTI), June 2001. http://dx.doi.org/10.2172/1216240.
Full textTeji, Darshan. Cogeneration and cooling in small scale applications. Office of Scientific and Technical Information (OSTI), March 1990. http://dx.doi.org/10.2172/5599631.
Full textSkalafuris, A. Innovative thermal cooling cycles for use in cogeneration. Office of Scientific and Technical Information (OSTI), August 1990. http://dx.doi.org/10.2172/6454143.
Full textPodbielski, V., and D. P. Shaff. Georgetown University atmospheric fluidized bed boiler cogeneration system. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/5118667.
Full textLeCren, R., L. Cowell, M. Galica, M. Stephenson, and C. Wen. Advanced coal-fueled industrial cogeneration gas turbine system. Office of Scientific and Technical Information (OSTI), July 1991. http://dx.doi.org/10.2172/5585871.
Full textLeCren, R. T., L. H. Cowell, M. A. Galica, M. D. Stephenson, and C. S. When. Advanced coal-fueled industrial cogeneration gas turbine system. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/6552127.
Full text