Academic literature on the topic 'Coding theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Coding theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Coding theory":

1

Stine, Robert A. "Coding theory." Wiley Interdisciplinary Reviews: Computational Statistics 1, no. 3 (November 2009): 261–70. http://dx.doi.org/10.1002/wics.42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Greferath, Marcus, Camilla Hollanti, and Joachim Rosenthal. "Contemporary Coding Theory." Oberwolfach Reports 16, no. 1 (February 26, 2020): 773–840. http://dx.doi.org/10.4171/owr/2019/13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

van Lint, J. H. "Coding theory introduction." IEEE Transactions on Information Theory 34, no. 5 (September 1988): 1274–75. http://dx.doi.org/10.1109/tit.1988.8862503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

SAKATA, Shojiro. "Algebraic Coding Theory." IEICE ESS Fundamentals Review 1, no. 3 (2008): 3_44–3_57. http://dx.doi.org/10.1587/essfr.1.3_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ohashi, Masayoshi, and Toshio Mizuno. "Introduction to Coding Theory(15); Application of Coding Theory Satellite Communication." Journal of the Institute of Television Engineers of Japan 45, no. 10 (1991): 1291–96. http://dx.doi.org/10.3169/itej1978.45.1291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Baylis, John, D. G. Hoffman, D. A. Leonard, C. C. Lindner, K. T. Phelps, C. A. Rodger, and J. R. Wall. "Coding Theory: The Essentials." Mathematical Gazette 77, no. 480 (November 1993): 381. http://dx.doi.org/10.2307/3619794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Anderson, Ian, and J. H. van Lint. "Introduction to Coding Theory." Mathematical Gazette 77, no. 480 (November 1993): 383. http://dx.doi.org/10.2307/3619795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Baylis, John, Gareth A. Jones, and J. Mary Jones. "Information and Coding Theory." Mathematical Gazette 85, no. 503 (July 2001): 377. http://dx.doi.org/10.2307/3622076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dawy, Zaher, Pavol Hanus, Johanna Weindl, Janis Dingel, and Faruck Morcos. "On genomic coding theory." European Transactions on Telecommunications 18, no. 8 (2007): 873–79. http://dx.doi.org/10.1002/ett.1201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Saito, Minoru. "Introduction to Coding Theory: (14) Application of Coding Theory to Computer Technology." Journal of the Institute of Television Engineers of Japan 45, no. 9 (1991): 1089–94. http://dx.doi.org/10.3169/itej1978.45.1089.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Coding theory":

1

Мельник, Ю. "Coding theory." Thesis, Видавництво СумДУ, 2006. http://essuir.sumdu.edu.ua/handle/123456789/21790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Золотова, Світлана Григорівна, Светлана Григорьевна Золотова, Svitlana Hryhorivna Zolotova, and V. V. Petrov. "The history of coding theory." Thesis, Видавництво СумДУ, 2008. http://essuir.sumdu.edu.ua/handle/123456789/16065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ryzhikov, Andrew. "Synchronizing automata and coding theory." Thesis, Paris Est, 2020. http://www.theses.fr/2020PESC2030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cette thèse est consacrée a l’étude des mots synchronisant pour les automates finis et les codes. Intuitivement, un mot synchronisant est tel que son application amène le système dans un état indépendant de l'état initial. Un code ou un automate est synchronisant s’il admet un mot synchronisant. Il existe une forte relation entre l’utilisation de cette notion pour les automates ou les codes et son usage est l’un des leitmotifs de cette thèse.Un des principaux outils pour traiter les codes est l’usage d’un automate particulier préservant ses propriétés de synchronisation. Pour les codes préfixes, ceci est obtenu en utilisant un automate déterministe.Nous avons exploré deux problèmes principaux concernant la synchronisation. Le premier consiste à mesurer la longueur du plus court mot synchronisant pour un automate ou un code. Dans le cas d’un automate fini complet et déterministe, un des problèmes les plus anciens de la théorie combinatoire des automates propose une borne quadratique en termes du nombre d'états de l’automate. Nous étendons cette conjecture aux automates partiels non-déterministes. Nous établissons des bornes polynomiales pour ces classes en présence de la forte connexité, et nous discutons leur lien avec la conjecture originale de Černý.La relation avec les codes finis nous permet de prouver l’existence de bornes similaires en termes de la somme des longueurs des mots du code, et aussi de la longueur du plus long mot. Le deuxième cas est lié à une autre importante conjecture, proposée par Restivo. Elle concerne les mots mortels plutôt que synchronisant. Dans la plupart de ces cas, nous examinons aussi la complexité de calcul d’un mot synchronisant court, un deuxième aspect fondamental de cette thèse. Au-delà, nous étudions plusieurs généralisations de la notion de mot synchronisant, qui permettent d’utiliser une information partielle sur sur l’état dans lequel se trouve l’automate. Pour plusieurs de ces généralisations, nous prouvons des bornes inférieures de complexité, même dans ce cas très particuliers
This thesis is devoted to studying synchronizing words for finite automata and variable-length codes. Intuitively, a synchronizing word is a word such that its application brings a system into some particular state regardless of its initial state. A code or automaton is synchronizing if it admits a synchronizing word. There is a deep connection between the concrete implementations of this notion for finite automata and variable-length codes, and the use of it is one of the leitmotifs of this thesis.One of the main tools for dealing with variable-length codes is assigning a special automaton preserving many synchronization properties to it. For finite codes, this is done using prefix automata.We investigate two fundamental problems about synchronization. The first one is measuring the length of shortest synchronizing words for synchronizing automata and codes. For the case of complete deterministic finite automata, the Černý conjecture, one of the oldest problems in combinatorial automata theory, proposes a quadratic upper bound in terms of the number of states in the automaton. We broaden this conjecture to partial deterministic finite automata and then to unambiguous non-deterministic finite automata. We show polynomial upper bounds for mentioned classes in the presence of strong connectivity, and discuss their connections with the original Černý conjecture.The relation with finite codes allows us to show similar bounds in terms of the sum of the lengths of the codewords, as well as in terms of the length of the longest codeword. The second case is related to another important conjecture stated by Restivo. It deals with mortal words instead of synchronizing ones, the case which we also investigate. For most of these settings we also examine the computational complexity of finding short synchronizing words, which is the second fundamental question investigated in this thesis. Besides that, we study various generalization of the notion of a synchronizing word, which allow to use some partial information about the current state of an automaton. For several such generalizations we show strong computational complexity lower bounds even in very restricted cases
4

Redwood-Sawyerr, J. A. S. "Constant envelope modulation coding." Thesis, University of Essex, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cohen, D. A. "A problem in algebraic coding theory." Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Arslan, Ogul. "Some algebraic problems from coding theory." [Gainesville, Fla.] : University of Florida, 2009. http://purl.fcla.edu/fcla/etd/UFE0024938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chaiyaboonthanit, Thanit. "Image coding using wavelet transform and adaptive block truncation coding /." Online version of thesis, 1991. http://hdl.handle.net/1850/10913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Delopoulos, Athanasios. "Coding techniques for moving images." Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kaouri, Hussein Ali. "Speech coding using vector quantisation." Thesis, Queen's University Belfast, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Adistambha, Kevin. "Embedded lossless audio coding using linear prediction and cascade coding." Access electronically, 2005. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20060724.122433/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Coding theory":

1

Gray, Robert M. Source Coding Theory. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-1643-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

M, Gray Robert. Source coding theory. Boston: Kluwer Academic Publishers, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1962-, Yeung Raymond W., ed. Network coding theory. Boston, MA: Now, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Richardson, Thomas J. Modern coding theory. New York, NY: Cambridge University Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

M, Gray Robert. Source Coding Theory. Boston, MA: Springer US, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ray-Chaudhuri, Dijen, ed. Coding Theory and Design Theory. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4615-6654-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ray-Chaudhuri, Dijen. Coding Theory and Design Theory. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4613-8994-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hiramatsu, Toyokazu, and Günter Köhler. Coding Theory and Number Theory. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0305-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

1933-, Ray-Chaudhuri Dijen, and University of Minnesota. Institute for Mathematics and its Applications., eds. Coding theory and design theory. New York: Springer-Verlag, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hiramatsu, Toyokazu. Coding Theory and Number Theory. Dordrecht: Springer Netherlands, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Coding theory":

1

Lidl, Rudolf, and Günter Pilz. "Coding Theory." In Undergraduate Texts in Mathematics, 183–238. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4757-2941-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brophy, Tim. "Coding Theory." In Real-World Problems for Secondary School Mathematics Students, 67–85. Rotterdam: SensePublishers, 2011. http://dx.doi.org/10.1007/978-94-6091-543-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

O’Regan, Gerard. "Coding Theory." In Mathematics in Computing, 155–69. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4534-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Niederreiter, Harald, and Arne Winterhof. "Coding Theory." In Applied Number Theory, 99–183. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22321-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cohn, P. M. "Coding Theory." In Further Algebra and Applications, 371–93. London: Springer London, 2003. http://dx.doi.org/10.1007/978-1-4471-0039-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

O’Regan, Gerard. "Coding Theory." In Undergraduate Topics in Computer Science, 171–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34209-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

O’Regan, Gerard. "Coding Theory." In Texts in Computer Science, 177–89. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81588-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

O’Regan, Gerard. "Coding Theory." In Texts in Computer Science, 331–43. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26212-8_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rojek, Chris. "Coding and Representation." In Leisure Theory, 110–24. London: Palgrave Macmillan UK, 2005. http://dx.doi.org/10.1057/9780230505117_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

O’Regan, Gerard. "Coding TheoryCoding Theory." In Texts in Computer Science, 171–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44561-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Coding theory":

1

Lim, Sung Hoon, Young-Han Kim, Abbas El Gamal, and Sae-Young Chung. "Noisy network coding." In 2010 IEEE Information Theory Workshop on Information Theory (ITW). IEEE, 2010. http://dx.doi.org/10.1109/itwksps.2010.5503216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Solov’eva, Faina I. "Coding theory and cryptology." In PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON CONSTRUCTION AND BUILDING ENGINEERING (ICONBUILD) 2017: Smart Construction Towards Global Challenges. Author(s), 2017. http://dx.doi.org/10.1063/1.5012616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Heidarzadeh, Anoosheh, and Amir H. Banihashemi. "Overlapped Chunked network coding." In 2010 IEEE Information Theory Workshop on Information Theory (ITW). IEEE, 2010. http://dx.doi.org/10.1109/itwksps.2010.5503153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Yucheng, Parastoo Sadeghi, and Young-Han Kim. "Three-Layer Composite Coding for Index Coding." In 2018 IEEE Information Theory Workshop (ITW). IEEE, 2018. http://dx.doi.org/10.1109/itw.2018.8613351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Arbabjolfaei, Fatemeh, Bernd Bandemer, and Young-Han Kim. "Index coding via random coding." In 2014 Iran Workshop on Communication and Information Theory (IWCIT). IEEE, 2014. http://dx.doi.org/10.1109/iwcit.2014.6842484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Yucheng, Parastoo Sadeghi, Fatemeh Arbabjolfaei, and Young-Han Kim. "Simplified Composite Coding for Index Coding." In 2018 IEEE International Symposium on Information Theory (ISIT). IEEE, 2018. http://dx.doi.org/10.1109/isit.2018.8437663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yao, Hongyi, and Raymond W. Yeung. "Zero-error multichannel source coding." In 2010 IEEE Information Theory Workshop on Information Theory (ITW). IEEE, 2010. http://dx.doi.org/10.1109/itwksps.2010.5503211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Keshavarz-Haddad, A., and M. A. Khojastepour. "Rotate-and-add coding: A novel algebraic network coding scheme." In 2010 IEEE Information Theory Workshop. IEEE, 2010. http://dx.doi.org/10.1109/cig.2010.5592671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Huang, Shurui, Aditya Ramamoorthy, and Muriel Medard. "Minimum cost content distribution using network coding: Replication vs. coding at the source nodes." In 2010 IEEE Information Theory Workshop on Information Theory (ITW). IEEE, 2010. http://dx.doi.org/10.1109/itwksps.2010.5503149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sudan, Madhu. "Algebraic algorithms and coding theory." In the twenty-first international symposium. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1390768.1390816.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Coding theory":

1

Moran, William. Coding Theory Information Theory and Radar. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada456510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Calderbank, Arthur R. Coding Theory Information Theory and Radar. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada434253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Xia, Xiang-Gen. Space-Time Coding Using Algebraic Number Theory for Broadband Wireless Communications. Fort Belvoir, VA: Defense Technical Information Center, May 2008. http://dx.doi.org/10.21236/ada483791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Smith, David I. Highly Conserved, Large, Non-Coding Transcripts and Their Role in the Development of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, August 2008. http://dx.doi.org/10.21236/ada493371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Harman, Gary E., and Ilan Chet. Discovery and Use of Genes and Gene Combinations Coding for Proteins Useful in Biological Control. United States Department of Agriculture, September 1994. http://dx.doi.org/10.32747/1994.7568787.bard.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The objectives of the research in this proposal were to (A) identify synergy among proteins that provide enhanced activity over single proteins for control of plant pathogenic fungi, (B) clone and characterize genetic sequences coding for proteins with ability to control pathogenic fungi, (C) produce transgenic organisms with enhanced biocontrol ability using genes and gene combinations and determine their efficiency in protecting plants against plant pathogenic fungi. A related objective was to produce disease-resistant plants. Fungal cell wall degrading enzymes from any source are strongly synergistic with any membrane active compound and, further, different classes of cell wall degrading enzymes are also strongly synergistic. We have cloned and sequenced a number of genes from bacterial and fungal sources including five that are structurally unrelated. We have prepared transgenic fungi that are deficient in production of enzymes and useful in mechanistic studies. Others are hyperproducers of specific enzymes that permit us, for the first time, to produce enzymes from T. harzianum in sufficient quantity to conduct tests of their potential use in commercial agriculture. Finally, genes from these studies have been inserted into several species of crop plants were they produce a high level of resistance to several plant pathogenic fungi.
6

Steffens, John, Eithan Harel, and Alfred Mayer. Coding, Expression, Targeting, Import and Processing of Distinct Polyphenoloxidases in Tissues of Higher Plants. United States Department of Agriculture, November 1994. http://dx.doi.org/10.32747/1994.7613008.bard.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Polyphenol oxidase (PPO) catalyzes the oxidation of phenols to quinones at the expense of O2. PPOs are ubiquitous in higer plants, and their role in oxidative browning of plant tissues causes large annual losses to food production. Despite the importance of PPOs to agriculture, the function(s) of PPOs in higher plants are not understood. Among other roles, PPOs have been proposed to participate in aspects of chloroplast metabolism, based on their occurrence in plastids and high Km for O2. Due to the ability of PPO to catalyze formation of highly reactive quinones, PPOs have also been proposed to be involved in a wide array of defensive interactions with insect, bacterial, and fungal pests. Physiological and biochemical studies of PPO have provided few answers to the major problems of PPO function, subcellular localization, and biochemical properties. This proposal achieved the following major objectives: cloning of PPO cDNAs in potato and tomato; characterization of the tomato PPO gene family; antisense downregulation of the tomato PPO gene family; and reduction in post-harvest enzymic browning of potato through expression of antisense PPO genes under the control of tuber-specific promoters. In addition, we established the lumenal localization of PPO, characterized and clarified the means by which PPOs are imported and processed by chloroplasts, and provided insight into the factors which control localization of PPOs. This proposal has thereby provided fundamental advances in the understanding of this enzyme and the control of its expression.
7

van der Mensbrugghe, Dominique. A Summary Guide to the Latin Hypercube Sampling (LHS) Utility. GTAP Working Paper, May 2023. http://dx.doi.org/10.21642/gtap.wp94.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Latin Hypercube Sampling (LHS) is one method of Monte Carlo-type sampling, which is useful for limiting sample size yet maximizing the range of sampling of the underlying distributions. The LHS utility, for which this document describes the usage, also allows for user-specified correlations between two or more of the sampled distributions. The LHS utility described herein is a full re-coding using C/C++ of the original LHS utility—developed at Sandia National Labs (Swiler and Wyss (2004)), written in FORTRAN and freely available. The re-coding hones close to the original FORTRAN code, but allows for significantly more flexibility. For example, dynamic memory allocation is used for all internal variables and hence there are no pre-determined dimensions. The new utility has additional features compared to the original FORTRAN code: (1) it includes 10 new statistical distributions; (2) it has four additional output formats; and (3) it has an alternative random number generator. This guide provides a summary of the full features of the LHS utility. For a complete reference, with the exception of the new features, as well as a description of the intuition behind the LHS algorithm users are referred to Swiler and Wyss (2004)
8

Mizrahi, Itzhak, and Bryan A. White. Exploring the role of the rumen microbiota in determining the feed efficiency of dairy cows. United States Department of Agriculture, October 2011. http://dx.doi.org/10.32747/2011.7594403.bard.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Expanding world hunger calls for increasing available food resources. Ruminants have the remarkable ability to convert human-indigestible plant biomass into human-digestible food products, due to a complex microbiome residing in the rumen compartment of their upper digestive tract. One way to tackle the problem of diminishing food resources is to increase the animals' energetic efficiency, i.e., the efficiency with which they convert energy from feed, thereby increasing food availability while lowering the environmental burden, as these animals would produce more and eat less. We hypothesize that the cow's feed efficiency is dependent on the taxonomic composition, coding capacity and activity of its reticulorumenmicrobiota. To test this hypothesis, three aims are defined: (1) Evaluation of the feed efficiency of 146 dairy cows and defining two groups representing the highest and lowest 25% using the Israeli group's unique facility; (2) Comparing these two groups for microbiota diversity, identity and coding capacity using next-generation sequencing and metagenomic approaches; (3) Comparing the reticulorumenmicrobiota metabolic activity parameters. We measured feed efficiency in 146 milking cows and analyzed the taxonomic composition, gene content, microbial activity and metabolomic composition of rumen microbiomes from the 78 most extreme animals. Lower richness of microbiome gene content and taxa was tightly linked to higher feed efficiency. Microbiome genes and species accurately predicted the animals' feed-efficiency phenotype. Specific enrichment of microbes and metabolic pathways in each of these microbiome groups resulted in increasing valuable metabolites and decreasing unusable ones such as methane in efficient animals. This ecological and mechanistic understanding of the rumen microbiome could lead to an increase in available food resources and environmentally friendly livestock agriculture.
9

Kumar, Anil R., and Hannah Bowman. Understanding the Safety and Usability of Personal Vehicles for Non-Driving Individuals with Disabilities and their Families/Care Providers. Mineta Transportation Institute, October 2022. http://dx.doi.org/10.31979/mti.2022.2110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The connections between shared personal vehicles of individuals with disabilities (IWDs) and their household family members play an important role in the mobility, overall health, and well-being of all involved actors, yet this topic remains mostly overlooked within publicly available research. Families that include a non-driving IWD are more likely to be low-income, and often struggle with the costs of operating a family car but, due to insufficient public transportation options, they own vehicles despite their prohibitive cost. This exploratory study utilized the Systems Engineering Initiative for Patient Safety (SEIPS) model, a framework focused on assessing the interplaying sociotechnical factors that contribute toward work-systems to gain a holistic understanding of the factors that influence household vehicles, safety, and a sense of well-being for non-driving IWDs and their household family members. A combined effort of surveys, interviews, qualitative coding, and statistical analysis (including one-way ANOVA) revealed a series of influential factors, including: (1) slow bureaucratic processes for vehicle funding; (2) error-prone modifications including lift and tie-downs; (3) miscommunications between IWDs and family members; and (4) residential area development and subsequent social support. Findings highlight the need for improved access to government funding, more reliable modification equipment, and interior vehicle designs that consider better social integration for IWDs.
10

Walker, Alex, Brian MacKenna, Peter Inglesby, Christopher Rentsch, Helen Curtis, Caroline Morton, Jessica Morley, et al. Clinical coding of long COVID in English primary care: a federated analysis of 58 million patient records in situ using OpenSAFELY. OpenSAFELY, 2021. http://dx.doi.org/10.53764/rpt.3917ab5ac5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This OpenSAFELY report is a routine update of our peer-review paper published in the British Journal of General Practice on the Clinical coding of long COVID in English primary care: a federated analysis of 58 million patient records in situ using OpenSAFELY. It is a routine update of the analysis described in the paper. The data requires careful interpretation and there are a number of caveats. Please read the full detail about our methods and discussionis and the full analytical methods on this routine report are available on GitHub. OpenSAFELY is a new secure analytics platform for electronic patient records built on behalf of NHS England to deliver urgent academic and operational research during the pandemic. You can read more about OpenSAFELY on our website.

To the bibliography