Journal articles on the topic 'COCHLEAR PROGENITORS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'COCHLEAR PROGENITORS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Udagawa, Tomokatsu, Patrick J. Atkinson, Beatrice Milon, Julia M. Abitbol, Yang Song, Michal Sperber, Elvis Huarcaya Najarro, et al. "Lineage-tracing and translatomic analysis of damage-inducible mitotic cochlear progenitors identifies candidate genes regulating regeneration." PLOS Biology 19, no. 11 (November 10, 2021): e3001445. http://dx.doi.org/10.1371/journal.pbio.3001445.
Full textLi, Xiao-Jun, and Angelika Doetzlhofer. "LIN28B/let-7control the ability of neonatal murine auditory supporting cells to generate hair cells through mTOR signaling." Proceedings of the National Academy of Sciences 117, no. 36 (August 21, 2020): 22225–36. http://dx.doi.org/10.1073/pnas.2000417117.
Full textMunnamalai, Vidhya, Nabilah H. Sammudin, Caryl A. Young, Ankita Thawani, Richard J. Kuhn, and Donna M. Fekete. "Embryonic and Neonatal Mouse Cochleae Are Susceptible to Zika Virus Infection." Viruses 13, no. 9 (September 14, 2021): 1823. http://dx.doi.org/10.3390/v13091823.
Full textLin, Jizhen, Ling Feng, Shinji Fukudome, Yuki Hamajima, Tina Huang, and Samuel Levine. "Cochlear Stem Cells/Progenitors and Degenerative Hearing Disorders." Current Medicinal Chemistry 14, no. 27 (November 1, 2007): 2937–43. http://dx.doi.org/10.2174/092986707782360051.
Full textFeng, Ling. "Differentiation of cochlear neural progenitors with SV40 in vitro." Molecular and Cellular Pharmacology 1, no. 1 (February 10, 2009): 11–22. http://dx.doi.org/10.4255/mcpharmacol.09.03.
Full textLin, Jizhen, Ling Feng, Yuki Hamajima, Masahiro Komori, Terry C. Burns, Shinji Fukudome, John Anderson, Dong Wang, Catherine M. Verfaillie, and Walter C. Low. "Directed differentiation of mouse cochlear neural progenitors in vitro." American Journal of Physiology-Cell Physiology 296, no. 3 (March 2009): C441—C452. http://dx.doi.org/10.1152/ajpcell.00324.2008.
Full textOtsuka, Kelly S., Christopher Nielson, Matthew A. Firpo, Albert H. Park, and Anna E. Beaudin. "Early Life Inflammation and the Developing Hematopoietic and Immune Systems: The Cochlea as a Sensitive Indicator of Disruption." Cells 10, no. 12 (December 20, 2021): 3596. http://dx.doi.org/10.3390/cells10123596.
Full textKwan, Kelvin Y., and Patricia M. White. "Understanding the differentiation and epigenetics of cochlear sensory progenitors in pursuit of regeneration." Current Opinion in Otolaryngology & Head & Neck Surgery 29, no. 5 (August 9, 2021): 366–72. http://dx.doi.org/10.1097/moo.0000000000000741.
Full textBreuskin, Ingrid, Morgan Bodson, Nicolas Thelen, Marc Thiry, Laurence Borgs, Laurent Nguyen, Philippe P. Lefebvre, and Brigitte Malgrange. "Sox10 promotes the survival of cochlear progenitors during the establishment of the organ of Corti." Developmental Biology 335, no. 2 (November 2009): 327–39. http://dx.doi.org/10.1016/j.ydbio.2009.09.007.
Full textGnedeva, Ksenia, Xizi Wang, Melissa M. McGovern, Matthew Barton, Litao Tao, Talon Trecek, Tanner O. Monroe, et al. "Organ of Corti size is governed by Yap/Tead-mediated progenitor self-renewal." Proceedings of the National Academy of Sciences 117, no. 24 (June 1, 2020): 13552–61. http://dx.doi.org/10.1073/pnas.2000175117.
Full textKanzaki, Sho. "Gene Delivery into the Inner Ear and Its Clinical Implications for Hearing and Balance." Molecules 23, no. 10 (September 30, 2018): 2507. http://dx.doi.org/10.3390/molecules23102507.
Full textShi, Fuxin, Lingxiang Hu, and Albert S. B. Edge. "Generation of hair cells in neonatal mice by β-catenin overexpression in Lgr5-positive cochlear progenitors." Proceedings of the National Academy of Sciences 110, no. 34 (August 5, 2013): 13851–56. http://dx.doi.org/10.1073/pnas.1219952110.
Full textNayagam, Bryony A., Albert S. Edge, Karina Needham, Tomoko Hyakumura, Jessie Leung, David A. X. Nayagam, and Mirella Dottori. "An In Vitro Model of Developmental Synaptogenesis Using Cocultures of Human Neural Progenitors and Cochlear Explants." Stem Cells and Development 22, no. 6 (March 15, 2013): 901–12. http://dx.doi.org/10.1089/scd.2012.0082.
Full textZhang, Yuan, Suo-qiang Zhai, Jianyong Shou, Wei Song, Jian-he Sun, Wei Guo, Gui-liang Zheng, Yin-yan Hu, and Wei-Qiang Gao. "Isolation, growth and differentiation of hair cell progenitors from the newborn rat cochlear greater epithelial ridge." Journal of Neuroscience Methods 164, no. 2 (August 2007): 271–79. http://dx.doi.org/10.1016/j.jneumeth.2007.05.009.
Full textJan, T. A., R. Chai, Z. N. Sayyid, R. van Amerongen, A. Xia, T. Wang, S. T. Sinkkonen, et al. "Tympanic border cells are Wnt-responsive and can act as progenitors for postnatal mouse cochlear cells." Development 140, no. 6 (February 26, 2013): 1196–206. http://dx.doi.org/10.1242/dev.087528.
Full textZine, Azel, Yassine Messat, and Bernd Fritzsch. "A human induced pluripotent stem cell-based modular platform to challenge sensorineural hearing loss." Stem Cells 39, no. 6 (February 8, 2021): 697–706. http://dx.doi.org/10.1002/stem.3346.
Full textLi, Wenyan, Jingfang Wu, Jianming Yang, Shan Sun, Renjie Chai, Zheng-Yi Chen, and Huawei Li. "Notch inhibition induces mitotically generated hair cells in mammalian cochleae via activating the Wnt pathway." Proceedings of the National Academy of Sciences 112, no. 1 (December 22, 2014): 166–71. http://dx.doi.org/10.1073/pnas.1415901112.
Full textHu, Xiaohua, Jianmin Huang, Ling Feng, Shinji Fukudome, Yuki Hamajima, and Jizhen Lin. "Sonic hedgehog (SHH) promotes the differentiation of mouse cochlear neural progenitors via theMath1-Brn3.1 signaling pathway in vitro." Journal of Neuroscience Research 88, no. 5 (November 11, 2009): 927–35. http://dx.doi.org/10.1002/jnr.22286.
Full textRousset, Francis, Giulia Schilardi, Stéphanie Sgroi, German Nacher-Soler, Rebecca Sipione, Sonja Kleinlogel, and Pascal Senn. "WNT Activation and TGFβ-Smad Inhibition Potentiate Stemness of Mammalian Auditory Neuroprogenitors for High-Throughput Generation of Functional Auditory Neurons In Vitro." Cells 11, no. 15 (August 5, 2022): 2431. http://dx.doi.org/10.3390/cells11152431.
Full textLi, Guangfei, Yanbo Yin, Yaopeng Zhang, Jingfang Wu, and Shan Sun. "Electrospun regenerated silk fibroin is a promising biomaterial for the maintenance of inner ear progenitors in vitro." Journal of Biomaterials Applications 36, no. 7 (October 28, 2021): 1164–72. http://dx.doi.org/10.1177/08853282211051501.
Full textSavary, Etienne, Jean Charles Sabourin, Julien Santo, Jean Philippe Hugnot, Christian Chabbert, Thomas Van De Water, Alain Uziel, and Azel Zine. "Cochlear stem/progenitor cells from a postnatal cochlea respond to Jagged1 and demonstrate that notch signaling promotes sphere formation and sensory potential." Mechanisms of Development 125, no. 8 (August 2008): 674–86. http://dx.doi.org/10.1016/j.mod.2008.05.001.
Full textLiu, Quanwen, Yi Shen, Jiarong Chen, Jie Ding, Zihua Tang, Cui Zhang, Jianling Chen, Liang Li, Ping Chen, and Jinfu Wang. "Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells." Stem Cells International 2016 (2016): 1–14. http://dx.doi.org/10.1155/2016/8197279.
Full textZhai, Suoqiang, Li Shi, Bu-er Wang, Guiliang Zheng, Wei Song, Yinyan Hu, and Wei-Qiang Gao. "Isolation and culture of hair cell progenitors from postnatal rat cochleae." Journal of Neurobiology 65, no. 3 (2005): 282–93. http://dx.doi.org/10.1002/neu.20190.
Full textVoelker, Johannes, Jonas Engert, Christine Voelker, Linda Bieniussa, Philipp Schendzielorz, Rudolf Hagen, and Kristen Rak. "Different Neurogenic Potential in the Subnuclei of the Postnatal Rat Cochlear Nucleus." Stem Cells International 2021 (April 5, 2021): 1–15. http://dx.doi.org/10.1155/2021/8871308.
Full textChen, Hsin-Chien, Jen-Tin Lee, Cheng-Ping Shih, Ting-Ting Chao, Huey-Kang Sytwu, Shiue-Li Li, Mei-Cho Fang, et al. "Hypoxia Induces a Metabolic Shift and Enhances the Stemness and Expansion of Cochlear Spiral Ganglion Stem/Progenitor Cells." BioMed Research International 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/359537.
Full textLopez-Juarez, Alejandra, Hanae Lahlou, Chantal Ripoll, Yves Cazals, Jean Michel Brezun, Quan Wang, Albert Edge, and Azel Zine. "Engraftment of Human Stem Cell-Derived Otic Progenitors in the Damaged Cochlea." Molecular Therapy 27, no. 6 (June 2019): 1101–13. http://dx.doi.org/10.1016/j.ymthe.2019.03.018.
Full textWang, Junli, Yinglong Xu, Yuli Zhao, and Min Xu. "Different morphologic features of rat cochlea progenitor spheres and their implications." Journal of Medical Colleges of PLA 27, no. 6 (December 2012): 311–23. http://dx.doi.org/10.1016/s1000-1948(13)60001-5.
Full textShi, F., J. S. Kempfle, and A. S. B. Edge. "Wnt-Responsive Lgr5-Expressing Stem Cells Are Hair Cell Progenitors in the Cochlea." Journal of Neuroscience 32, no. 28 (July 11, 2012): 9639–48. http://dx.doi.org/10.1523/jneurosci.1064-12.2012.
Full textHo, Chin Chung, Tianli Qin, Boshi Wang, Elaine Y. M. Wong, Yuchen Liu, Chi-Chung Hui, and Mai Har Sham. "Sufu regulates the proliferation and differentiation of hair cell progenitors in mammalian cochlea." Mechanisms of Development 145 (July 2017): S118. http://dx.doi.org/10.1016/j.mod.2017.04.318.
Full textVolkenstein, S., K. Oshima, S. T. Sinkkonen, C. E. Corrales, S. P. Most, R. Chai, T. A. Jan, R. van Amerongen, A. G. Cheng, and S. Heller. "Transient, afferent input-dependent, postnatal niche for neural progenitor cells in the cochlear nucleus." Proceedings of the National Academy of Sciences 110, no. 35 (August 12, 2013): 14456–61. http://dx.doi.org/10.1073/pnas.1307376110.
Full textZhong, Cuiping, Yu Han, Ji Ma, Xuan Zhang, Mengning Sun, Ye Wang, Jun Chen, Wenjuan Mi, Xuehai Xu, and Jianhua Qiu. "Viral-mediated expression of c-Myc and cyclin A2 induces cochlear progenitor cell proliferation." Neuroscience Letters 591 (March 2015): 93–98. http://dx.doi.org/10.1016/j.neulet.2015.02.027.
Full textHei, Renyi, Jun Chen, Li Qiao, Xu Li, Xiaobo Mao, Jianhua Qiu, and Juan Qu. "Dynamic changes in microRNA expression during differentiation of rat cochlear progenitor cells in vitro." International Journal of Pediatric Otorhinolaryngology 75, no. 8 (August 2011): 1010–14. http://dx.doi.org/10.1016/j.ijporl.2011.05.005.
Full textChen, Hsin-Chien, Chih-Hung Wang, Cheng-Ping Shih, Sheau-Huei Chueh, Shu-Fan Liu, Hang-Kang Chen, and Yi-Chun Lin. "TRPC1 is required for survival and proliferation of cochlear spiral ganglion stem/progenitor cells." International Journal of Pediatric Otorhinolaryngology 79, no. 12 (December 2015): 2290–94. http://dx.doi.org/10.1016/j.ijporl.2015.10.027.
Full textSato, Eisuke, H. Elizabeth Shick, Richard M. Ransohoff, and Keiko Hirose. "Repopulation of cochlear macrophages in murine hematopoietic progenitor cell chimeras: The role of CX3CR1." Journal of Comparative Neurology 506, no. 6 (2007): 930–42. http://dx.doi.org/10.1002/cne.21583.
Full textNishimura, Koji, Takayuki Nakagawa, Tatsunori Sakamoto, and Juichi Ito. "Fates of Murine Pluripotent Stem Cell-Derived Neural Progenitors following Transplantation into Mouse Cochleae." Cell Transplantation 21, no. 4 (April 2012): 763–71. http://dx.doi.org/10.3727/096368911x623907.
Full textKubota, Marie, Mirko Scheibinger, Taha A. Jan, and Stefan Heller. "Greater epithelial ridge cells are the principal organoid-forming progenitors of the mouse cochlea." Cell Reports 34, no. 3 (January 2021): 108646. http://dx.doi.org/10.1016/j.celrep.2020.108646.
Full textChen, Wei, Daniela I. Cacciabue-Rivolta, Harry D. Moore, and Marcelo N. Rivolta. "The human fetal cochlea can be a source for auditory progenitors/stem cells isolation." Hearing Research 233, no. 1-2 (November 2007): 23–29. http://dx.doi.org/10.1016/j.heares.2007.06.006.
Full textDoetzlhofer, Angelika, Patricia White, Yun-Shain Lee, Andrew Groves, and Neil Segil. "Prospective identification and purification of hair cell and supporting cell progenitors from the embryonic cochlea." Brain Research 1091, no. 1 (May 2006): 282–88. http://dx.doi.org/10.1016/j.brainres.2006.02.071.
Full textChao, Ting-Ting, Chih-Hung Wang, Hsin-Chien Chen, Cheng-Ping Shih, Huey-Kang Sytwu, Kun-Lun Huang, and Shao-Yuan Chen. "Adherent culture conditions enrich the side population obtained from the cochlear modiolus-derived stem/progenitor cells." International Journal of Pediatric Otorhinolaryngology 77, no. 5 (May 2013): 779–84. http://dx.doi.org/10.1016/j.ijporl.2013.02.010.
Full textBoddy, Sarah L., Ricardo Romero-Guevara, Ae-Ri Ji, Christian Unger, Laura Corns, Walter Marcotti, and Marcelo N. Rivolta. "Generation of Otic Lineages from Integration-Free Human-Induced Pluripotent Stem Cells Reprogrammed by mRNAs." Stem Cells International 2020 (March 1, 2020): 1–10. http://dx.doi.org/10.1155/2020/3692937.
Full textVoelker, Johannes, Christine Voelker, Jonas Engert, Nikolas Goemann, Rudolf Hagen, and Kristen Rak. "Spontaneous Calcium Oscillations through Differentiation: A Calcium Imaging Analysis of Rat Cochlear Nucleus Neural Stem Cells." Cells 10, no. 10 (October 19, 2021): 2802. http://dx.doi.org/10.3390/cells10102802.
Full textChen, P., and N. Segil. "p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti." Development 126, no. 8 (April 15, 1999): 1581–90. http://dx.doi.org/10.1242/dev.126.8.1581.
Full textLou, Xiang-Xin, Takayuki Nakagawa, Hiroe Ohnishi, Koji Nishimura, and Juichi Ito. "Otospheres derived from neonatal mouse cochleae retain the progenitor cell phenotype after ex vivo expansions." Neuroscience Letters 534 (February 2013): 18–23. http://dx.doi.org/10.1016/j.neulet.2012.12.001.
Full textMassucci-Bissoli, M., K. Lezirovitz, J. Oiticica, and RF Bento. "Evidence of progenitor cells in the adult human cochlea: sphere formation and identification of ABCG2." Clinics 72, no. 11 (November 7, 2017): 714–17. http://dx.doi.org/10.6061/clinics/2017(11)11.
Full textDiensthuber, Marc, Kazuo Oshima, and Stefan Heller. "Stem/Progenitor Cells Derived from the Cochlear Sensory Epithelium Give Rise to Spheres with Distinct Morphologies and Features." Journal of the Association for Research in Otolaryngology 10, no. 2 (February 27, 2009): 173–90. http://dx.doi.org/10.1007/s10162-009-0161-3.
Full textWaqas, Muhammad, Luo Guo, Shasha Zhang, Yan Chen, Xiaoli Zhang, Lei Wang, Mingliang Tang, et al. "Characterization of Lgr5+ progenitor cell transcriptomes in the apical and basal turns of the mouse cochlea." Oncotarget 7, no. 27 (April 7, 2016): 41123–41. http://dx.doi.org/10.18632/oncotarget.8636.
Full textSavary, Etienne, Jean Philippe Hugnot, Yolaine Chassigneux, Cecile Travo, Christophe Duperray, Thomas Van De Water, and Azel Zine. "Distinct Population of Hair Cell Progenitors Can Be Isolated from the Postnatal Mouse Cochlea Using Side Population Analysis." Stem Cells 25, no. 2 (February 2007): 332–39. http://dx.doi.org/10.1634/stemcells.2006-0303.
Full textMcLean, Will J., Dalton T. McLean, Ruth Anne Eatock, and Albert S. B. Edge. "Distinct capacity for differentiation to inner ear cell types by progenitor cells of the cochlea and vestibular organs." Development 143, no. 23 (October 27, 2016): 4381–93. http://dx.doi.org/10.1242/dev.139840.
Full textChen, Hsin-Chien, Huey-Kang Sytwu, Junn-Liang Chang, Hsing-Won Wang, Hang-Kang Chen, Bor-Hwang Kang, Dai-Wei Liu, Chi-Huang Chen, Ting-Ting Chao, and Chih-Hung Wang. "Hypoxia enhances the stemness markers of cochlear stem/progenitor cells and expands sphere formation through activation of hypoxia-inducible factor-1alpha." Hearing Research 275, no. 1-2 (May 2011): 43–52. http://dx.doi.org/10.1016/j.heares.2010.12.004.
Full textGolden, Erin J., Ana Benito-Gonzalez, and Angelika Doetzlhofer. "The RNA-binding protein LIN28B regulates developmental timing in the mammalian cochlea." Proceedings of the National Academy of Sciences 112, no. 29 (July 2, 2015): E3864—E3873. http://dx.doi.org/10.1073/pnas.1501077112.
Full text