Journal articles on the topic 'Cochlea – Physiology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Cochlea – Physiology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Robles, Luis, and Mario A. Ruggero. "Mechanics of the Mammalian Cochlea." Physiological Reviews 81, no. 3 (July 1, 2001): 1305–52. http://dx.doi.org/10.1152/physrev.2001.81.3.1305.
Full textSzczepek, Agnieszka J., Tatyana Dudnik, Betül Karayay, Valentina Sergeeva, Heidi Olze, and Alina Smorodchenko. "Mast Cells in the Auditory Periphery of Rodents." Brain Sciences 10, no. 10 (October 1, 2020): 697. http://dx.doi.org/10.3390/brainsci10100697.
Full textKöles, László, Judit Szepesy, Eszter Berekméri, and Tibor Zelles. "Purinergic Signaling and Cochlear Injury-Targeting the Immune System?" International Journal of Molecular Sciences 20, no. 12 (June 18, 2019): 2979. http://dx.doi.org/10.3390/ijms20122979.
Full textDelprat, Benjamin, Jérôme Ruel, Matthieu J. Guitton, Ghyslaine Hamard, Marc Lenoir, Rémy Pujol, Jean-Luc Puel, Philippe Brabet, and Christian P. Hamel. "Deafness and Cochlear Fibrocyte Alterations in Mice Deficient for the Inner Ear Protein Otospiralin." Molecular and Cellular Biology 25, no. 2 (January 15, 2005): 847–53. http://dx.doi.org/10.1128/mcb.25.2.847-853.2005.
Full textMeenderink, Sebastiaan W. F., and Marcel van der Heijden. "Reverse Cochlear Propagation in the Intact Cochlea of the Gerbil: Evidence for Slow Traveling Waves." Journal of Neurophysiology 103, no. 3 (March 2010): 1448–55. http://dx.doi.org/10.1152/jn.00899.2009.
Full textKikidis, Dimitrios, and Athanasios Bibas. "A Clinically Oriented Introduction and Review on Finite Element Models of the Human Cochlea." BioMed Research International 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/975070.
Full textEmadi, Gulam, Claus-Peter Richter, and Peter Dallos. "Stiffness of the Gerbil Basilar Membrane: Radial and Longitudinal Variations." Journal of Neurophysiology 91, no. 1 (January 2004): 474–88. http://dx.doi.org/10.1152/jn.00446.2003.
Full textJeong, Sung-Wook, and Lee-Suk Kim. "A New Classification of Cochleovestibular Malformations and Implications for Predicting Speech Perception Ability after Cochlear Implantation." Audiology and Neurotology 20, no. 2 (2015): 90–101. http://dx.doi.org/10.1159/000365584.
Full textJones, Timothy A., Sherri M. Jones, and Kristina C. Paggett. "Emergence of Hearing in the Chicken Embryo." Journal of Neurophysiology 96, no. 1 (July 2006): 128–41. http://dx.doi.org/10.1152/jn.00599.2005.
Full textZheng, Jiefu, Chunfu Dai, Peter S. Steyger, Youngki Kim, Zoltan Vass, Tianying Ren, and Alfred L. Nuttall. "Vanilloid Receptors in Hearing: Altered Cochlear Sensitivity by Vanilloids and Expression of TRPV1 in the Organ of Corti." Journal of Neurophysiology 90, no. 1 (July 2003): 444–55. http://dx.doi.org/10.1152/jn.00919.2002.
Full textSumner, Christian J., Toby T. Wells, Christopher Bergevin, Joseph Sollini, Heather A. Kreft, Alan R. Palmer, Andrew J. Oxenham, and Christopher A. Shera. "Mammalian behavior and physiology converge to confirm sharper cochlear tuning in humans." Proceedings of the National Academy of Sciences 115, no. 44 (October 15, 2018): 11322–26. http://dx.doi.org/10.1073/pnas.1810766115.
Full textUeberfuhr, Margarete A., and Markus Drexl. "Slow oscillatory changes of DPOAE magnitude and phase after exposure to intense low-frequency sounds." Journal of Neurophysiology 122, no. 1 (July 1, 2019): 118–31. http://dx.doi.org/10.1152/jn.00204.2019.
Full textCampbell, Luke, Christofer Bester, Claire Iseli, David Sly, Adrian Dragovic, Anthony W. Gummer, and Stephen O'Leary. "Electrophysiological Evidence of the Basilar-Membrane Travelling Wave and Frequency Place Coding of Sound in Cochlear Implant Recipients." Audiology and Neurotology 22, no. 3 (2017): 180–89. http://dx.doi.org/10.1159/000478692.
Full textSchart-Morén, Nadine, Sune Larsson, Helge Rask-Andersen, and Hao Li. "Anatomical Characteristics of Facial Nerve and Cochlea Interaction." Audiology and Neurotology 22, no. 1 (2017): 41–49. http://dx.doi.org/10.1159/000475876.
Full textKitzes, L. M., and M. N. Semple. "Single-unit responses in the inferior colliculus: effects of neonatal unilateral cochlear ablation." Journal of Neurophysiology 53, no. 6 (June 1, 1985): 1483–500. http://dx.doi.org/10.1152/jn.1985.53.6.1483.
Full textLu, Yong, Julie A. Harris, and Edwin W. Rubel. "Development of Spontaneous Miniature EPSCs in Mouse AVCN Neurons During a Critical Period of Afferent-Dependent Neuron Survival." Journal of Neurophysiology 97, no. 1 (January 2007): 635–46. http://dx.doi.org/10.1152/jn.00915.2006.
Full textPhillips, James O., Leo Ling, Amy Nowack, Brenda Rebollar, and Jay T. Rubinstein. "Interactions between Auditory and Vestibular Modalities during Stimulation with a Combined Vestibular and Cochlear Prosthesis." Audiology and Neurotology 25, Suppl. 1-2 (2020): 96–108. http://dx.doi.org/10.1159/000503846.
Full textEl Afia, Fahd, Fabrice Giraudet, Laurent Gilain, Thierry Mom, and Paul Avan. "Resistance of Gerbil Auditory Function to Reversible Decrease in Cochlear Blood Flow." Audiology and Neurotology 22, no. 2 (2017): 89–95. http://dx.doi.org/10.1159/000478650.
Full textKössl, M., E. Foeller, M. Drexl, M. Vater, E. Mora, F. Coro, and I. J. Russell. "Postnatal Development of Cochlear Function in the Mustached Bat, Pteronotus parnellii." Journal of Neurophysiology 90, no. 4 (October 2003): 2261–73. http://dx.doi.org/10.1152/jn.00100.2003.
Full textHorvath, Lukas, Daniel Bodmer, Vesna Radojevic, and Arianne Monge Naldi. "Activin Signaling Disruption in the Cochlea Does Not Influence Hearing in Adult Mice." Audiology and Neurotology 20, no. 1 (November 26, 2014): 51–61. http://dx.doi.org/10.1159/000366152.
Full textSun, Jianjun, Shoab Ahmad, Shanping Chen, Wenxue Tang, Yanping Zhang, Ping Chen, and Xi Lin. "Cochlear gap junctions coassembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts." American Journal of Physiology-Cell Physiology 288, no. 3 (March 2005): C613—C623. http://dx.doi.org/10.1152/ajpcell.00341.2004.
Full textWangemann, Philine, Hyoung-Mi Kim, Sara Billings, Kazuhiro Nakaya, Xiangming Li, Ruchira Singh, David S. Sharlin, Douglas Forrest, Daniel C. Marcus, and Peying Fong. "Developmental delays consistent with cochlear hypothyroidism contribute to failure to develop hearing in mice lacking Slc26a4/pendrin expression." American Journal of Physiology-Renal Physiology 297, no. 5 (November 2009): F1435—F1447. http://dx.doi.org/10.1152/ajprenal.00011.2009.
Full textZheng, Jiefu, Niranjan Deo, Yuan Zou, Karl Grosh, and Alfred L. Nuttall. "Chlorpromazine Alters Cochlear Mechanics and Amplification: In Vivo Evidence for a Role of Stiffness Modulation in the Organ of Corti." Journal of Neurophysiology 97, no. 2 (February 2007): 994–1004. http://dx.doi.org/10.1152/jn.00774.2006.
Full textKugler, Kathrin, Lutz Wiegrebe, Benedikt Grothe, Manfred Kössl, Robert Gürkov, Eike Krause, and Markus Drexl. "Low-frequency sound affects active micromechanics in the human inner ear." Royal Society Open Science 1, no. 2 (October 2014): 140166. http://dx.doi.org/10.1098/rsos.140166.
Full textCooper, N. P., and W. S. Rhode. "Mechanical Responses to Two-Tone Distortion Products in the Apical and Basal Turns of the Mammalian Cochlea." Journal of Neurophysiology 78, no. 1 (July 1, 1997): 261–70. http://dx.doi.org/10.1152/jn.1997.78.1.261.
Full textNie, Liping, Haitao Song, Mei-Fang Chen, Nipavan Chiamvimonvat, Kirk W. Beisel, Ebenezer N. Yamoah, and Ana E. Vázquez. "Cloning and Expression of a Small-Conductance Ca2+-Activated K+ Channel From the Mouse Cochlea: Coexpression with α9/α10 Acetylcholine Receptors." Journal of Neurophysiology 91, no. 4 (April 2004): 1536–44. http://dx.doi.org/10.1152/jn.00630.2003.
Full textSkinner, Liam J., Véronique Enée, Maryline Beurg, Hak Hyun Jung, Allen F. Ryan, Aziz Hafidi, Jean-Marie Aran, and Didier Dulon. "Contribution of BK Ca2+-Activated K+ Channels to Auditory Neurotransmission in the Guinea Pig Cochlea." Journal of Neurophysiology 90, no. 1 (July 2003): 320–32. http://dx.doi.org/10.1152/jn.01155.2002.
Full textvan der Beek, Feddo B., Jeroen J. Briaire, Kim S. van der Marel, Berit M. Verbist, and Johan H. M. Frijns. "Intracochlear Position of Cochlear Implants Determined Using CT Scanning versus Fitting Levels: Higher Threshold Levels at Basal Turn." Audiology and Neurotology 21, no. 1 (2016): 54–67. http://dx.doi.org/10.1159/000442513.
Full textRajan, R. "Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. I. Dependence on electrical stimulation parameters." Journal of Neurophysiology 60, no. 2 (August 1, 1988): 549–68. http://dx.doi.org/10.1152/jn.1988.60.2.549.
Full textBrown, M. Christian. "Single-unit labeling of medial olivocochlear neurons: the cochlear frequency map for efferent axons." Journal of Neurophysiology 111, no. 11 (June 1, 2014): 2177–86. http://dx.doi.org/10.1152/jn.00045.2014.
Full textLee, C., J. J. Guinan, M. A. Rutherford, W. A. Kaf, K. M. Kennedy, C. A. Buchman, A. N. Salt, and J. T. Lichtenhan. "Cochlear compound action potentials from high-level tone bursts originate from wide cochlear regions that are offset toward the most sensitive cochlear region." Journal of Neurophysiology 121, no. 3 (March 1, 2019): 1018–33. http://dx.doi.org/10.1152/jn.00677.2018.
Full textCouloigner, Vincent, Michel Fay, Sabri Djelidi, Nicolette Farman, Brigitte Escoubet, Isabelle Runembert, Olivier Sterkers, Gérard Friedlander, and Evelyne Ferrary. "Location and function of the epithelial Na channel in the cochlea." American Journal of Physiology-Renal Physiology 280, no. 2 (February 1, 2001): F214—F222. http://dx.doi.org/10.1152/ajprenal.2001.280.2.f214.
Full textKamakura, Takefumi, Daniel J. Lee, Barbara S. Herrmann, and Joseph B. Nadol Jr. "Histopathology of the Human Inner Ear in the Cogan Syndrome with Cochlear Implantation." Audiology and Neurotology 22, no. 2 (2017): 116–23. http://dx.doi.org/10.1159/000477534.
Full textZirpel, L., E. A. Lachica, and W. R. Lippe. "Deafferentation increases the intracellular calcium of cochlear nucleus neurons in the embryonic chick." Journal of Neurophysiology 74, no. 3 (September 1, 1995): 1355–57. http://dx.doi.org/10.1152/jn.1995.74.3.1355.
Full textZhang, Si Yi, Donald Robertson, Graeme Yates, and Alan Everett. "Role of L-Type Ca2+ Channels in Transmitter Release From Mammalian Inner Hair Cells I. Gross Sound-Evoked Potentials." Journal of Neurophysiology 82, no. 6 (December 1, 1999): 3307–15. http://dx.doi.org/10.1152/jn.1999.82.6.3307.
Full textKim, Kyunghee X., and Robert Fettiplace. "Developmental changes in the cochlear hair cell mechanotransducer channel and their regulation by transmembrane channel–like proteins." Journal of General Physiology 141, no. 1 (December 31, 2012): 141–48. http://dx.doi.org/10.1085/jgp.201210913.
Full textRamkumar, V., R. Ravi, M. C. Wilson, T. W. Gettys, C. Whitworth, and L. P. Rybak. "Identification of A1 adenosine receptors in rat cochlea coupled to inhibition of adenylyl cyclase." American Journal of Physiology-Cell Physiology 267, no. 3 (September 1, 1994): C731—C737. http://dx.doi.org/10.1152/ajpcell.1994.267.3.c731.
Full textVenail, Frederic, Caroline Mathiolon, Sophie Menjot de Champfleur, Jean Pierre Piron, Marielle Sicard, Françoise Villemus, Marie Aude Vessigaud, Françoise Sterkers-Artieres, Michel Mondain, and Alain Uziel. "Effects of Electrode Array Length on Frequency-Place Mismatch and Speech Perception with Cochlear Implants." Audiology and Neurotology 20, no. 2 (2015): 102–11. http://dx.doi.org/10.1159/000369333.
Full textPappa, Andrew K., Kendall A. Hutson, William C. Scott, J. David Wilson, Kevin E. Fox, Maheer M. Masood, Christopher K. Giardina, et al. "Hair cell and neural contributions to the cochlear summating potential." Journal of Neurophysiology 121, no. 6 (June 1, 2019): 2163–80. http://dx.doi.org/10.1152/jn.00006.2019.
Full textXiong, Hao, Yongkang Ou, Yaodong Xu, Qiuhong Huang, Jiaqi Pang, Lan Lai, and Yiqing Zheng. "Resveratrol Promotes Recovery of Hearing following Intense Noise Exposure by Enhancing Cochlear SIRT1 Activity." Audiology and Neurotology 22, no. 4-5 (2017): 303–10. http://dx.doi.org/10.1159/000485312.
Full textPatuzzi, R., and D. Robertson. "Tuning in the mammalian cochlea." Physiological Reviews 68, no. 4 (October 1988): 1009–82. http://dx.doi.org/10.1152/physrev.1988.68.4.1009.
Full textSzalai, R., K. Tsaneva-Atanasova, M. E. Homer, A. R. Champneys, H. J. Kennedy, and N. P. Cooper. "Nonlinear models of development, amplification and compression in the mammalian cochlea." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1954 (November 13, 2011): 4183–204. http://dx.doi.org/10.1098/rsta.2011.0192.
Full textFessenden, James D., and Jochen Schacht. "Localization of Soluble Guanylate Cyclase Activity in the Guinea Pig Cochlea Suggests Involvement in Regulation of Blood Flow and Supporting Cell Physiology." Journal of Histochemistry & Cytochemistry 45, no. 10 (October 1997): 1401–8. http://dx.doi.org/10.1177/002215549704501008.
Full textLiu, Qing, and Robin L. Davis. "Regional Specification of Threshold Sensitivity and Response Time in CBA/CaJ Mouse Spiral Ganglion Neurons." Journal of Neurophysiology 98, no. 4 (October 2007): 2215–22. http://dx.doi.org/10.1152/jn.00284.2007.
Full textHu, Xintian, Burt N. Evans, and Peter Dallos. "Direct Visualization of Organ of Corti Kinematics in a Hemicochlea." Journal of Neurophysiology 82, no. 5 (November 1, 1999): 2798–807. http://dx.doi.org/10.1152/jn.1999.82.5.2798.
Full textAbel, Cornelius, Anna Wittekindt, and Manfred Kössl. "Contralateral Acoustic Stimulation Modulates Low-Frequency Biasing of DPOAE: Efferent Influence on Cochlear Amplifier Operating State?" Journal of Neurophysiology 101, no. 5 (May 2009): 2362–71. http://dx.doi.org/10.1152/jn.00026.2009.
Full textBing, Dan, Sze Chim Lee, Dario Campanelli, Hao Xiong, Masahiro Matsumoto, Rama Panford-Walsh, Stephan Wolpert, et al. "Cochlear NMDA Receptors as a Therapeutic Target of Noise-Induced Tinnitus." Cellular Physiology and Biochemistry 35, no. 5 (2015): 1905–23. http://dx.doi.org/10.1159/000374000.
Full textFettiplace, Robert, and Kyunghee X. Kim. "The Physiology of Mechanoelectrical Transduction Channels in Hearing." Physiological Reviews 94, no. 3 (July 2014): 951–86. http://dx.doi.org/10.1152/physrev.00038.2013.
Full textUlfendahl, M., S. M. Khanna, A. Fridberger, A. Flock, B. Flock, and W. Jager. "Mechanical response characteristics of the hearing organ in the low-frequency regions of the cochlea." Journal of Neurophysiology 76, no. 6 (December 1, 1996): 3850–62. http://dx.doi.org/10.1152/jn.1996.76.6.3850.
Full textHancock, Kenneth E., and Herbert F. Voigt. "Intracellularly Labeled Fusiform Cells in Dorsal Cochlear Nucleus of the Gerbil. II. Comparison of Physiology and Anatomy." Journal of Neurophysiology 87, no. 5 (May 1, 2002): 2520–30. http://dx.doi.org/10.1152/jn.2002.87.5.2520.
Full text