Academic literature on the topic 'Coastal carbon cycling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Coastal carbon cycling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Coastal carbon cycling"

1

Fennel, Katja, Simone Alin, Leticia Barbero, Wiley Evans, Timothée Bourgeois, Sarah Cooley, John Dunne, et al. "Carbon cycling in the North American coastal ocean: a synthesis." Biogeosciences 16, no. 6 (March 27, 2019): 1281–304. http://dx.doi.org/10.5194/bg-16-1281-2019.

Full text
Abstract:
Abstract. A quantification of carbon fluxes in the coastal ocean and across its boundaries with the atmosphere, land, and the open ocean is important for assessing the current state and projecting future trends in ocean carbon uptake and coastal ocean acidification, but this is currently a missing component of global carbon budgeting. This synthesis reviews recent progress in characterizing these carbon fluxes for the North American coastal ocean. Several observing networks and high-resolution regional models are now available. Recent efforts have focused primarily on quantifying the net air–sea exchange of carbon dioxide (CO2). Some studies have estimated other key fluxes, such as the exchange of organic and inorganic carbon between shelves and the open ocean. Available estimates of air–sea CO2 flux, informed by more than a decade of observations, indicate that the North American Exclusive Economic Zone (EEZ) acts as a sink of 160±80 Tg C yr−1, although this flux is not well constrained. The Arctic and sub-Arctic, mid-latitude Atlantic, and mid-latitude Pacific portions of the EEZ account for 104, 62, and −3.7 Tg C yr−1, respectively, while making up 51 %, 25 %, and 24 % of the total area, respectively. Combining the net uptake of 160±80 Tg C yr−1 with an estimated carbon input from land of 106±30 Tg C yr−1 minus an estimated burial of 65±55 Tg C yr−1 and an estimated accumulation of dissolved carbon in EEZ waters of 50±25 Tg C yr−1 implies a carbon export of 151±105 Tg C yr−1 to the open ocean. The increasing concentration of inorganic carbon in coastal and open-ocean waters leads to ocean acidification. As a result, conditions favoring the dissolution of calcium carbonate occur regularly in subsurface coastal waters in the Arctic, which are naturally prone to low pH, and the North Pacific, where upwelling of deep, carbon-rich waters has intensified. Expanded monitoring and extension of existing model capabilities are required to provide more reliable coastal carbon budgets, projections of future states of the coastal ocean, and quantification of anthropogenic carbon contributions.
APA, Harvard, Vancouver, ISO, and other styles
2

Mackenzie, F. T., A. Lerman, and A. J. Andersson. "Past and present of sediment and carbon biogeochemical cycling models." Biogeosciences 1, no. 1 (August 20, 2004): 11–32. http://dx.doi.org/10.5194/bg-1-11-2004.

Full text
Abstract:
Abstract. The global carbon cycle is part of the much more extensive sedimentary cycle that involves large masses of carbon in the Earth's inner and outer spheres. Studies of the carbon cycle generally followed a progression in knowledge of the natural biological, then chemical, and finally geological processes involved, culminating in a more or less integrated picture of the biogeochemical carbon cycle by the 1920s. However, knowledge of the ocean's carbon cycle behavior has only within the last few decades progressed to a stage where meaningful discussion of carbon processes on an annual to millennial time scale can take place. In geologically older and pre-industrial time, the ocean was generally a net source of CO2 emissions to the atmosphere owing to the mineralization of land-derived organic matter in addition to that produced in situ and to the process of CaCO3 precipitation. Due to rising atmospheric CO2 concentrations because of fossil fuel combustion and land use changes, the direction of the air-sea CO2 flux has reversed, leading to the ocean as a whole being a net sink of anthropogenic CO2. The present thickness of the surface ocean layer, where part of the anthropogenic CO2 emissions are stored, is estimated as of the order of a few hundred meters. The oceanic coastal zone net air-sea CO2 exchange flux has also probably changed during industrial time. Model projections indicate that in pre-industrial times, the coastal zone may have been net heterotrophic, releasing CO2 to the atmosphere from the imbalance between gross photosynthesis and total respiration. This, coupled with extensive CaCO3 precipitation in coastal zone environments, led to a net flux of CO2 out of the system. During industrial time the coastal zone ocean has tended to reverse its trophic status toward a non-steady state situation of net autotrophy, resulting in net uptake of anthropogenic CO2 and storage of carbon in the coastal ocean, despite the significant calcification that still occurs in this region. Furthermore, evidence from the inorganic carbon cycle indicates that deposition and net storage of CaCO3 in sediments exceed inflow of inorganic carbon from land and produce CO2 emissions to the atmosphere. In the shallow-water coastal zone, increase in atmospheric CO2 during the last 300 years of industrial time may have reduced the rate of calcification, and continuation of this trend is an issue of serious environmental concern in the global carbon balance.
APA, Harvard, Vancouver, ISO, and other styles
3

Mackenzie, F. T., A. Lerman, and A. J. Andersson. "Past and present of sediment and carbon biogeochemical cycling models." Biogeosciences Discussions 1, no. 1 (May 24, 2004): 27–85. http://dx.doi.org/10.5194/bgd-1-27-2004.

Full text
Abstract:
Abstract. The global carbon cycle is part of the much more extensive sedimentary cycle that involves large masses of carbon in the Earth's inner and outer spheres. Studies of the carbon cycle generally followed a progression in knowledge of the natural biological, then chemical, and finally geological processes involved, culminating in a more or less integrated picture of the biogeochemical carbon cycle by the 1920s. However, knowledge of the ocean's carbon cycle behavior has only within the last few decades progressed to a stage where meaningful discussion of carbon processes on an annual to millennial time scale can take place. In geologically older and pre-industrial time, the ocean was generally a net source of CO2 emissions to the atmosphere owing to the mineralization of land-derived organic matter in addition to that produced in situ and to the process of CaCO3 precipitation. Due to rising atmospheric CO2concentrations because of fossil fuel combustion and land use changes, the direction of the air-sea CO2 flux has reversed, leading to the ocean as a whole being a net sink of anthropogenic CO2. The present thickness of the surface ocean layer, where part of the anthropogenic CO2 emissions are stored, is estimated as of the order of a few hundred meters. The oceanic coastal zone net air-sea CO2 exchange flux has also probably changed during industrial time. Model projections indicate that in pre-industrial times, the coastal zone may have been net heterotrophic, releasing CO2 to the atmosphere from the imbalance between gross photosynthesis and total respiration. This, coupled with extensive CaCO3 precipitation in coastal zone environments, led to a net flux of CO2 out of the system. During industrial time the coastal zone ocean has tended to reverse its trophic status toward a non-steady state situation of net autotrophy, resulting in net uptake of anthropogenic CO2 and storage of carbon in the coastal ocean, despite the significant calcification that still occurs in this region. Furthermore, evidence from the inorganic carbon cycle indicates that deposition and net storage of CaCO3 in sediments exceed inflow of inorganic carbon from land and produce CO2 emissions to the atmosphere. In the shallow-water coastal zone, increase in atmospheric CO2 during the last 300 years of industrial time may have reduced the rate of calcification, and continuation of this trend is an issue of serious environmental concern in the global carbon balance.
APA, Harvard, Vancouver, ISO, and other styles
4

Banerjee, Kakoli, Abhijit Mitra, and Sebastián Villasante. "Carbon Cycling in Mangrove Ecosystem of Western Bay of Bengal (India)." Sustainability 13, no. 12 (June 15, 2021): 6740. http://dx.doi.org/10.3390/su13126740.

Full text
Abstract:
Carbon cycling in the mangrove ecosystem is one of the important processes determining the potential of coastal vegetation (mangroves), sediment, and adjoining waters to carbon absorption. This paper investigates the carbon storage capacity of five dominant mangrove species (Avicenia marina, Avicenia officinalis, Excoecaria agallocha, Rhizophora mucronata, and Xylocarpous granatum) on the east coast of the Indian mangrove along with the role they play in the carbon cycling phenomenon. Soil and water parameters were analyzed simultaneously with Above Ground Biomass (AGB) and Above Ground Carbon (AGC) values for 10 selected stations along. The total carbon (TC) calculated from the study area varied from 51.35 ± 6.77 to 322.47 ± 110.79 tons per hectare with a mean total carbon of 117.89 ± 28.90 and 432.64 ± 106.05 tons of carbon dioxide equivalent (CO2e). The alarm of the Intergovernmental Panel on Climate Change for reducing carbon emissions has been addressed by calculating the amount of carbon stored in biotic (mangroves) and abiotic (soil and water) compartments. This paper focuses on the technical investigations on the factors that control the carbon cycling process in mangroves. This blue carbon will help policymakers to develop a sustainable relationship between marine resource management and coastal inhabitants so that carbon trading markets can be developed, and the ecosystem is balanced.
APA, Harvard, Vancouver, ISO, and other styles
5

Filbee-Dexter, Karen, Colette J. Feehan, Dan A. Smale, Kira A. Krumhansl, Skye Augustine, Florian de Bettignies, Michael T. Burrows, et al. "Kelp carbon sink potential decreases with warming due to accelerating decomposition." PLOS Biology 20, no. 8 (August 4, 2022): e3001702. http://dx.doi.org/10.1371/journal.pbio.3001702.

Full text
Abstract:
Cycling of organic carbon in the ocean has the potential to mitigate or exacerbate global climate change, but major questions remain about the environmental controls on organic carbon flux in the coastal zone. Here, we used a field experiment distributed across 28° of latitude, and the entire range of 2 dominant kelp species in the northern hemisphere, to measure decomposition rates of kelp detritus on the seafloor in relation to local environmental factors. Detritus decomposition in both species were strongly related to ocean temperature and initial carbon content, with higher rates of biomass loss at lower latitudes with warmer temperatures. Our experiment showed slow overall decomposition and turnover of kelp detritus and modeling of coastal residence times at our study sites revealed that a significant portion of this production can remain intact long enough to reach deep marine sinks. The results suggest that decomposition of these kelp species could accelerate with ocean warming and that low-latitude kelp forests could experience the greatest increase in remineralization with a 9% to 42% reduced potential for transport to long-term ocean sinks under short-term (RCP4.5) and long-term (RCP8.5) warming scenarios. However, slow decomposition at high latitudes, where kelp abundance is predicted to expand, indicates potential for increasing kelp-carbon sinks in cooler (northern) regions. Our findings reveal an important latitudinal gradient in coastal ecosystem function that provides an improved capacity to predict the implications of ocean warming on carbon cycling. Broad-scale patterns in organic carbon decomposition revealed here can be used to identify hotspots of carbon sequestration potential and resolve relationships between carbon cycling processes and ocean climate at a global scale.
APA, Harvard, Vancouver, ISO, and other styles
6

Alongi, Daniel Michael. "Impacts of Climate Change on Blue Carbon Stocks and Fluxes in Mangrove Forests." Forests 13, no. 2 (January 19, 2022): 149. http://dx.doi.org/10.3390/f13020149.

Full text
Abstract:
Mangroves store blue carbon (693 Mg CORG ha−1) disproportionate to their small area, mainly (74%) in deep soil horizons. Global stock estimates for mangroves (5.23–8.63 Pg CORG) are equivalent to 15–24% of those in the tropical coastal ocean. Carbon burial in mangrove soils averages 184 g CORG m−2 a−1 with global estimates (9.6–15.8 Tg CORG a−1) reflecting their importance in carbon sequestration. Extreme weather events result in carbon stock losses and declines in carbon cycling and export. Increased frequency and ferocity of storms result in increasingly negative responses with increasing strength. Increasing temperatures result in increases in carbon stocks and cycling up to a critical threshold, while positive/negative responses will likely result from increases/decreases in rainfall. Forest responses to sea-level rise (SLR) and rising CO2 are species- and site-specific and complex due to interactive effects with other drivers (e.g., temperature, salinity). The SLR critical threshold is ≈ 6 mm a−1 indicating survival only under very low-low CO2 emissions scenarios. Under low coastal squeeze, landward migration could result in sequestration and CO2 losses of 1.5 and −1.1 Pg C with net stock gains and losses (−0.3 to +0.5 Pg C) and CO2 losses (−3.4 Pg) under high coastal squeeze.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhu, Zhongbin, Robert C. Aller, and John Mak. "Stable carbon isotope cycling in mobile coastal muds of Amapá, Brazil." Continental Shelf Research 22, no. 15 (October 2002): 2065–79. http://dx.doi.org/10.1016/s0278-4343(02)00071-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rowe, Gilbert T., and Ann P. McNichol. "Carbon cycling in coastal sediments: Estimating remineralization in Buzzards Bay, Massachusetts." Geochimica et Cosmochimica Acta 55, no. 10 (October 1991): 2989–91. http://dx.doi.org/10.1016/0016-7037(91)90465-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alongi, Daniel M., and Sandip K. Mukhopadhyay. "Contribution of mangroves to coastal carbon cycling in low latitude seas." Agricultural and Forest Meteorology 213 (November 2015): 266–72. http://dx.doi.org/10.1016/j.agrformet.2014.10.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gao, Yang, Tiantian Yang, Yafeng Wang, and Guirui Yu. "Fate of river‐transported carbon in china: implications for carbon cycling in coastal ecosystems." Ecosystem Health and Sustainability 3, no. 3 (March 2017): e01265. http://dx.doi.org/10.1002/ehs2.1265.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Coastal carbon cycling"

1

Blount, Keyyana. "Land Use Effects on Carbon Cycling in Oregon Coastal Wetlands." Thesis, University of Oregon, 2018. http://hdl.handle.net/1794/23152.

Full text
Abstract:
Pacific Northwest coastal wetland extent has been significantly reduced due to development. To understand the effects of land use change on carbon cycling in coastal wetlands, we compared soil carbon dynamics in restored, disturbed (by diking or draining), and reference wetlands in both freshwater and saline conditions in Coos Bay, Oregon. We quantified soil carbon pools, measured in situ fluxes of methane (CH4) and carbon dioxide (CO2), and estimated sediment deposition and carbon sequestration rates. We found that land use change influences carbon cycling and storage in coastal wetlands. The disturbed marshes have likely lost all their organic material after draining or diking, except for a shallow A horizon. The restored marsh in situ CH4 and CO2 fluxes were intermediate between the disturbed and reference marshes. Generally, restored marshes showed a partial return of carbon storage functions, or an indication that reference level functions may be achieved over time.
APA, Harvard, Vancouver, ISO, and other styles
2

Parkes, Duncan James. "Storage and cycling of organic carbon and nutrients in Holocene coastal sediments." Thesis, University of East Anglia, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396713.

Full text
Abstract:
Geochemical analyses of Holocene coastal sediments from eastern England were made to better understand the cycling of organic carbon and nutrients in the coastal zone in the past, present and future. Sediments and peat were deposited in freshwater marshes, saltmarshes and intertidal mud- and sand-flat environments that were much more extensive during the Holocene than they are at present. The reduction in these areas, largely through human activities, has decreased the potential annual accumulation and storage of organic carbon, nitrogen and phosphorus associated with sediments. While the carbon and nitrogen contents of modem intertidal environments are similar to Holocene intertidal areas, phosphorus is enriched in modem sediments by up to a factor of two. Budgets of nitrogen and phosphorus cycling in Fenland, eastern England, suggest that the Holocene estuaries in this area were sinks of nutrients from the North Sea despite nitrogen isotopic evidence suggesting that nitrogen buried in freshwater marshes was predominantly terrestrially derived. The present-day estuaries are sources of nutrients to the North Sea as riverine loads and atmospheric deposition are much higher than during the Holocene and sedimentation is also greatly reduced. The southern North Sea is probably autotrophic, in contrast to the coastal zone global average which is heterotrophic. The major differences between these two areas are: 1) the global coastal zone receives much greater loads of riverine particulate matter than the southern North Sea, and 2) sedimentation in the global coastal zone occurs in large river deltas which are absent from the relatively small European estuaries, thus much of the sediment supplied to the North Sea is exported to the shelf edge. Approximately 4x 109 t C, 0.3 x 109 tN and 0.1 x 109 tP are currently stored in fine-grained Holocene sediments in the southern North Sea coastal zone.
APA, Harvard, Vancouver, ISO, and other styles
3

Gacengo, Catherine N. Wood C. W. Shaw Joey N. "Agroecosystem management effects on carbon and nitrogen cycling across a coastal plain catena." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SUMMER/Agronomy_and_Soils/Dissertation/Gacengo_Catherine_2.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Henley, Sian Frances. "Climate-induced changes in carbon and nitrogen cycling in the rapidly warming Antarctic coastal ocean." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/7626.

Full text
Abstract:
The western Antarctic Peninsula (WAP) is a hotspot of climatic and oceanographic change, with a 6°C rise in winter atmospheric temperatures and >1°C warming of the surface ocean since the 1950s. These trends are having a profound impact on the physical environment at the WAP, with widespread glacial retreat, a 40% decline in sea ice coverage and intensification of deep water upwelling. The main objective of this study is to assess the response of phytoplankton productivity to these changes, and implications for the marine carbon and nitrogen cycles in the WAP coastal zone. An extensive suite of biogeochemical and physical oceanographic data was collected over five austral summer growing seasons in northern Marguerite Bay between 2004 and 2010. Concentrations and isotopic compositions ( 15N, 13C, 14C) of dissolved nitrate, dissolved inorganic carbon species, particulate nitrogen, organic carbon and chlorophyll a are used in the context of a substantial ancillary dataset to investigate nutrient supply, phytoplankton productivity and nutrient uptake, export flux and the fate of organic material, and the factors underpinning pronounced seasonal and interannual variability. High-resolution biogeochemical time-series data for surface and underlying seawater, sea ice brine, sediment trap material and coretop sediments allow detailed examination of carbon and nitrogen cycle processes under contrasting oceanographic conditions and the interaction between these marine processes and air-sea exchange of climate-relevant CO2. This study shows that the WAP marine environment is currently a summertime sink for atmospheric CO2 in most years due to high productivity and biological carbon uptake sufficient to offset the CO2 supply from circumpolar deep waters, which act as a persistent source of heat, nutrients and CO2 across the shelf. For the first time, CO2 sink/source behaviour is parameterised in terms of nitrate utilisation, by exploiting the relationship between CO2 and nitrate concentrations, and deriving the nitrate depletion at which surface ocean CO2 is undersaturated relative to atmosphere and carbon sink behaviour is achieved. This could have vast utility in examining CO2 sink/source dynamics over greater spatial and temporal scales than by direct CO2 measurements, of which availability is more limited. This study documents abrupt changes in phytoplankton productivity, nitrate utilisation and biological CO2 uptake during a period of rapid sea ice decline. In fact, nitrate utilisation, particulate organic matter production and biological CO2 uptake all decrease by at least 50 % between a sea ice-influenced, high productivity season and one of low sea ice and low productivity. The key driver of interannual variability in production and export of organic material is found to be upper ocean stratification and its regulation of light availability to phytoplankton. Productivity, CO2 uptake and export are maximal when stratification is sufficient to provide a stable well-lit surface environment for phytoplankton growth, but with some degree of mixing to promote export of suspended organic matter. Strong stratification causes intense initial production, but retention of suspended organic particles in the surface ocean induces a self-shading effect, and overall productivity, CO2 uptake and export fluxes are low. When stratification is weak, mixing of phytoplankton over a larger depth range exposes cells to a wider range of light levels and reduces photosynthetic efficiency, thus total productivity and CO2 uptake. A conceptual model is developed here, which attempts to describe the mechanism by which sea ice dynamics exert the principal control on stratification and therefore productivity and CO2 uptake at the WAP, with potential application to other regions of the Antarctic continental shelf. Although meteoric waters (glacial melt and precipitation) are more prevalent in surface waters throughout the study, sea ice meltwater variability is driven by large and rapid spring/early summer pulses, which stabilise the upper ocean and initiate phytoplankton growth. The timing and magnitude of these sea ice melt pulses then exert the key control on stratification and seasonal productivity. In a low sea ice year of this study, the sea ice trigger mechanism was absent and productivity was low. This strongly suggests that ongoing sea ice decline at the WAP and greater frequency of such low sea ice years is likely to drive a dramatic reduction in productivity and export, which would substantially reduce the capacity of the summertime CO2 sink in this region. Ongoing warming and ecosystem change are thus likely to have severe impacts on net CO2 sink/source behaviour at the WAP over the annual cycle, and the role of the Southern Ocean in regulating atmospheric CO2 and global climate. Finally, factors influencing the stable isotopic signature of particulate organic carbon ( 13CPOC), a common paleo-proxy, are assessed. 13CPOC is greatly influenced by seasonal shifts in diatom assemblages and isotopically heavy sea ice material, so cannot be used as a robust proxy for ambient CO2 in the coastal Southern Ocean.
APA, Harvard, Vancouver, ISO, and other styles
5

Sjoeberg, Tristan Nenne. "The distribution and cycling of dissolved carbon monoxide in estuarine, coastal and shelf break environments." Thesis, University of East Anglia, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lacroix, Fabrice. "Riverine and coastal ocean contributions to the global and regional oceanic cycling of carbon and nutrients." Doctoral thesis, Universite Libre de Bruxelles, 2019. https://dipot.ulb.ac.be/dspace/bitstream/2013/289460/3/main.pdf.

Full text
Abstract:
Les rivières sont une source importante de constituants biogéochimiques pour les océans. Jusqu’à présent, les modèles océaniques globaux représentaient de manière inadéquate ou ignoraient simplement les apports continentaux de nutriments, de carbone, d’alcalinité provenant des rivières. En particulier, les perturbations anthropiques des apports fluviaux au cours du 20 ème siècle et leurs conséquences sur l’état physique et biogéochimique des océans - notamment la zone côtière - n’ont pas encore été analysées à l’aide d’un modèle global prenant en compte la circulation tridimensionnelle de l’océan. L’objectif principal de cette thèse était donc d’intégrer les apports biogéochimiques provenant des rivières dans un modèle océanique global afin d’améliorer la compréhension du cycle du carbone de l’océan côtier et son évolution au cours du 20 ème siècle. Dans un premier temps, mon travail a visé à l’amélioration des connaissances concernant le rôle des apports biogéochimiques fluviaux sur le cycle du carbone océanique à long-terme, en se focalisant sur la période préindustrielle. Pour cela, j’ai estimé les apports des rivières en utilisant des modèles permettant d’estimer l’érosion chimique et le transfert de matière organique desécosystèmes terrestres à l’océan. Ces apports fluviaux ont ensuite été ajoutés dans le modèle biogéochimique océanique HAMOCC et leurs impacts sur la production primaire océanique et les flux de CO2 entre l’atmosphère et l’océan ont été analysés. Les résultats nous ont permis de quantifier un dégazage de CO 2 préindustriel de 0.23 Pg C yr -1 pour l’océan global, principalement localisé à proximité de l’embouchure des rivières. Le modèle a également démontré l’existence d’un transfert inter-hémisphèrique de carbone, avec un plus grand apport des rivières à l’océan dans l’hémisphère nord, et un transfert de l’hémisphère nord à l’hémisphère sud où un dégazage net se produit. Une augmentation considérable de la production primaire océanique induite par les apports des rivières a également été prédite.La modélisation biogéochimique de l’océan côtier a ensuite été améliorée, en augmentant la vitesse de minéralisation de la matière organique dans les sédiments côtiers et en incluant la dégradation de la matière organique dissoute d’origine terrestre (tDOM) dans l’océan. Par ailleurs, notre analyse suggère un temps de résidence des eaux dans la zone côtière significativement plus courte (14-16 mois en moyenne) que celui estimé jusqu’à présent (>4 ans). Ce temps de courte résidence implique un transfert efficace de matière organiquede l’océan côtier à l’océan ouvert, un état autotrophe net de l’océan côtier, ainsi qu’un puit de CO 2 (0.06-0.08 Pg C yr -1) pour la période préindustrielle, contrairement aux hypothèses précédemment proposées dans la littérature.Dans le dernier chapitre, les perturbations océaniques induites par les changements de la concentration en CO 2 dans l’atmosphère, de la physique de l’océan et des apports biogéochimiques fluviaux au cours du 20 ème siècle ont été analysées. Les résultats indiquent que la réduction de production primaire nette (NPP) observée dans les océans tropicaux et subtropicaux, pourrait être entièrement compensée par une augmentation de la NPP dans l’océan austral et dans les systèmes côtiers de type «EBUS». Les simulations montrent aussi que l’augmentation des apports fluviaux provoque une augmentation de NPP océanique à l’échelle de l’océan côtier (+15 %) et à l’échelle globale (+ 4 %). En conclusion, cette thèse a permis de démontrer l’importance d’inclure la variabilité spatio-temporelle des apports fluviaux et des processus biogéochimiques de l’océan côtier dans la description du cycle du carbone océanique global. Les améliorations apportées au modèle océanique global HAMOCC permettront d’affiner les prédictions du rôle de l’océan dans le cycle du carbone au cours du 21 ème siècle.
River deliver vast amounts of terrestrially derived compounds to the ocean. These fluxes are of particular importance for the coastal ocean, which is recognized as a region of disproportionate contribution to global oceanic biological fluxes. Until now, the riverine carbon, nutrient and alkalinity inputs have been poorly represented or omitted in global ocean biogeochemistry models. In particular, there has yet to be a model that considers the pre-industrial riverine loads of biogeochemical compounds to the ocean, and terrestrial inputs of organic matter are greatly simplified in their composition and reactivities in the ocean. Furthermore, the coastal ocean and its contribution to the globalcarbon cycle have remained enigmatic, with little attention being paid to this area of high biological productivity in global model analysis of carbon fluxes. Lastly, 20 th century perturbations in riverine fluxes as well as of the physical and biogeochemical states of the coastal ocean have remained unexplored in a 3-dimensional model. Thus, the main goals of this thesis are to integrate an improved representation of riverine supplies in a global ocean model, as well as to improve the representation of the coastal ocean in the model, in order to solve open questions with respect its global contributions to carbon cycling.In this thesis, I first aimed to close gaps of knowledge in the long-term implications of pre-industrial riverine loads for the oceanic cycling of carbon in a novel framework. I estimated pre-industrial biogeochemical riverine loads and their spatial distributions derived from Earth System Model variables while using a hierarchy of state-of-the-art weathering and organic matter land-ocean export models. I incorporated these loads into the global ocean biogeochemical model HAMOCC and investigated the induced changes in oceanic biological production and in the air-sea carbon flux, both at the global scale and in a regional shelf analysis. Finally, I summarized the results by assessing the net land sink of atmospheric carbon prescribed by the terrestrial models, and comparing it to the long-term carbon outgassing determined in the ocean model. The study reveals a pre-industrial oceanic outgassing flux of 231 Tg C yr -1 ,which is found to a large degree in proximity to the river mouths. The model also indicates an interhemispheric transfer of carbon from dominant northern hemisphere riverine inputs to outgassing in the southern hemisphere. Furthermore, I observe substantial riverine-induced increases in biological productivity in the tropical West Atlantic (+166 %), the Bay of Bengal (+377 %) and in the East China Sea (+71 %), in comparison to a model simulation which does not consider the riverine inputs.In addition to considering supplies provided by riverine fluxes, the biogeochemical representation of the coastal ocean is improved in HAMOCC, by firstly increasing organic matter remineralization rates in the coastal sediment and by secondly explicitly representing the breakdown process of terrestrial dissolved organic matter (tDOM) in the ocean. In an analysis of the coastal fluxes, the model shows a much shorter residence time of coastal waters (14-16 months) than previously assumed, which leads to an efficient cross-shelf transport of organic matter and a net autotrophic state for both the pre-industrial timeframe and the present day. The coastal ocean is also revealed as a CO2 sink for the pre-industrial time period (0.06-0.08 Pg C yr -1 ) in contrary to to the suggested source in published literature. The sink is however not only caused by the autotrophic state of the coastal ocean, but it is likely also strongly influenced by the effects of biological alkalinity production, as well as both physical and biogeochemical characteristics of open ocean inflows.In the final chapter, 20 th century oceanic perturbations due to changes in atmospheric CO 2 concentrations and in the physical climate, and to increases in riverine nutrient supplies were investigated by using sequential model simulations. The model results show that the decrease in the net primary production (NPP) in the tropical and subtropical oceans due to temperature-induced stratification may be completely compensated by increases in the Southern Ocean and in Eastern Boundary Upwelling Systems (EBUS). The model also reveals that including increases in riverine supplies causes a global ocean NPP increase of +4 %, with the coastal ocean being a particularlystrongly affected region (+15 %).This thesis shows a strong necessity to represent spatio-temporal changes in riverine supplies and of the coastal ocean state in spatially explicit global models in order to assess changes of the global cycling of carbon in the ocean in the past and potentially in the future.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
7

Hardison, Amber Kay. "Interactions between macroalgae and the sediment microbial community : nutrient cycling within shallow coastal bays /." W&M ScholarWorks, 2009. http://web.vims.edu/library/Theses/Hardison09.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nilsen, Elena Brennan. "Studies of carbon cycling, nutrient dynamics and climate change in pelagic and coastal ecosystems using sediment geochemical techniques /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2004. http://uclibs.org/PID/11984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wilson, Benjamin J. "Drivers and Mechanisms of Peat Collapse in Coastal Wetlands." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3718.

Full text
Abstract:
Coastal wetlands store immense amounts of carbon (C) in vegetation and sediments, but this store of C is under threat from climate change. Accelerated sea level rise (SLR), which leads to saltwater intrusion, and more frequent periods of droughts will both impact biogeochemical cycling in wetlands. Coastal peat marshes are especially susceptible to saltwater intrusion and changes in water depth, but little is known about how exposure to salinity affects organic matter accumulation and peat stability. I investigated freshwater and brackish marsh responses to elevated salinity, greater inundation, drought, and increased nutrient loading. Elevated salinity pulses in a brackish marsh increased CO2 release from the marsh but only during dry-down. Elevated salinity increased root mortality at both a freshwater and brackish marsh. Under continuously elevated salinity in mesocosms, net ecosystem productivity (NEP) was unaffected by elevated salinity in a freshwater marsh exposed to brackish conditions (0 à 8 ppt), but NEP significantly increased with P enrichment. Elevated salinity led to a higher turnover of live to dead roots, resulting in a ~2-cm loss in soil elevation within 1 year of exposure to elevated salinity. When exposing a brackish marsh to more saline conditions (10 à 20 ppt), NEP, aboveground biomass production, and root growth all significantly decreased with elevated salinity, shifting the marsh from a net C sink to a net C source to the atmosphere. Elevated salinity (10 à 20 ppt) did not increase soil elevation loss, which was already occurring under brackish conditions, but when coupled with a drought event, elevation loss doubled. My findings suggest these hypotheses for the drivers and mechanisms of peat collapse. When freshwater marshes are first exposed to elevated salinity, soil structure and integrity are negatively affected through loss of live roots within the soil profile, leaving the peat vulnerable to collapse even though aboveground productivity and NEP may be unaffected. Subsequent dry-down events where water falls below the soil surface further accelerate peat collapse. Although saltwater intrusion into freshwater wetlands may initially stimulate primary productivity through a P subsidy, the impact of elevated salinity on root and soil structure has a greater deleterious effect and may ultimately be the factors that lead to the collapse of these marshes.
APA, Harvard, Vancouver, ISO, and other styles
10

Dyksma, Stefan [Verfasser], Marc [Akademischer Betreuer] Mußmann, Rudolf [Gutachter] Amann, and Ulrich [Gutachter] Fischer. "Identification and activity of bacteria consuming key intermediates of carbon and sulfur cycling in coastal sands / Stefan Dyksma ; Gutachter: Rudolf Amann, Ulrich Fischer ; Betreuer: Marc Mußmann." Bremen : Staats- und Universitätsbibliothek Bremen, 2016. http://d-nb.info/1113718781/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Coastal carbon cycling"

1

Geological Survey (U.S.), ed. Biogeochemical cycling of carbon and related elements in the coastal wetlands of Louisiana. [Reston, Va.?: Dept. of the Interior, U.S. Geological Survey, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Suthers, Iain, David Rissik, and Anthony Richardson, eds. Plankton. CSIRO Publishing, 2019. http://dx.doi.org/10.1071/9781486308804.

Full text
Abstract:
Healthy waterways and oceans are essential for our increasingly urbanised world. Yet monitoring water quality in aquatic environments is a challenge, as it varies from hour to hour due to stormwater and currents. Being at the base of the aquatic food web and present in huge numbers, plankton are strongly influenced by changes in environment and provide an indication of water quality integrated over days and weeks. Plankton are the aquatic version of a canary in a coal mine. They are also vital for our existence, providing not only food for fish, seabirds, seals and sharks, but producing oxygen, cycling nutrients, processing pollutants, and removing carbon dioxide from our atmosphere. This Second Edition of Plankton is a fully updated introduction to the biology, ecology and identification of plankton and their use in monitoring water quality. It includes expanded, illustrated descriptions of all major groups of freshwater, coastal and marine phytoplankton and zooplankton and a new chapter on teaching science using plankton. Best practice methods for plankton sampling and monitoring programs are presented using case studies, along with explanations of how to analyse and interpret sampling data. Plankton is an invaluable reference for teachers and students, environmental managers, ecologists, estuary and catchment management committees, and coastal engineers.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Coastal carbon cycling"

1

İyilikçi Pala, Ayşegül, and Delia Teresa Sponza. "Nutrient Cycling and Coastal Pollution in İzmir Bay, Turkey." In Carbon Sequestration in the Biosphere, 293–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79943-3_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Balzer, W., F. Pollehne, and H. Erlenkeuser. "Cycling of Organic Carbon in a Coastal Marine System." In Sediments and Water Interactions, 325–30. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4612-4932-0_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Coffin, Richard B., Kenneth S. Grabowski, and Jeffrey P. Chanton. "The Role of Methane Hydrate in Ocean Carbon Chemistry and Biogeochemical Cycling." In Coastal Systems and Continental Margins, 77–90. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-011-4387-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bauer, J. E., and T. S. Bianchi. "Dissolved Organic Carbon Cycling and Transformation." In Treatise on Estuarine and Coastal Science, 7–67. Elsevier, 2011. http://dx.doi.org/10.1016/b978-0-12-374711-2.00502-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bianchi, T. S., and J. E. Bauer. "Particulate Organic Carbon Cycling and Transformation." In Treatise on Estuarine and Coastal Science, 69–117. Elsevier, 2011. http://dx.doi.org/10.1016/b978-0-12-374711-2.00503-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Marchand, Cyril, Xiaoguang Ouyang, Faming Wang, and Audrey Leopold. "Impact of climate change and related disturbances on CO2 and CH4 cycling in coastal wetlands." In Carbon Mineralization in Coastal Wetlands, 197–231. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-819220-7.00010-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Venkatesan, M. I., I. R. Kaplan, and J. Southon. "Stable and radiocarbon isotopes and carbon cycling in coastal sediments." In The Geochemical Society Special Publications, 109–24. Elsevier, 2004. http://dx.doi.org/10.1016/s1873-9881(04)80011-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dolman, Han. "The Nitrogen Cycle and Climate." In Biogeochemical Cycles and Climate, 176–93. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198779308.003.0011.

Full text
Abstract:
The nitrogen cycle is described, together with its denitrification and nitrification processes, including the Anammox process. The importance of human intervention through the Haber–Bosch process is shown by identifying the tremendous growth of agricultural food production for a growing world population. The processes of emission of nitrous oxide from the ocean and land are described. The role of reactive nitrogen in cascading through land water into the ocean, where it provides eutrophication in coastal areas, is also described, as is the role of nitrogen in aerosol formation. The geological record of nitrogen cycling is then discussed in relation to Earth’s oxygenation. The impact of nitrogen on the carbon cycle is also discussed.
APA, Harvard, Vancouver, ISO, and other styles
9

Bianchi, Thomas S. "Characterization of Organic Matter." In Biogeochemistry of Estuaries. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780195160826.003.0018.

Full text
Abstract:
In chapter 8, a general overview was provided on the dominant sources of organic matter in estuarine systems. In general, estuarine organic matter is derived from a multitude of natural and anthropogenic allochthonous and autochthonous sources that originate across a freshwater to seawater continuum. Knowledge of sources, reactivity, and fate of organic matter are critical in understanding the role of estuarine and coastal systems in global biogeochemical cycles (Simoneit, 1978; Hedges and Keil, 1995; Bianchi and Canuel, 2001). Due to a wide diversity of organic matter sources and the dynamic mixing that occurs in estuarine systems, it remains a significant challenge in determining the relative importance of these source inputs to biogeochemical cycling in the water column of sediments. Temporal and spatial variability in organic matter inputs adds further to the complexity in understanding these environments. In recent years there have been significant improvements in our ability to distinguish between organic matter sources in estuaries using tools such as elemental, isotopic (bulk and compound/class specific), and chemical biomarker methods. This chapter will provide a general overview of the biochemistry of dominant organic compounds in organic matter and the techniques used to distinguish them in estuarine systems. The abundance and ratios of important elements in biological cycles (e.g., C, H, N, O, S, and P) provide the basic foundation of information on organic matter cycling. For example, concentrations of total organic carbon (TOC) provide the most important indicator of organic matter since approximately 50% of most organic matter consists of C. As discussed in chapter 8, TOC in estuaries is derived from a broad spectrum of sources with very different structural properties and decay rates. Consequently, while TOC provides essential information on spatial and temporal dynamics of organic matter it lacks any specificity to source or age of the material. When bulk C information is combined with additional elemental information, as in the case of the C-to-N ratio, basic source information can be inferred about algal and terrestrial source materials (see review, Meyers, 1997). The broad range of C:N ratios across divergent sources of organic matter in the biosphere demonstrate how such a ratio can provide an initial proxy for determining source information.
APA, Harvard, Vancouver, ISO, and other styles
10

Troxler, Tiffany G. "Collaboration and Broadening Our Scope: Relevance of Long-Term Ecological Research to the Global Community." In Long-Term Ecological Research. Oxford University Press, 2016. http://dx.doi.org/10.1093/oso/9780199380213.003.0030.

Full text
Abstract:
As part of my long-term ecological research experience, I have come to recognize that individual success is not necessarily the hallmark of an effective or successful scientist. To achieve problem-oriented solutions to the grand challenges of society, service and collaboration can have more impact on ecology and society than singular scientific achievements. Because of my experiences with the Long-Term Ecological Research (LTER) program, I promote the idea that collaborative research is essential training for ecosystem scientists. The LTER program promoted the increasing importance of effective science communication at a time when it was not widely appreciated. The LTER program demonstrated to me that engendering a spirit of collaboration was the key to building a network of scientists that could address grand challenge questions. After studying anthropology as an undergraduate in Louisiana, I moved to Florida to work with Daniel Childers in the field of ecology. During my PhD work with him at Florida International University (FIU), I became involved in the Florida Coastal Everglades site (FCE) of the LTER program. During graduate school, I participated as cochair of the LTER graduate student committee. Currently, I am a research assistant professor with appointments at the Southeast Environmental Research Center and the Department of Biological Sciences at FIU. My research focuses on long-term ecosystem responses to hydrologic restoration, carbon cycling, and plant–soil interactions along environmental gradients in the Everglades. I collaborate with researchers at FCE and other LTER sites, as well as with colleagues in the International LTER (ILTER) to broaden the scope and integration of site-based, long-term research. Ecosystem approaches are a hallmark of science in the LTER program, and long-term manipulations at the ecosystem-scale are numerous within the LTER network. Simple ecosystem modeling allows for the integration of responses into a few synthetic variables (e.g., soil nutrient concentrations or carbon accumulation rates). My research in the LTER program strives to identify data gaps posed by such modeling and looks for creative and robust ways to develop data sets that contain a comprehensive suite of input parameters.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Coastal carbon cycling"

1

Kellock, Celeste, Craig Smeaton, Nadeem Shah, William Austin, and Christian Schröder. "Biogeochemical cycling of iron and carbon from forested environments to coastal waters and sediments." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.7666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Voloshchuk, Ekaterina, Ekaterina Voloshchuk, Tatjana Eremina, Tatjana Eremina, Alexey Isaev, and Alexey Isaev. "ASSESSMENT OF BIOTURBATION ACTIVITY OF MARENZELLERIA SPP. IN THE EASTERN PART OF THE GULF OF FINLAND." In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.31519/conferencearticle_5b1b947157de15.59935353.

Full text
Abstract:
Macrofauna is supposed to influence on physic-chemical characteristics of the sea bottom sediments. Through its bioturbation mechanism porosity, area of oxygenated layer and oxygen penetration depth have increased. This lead to alterations in nutrient cycling as well as improvement in redox conditions which define direction of fluxes in the sediments. In oxic conditions phosphorus is transformed into particulate form and thus, its retention and burial increase. In contrary, denitrification is getting weaker and nitrogen returns into the water. The impact of benthic organisms bioirrigation activity on other chemical components in solid sediments is not sufficiently studied. Present investigations were carried out for the most abundant benthic species in the Gulf of Finland Marenzelleria spp. Those polychaetes are active turbators and their irrigation effect lead to significant changes in chemical compounds in the solid sediment. On the basis of statistical analysis of data on vertical distribution of organic carbon content, total iron and manganese in solid sediments and abundance of Marenzelleria spp. there was found that polychaetes have a significant impact on organic carbon content, while for total iron and manganese such regularity is not revealed.
APA, Harvard, Vancouver, ISO, and other styles
3

Voloshchuk, Ekaterina, Ekaterina Voloshchuk, Tatjana Eremina, Tatjana Eremina, Alexey Isaev, and Alexey Isaev. "ASSESSMENT OF BIOTURBATION ACTIVITY OF MARENZELLERIA SPP. IN THE EASTERN PART OF THE GULF OF FINLAND." In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.21610/conferencearticle_58b43155f0cfe.

Full text
Abstract:
Macrofauna is supposed to influence on physic-chemical characteristics of the sea bottom sediments. Through its bioturbation mechanism porosity, area of oxygenated layer and oxygen penetration depth have increased. This lead to alterations in nutrient cycling as well as improvement in redox conditions which define direction of fluxes in the sediments. In oxic conditions phosphorus is transformed into particulate form and thus, its retention and burial increase. In contrary, denitrification is getting weaker and nitrogen returns into the water. The impact of benthic organisms bioirrigation activity on other chemical components in solid sediments is not sufficiently studied. Present investigations were carried out for the most abundant benthic species in the Gulf of Finland Marenzelleria spp. Those polychaetes are active turbators and their irrigation effect lead to significant changes in chemical compounds in the solid sediment. On the basis of statistical analysis of data on vertical distribution of organic carbon content, total iron and manganese in solid sediments and abundance of Marenzelleria spp. there was found that polychaetes have a significant impact on organic carbon content, while for total iron and manganese such regularity is not revealed.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography