Academic literature on the topic 'Coadjoint orbits'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Coadjoint orbits.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Coadjoint orbits"
Kurniadi, Edi. "Ruang Fase Tereduksi Grup Lie Aff (1)." Jambura Journal of Mathematics 3, no. 2 (June 24, 2021): 180–86. http://dx.doi.org/10.34312/jjom.v3i2.10653.
Full textGORSKY, A., and A. JOHANSEN. "LIOUVILLE THEORY AND SPECIAL COADJOINT VIRASORO ORBITS." International Journal of Modern Physics A 10, no. 06 (March 10, 1995): 785–99. http://dx.doi.org/10.1142/s0217751x95000371.
Full textLIEDÓ, M. A. "DEFORMATION QUANTIZATION OF COADJOINT ORBITS." International Journal of Modern Physics B 14, no. 22n23 (September 20, 2000): 2397–400. http://dx.doi.org/10.1142/s0217979200001916.
Full textBOŽIČEVIĆ, MLADEN. "A LIMIT FORMULA FOR EVEN NILPOTENT ORBITS." International Journal of Mathematics 19, no. 02 (February 2008): 223–36. http://dx.doi.org/10.1142/s0129167x08004650.
Full textArnal, D., M. Cahen, and S. Gutt. "Deformations on coadjoint orbits." Journal of Geometry and Physics 3, no. 3 (January 1986): 327–51. http://dx.doi.org/10.1016/0393-0440(86)90013-6.
Full textRobinson, P. L. "Equivariant prequantization and admissible coadjoint orbits." Mathematical Proceedings of the Cambridge Philosophical Society 114, no. 1 (July 1993): 131–42. http://dx.doi.org/10.1017/s0305004100071462.
Full textBožičević, Mladen. "Invariant measures on nilpotent orbits associated with holomorphic discrete series." Representation Theory of the American Mathematical Society 25, no. 24 (August 18, 2021): 732–47. http://dx.doi.org/10.1090/ert/580.
Full textEsposito, Chiara, Philipp Schmitt, and Stefan Waldmann. "Comparison and continuity of Wick-type star products on certain coadjoint orbits." Forum Mathematicum 31, no. 5 (September 1, 2019): 1203–23. http://dx.doi.org/10.1515/forum-2018-0302.
Full textVi�a, A. "Cohomological splitting of coadjoint orbits." Archiv der Mathematik 82, no. 1 (January 1, 2004): 13–15. http://dx.doi.org/10.1007/s00013-003-4819-5.
Full textLe Bruyn, Lieven. "Noncommutative smoothness and coadjoint orbits." Journal of Algebra 258, no. 1 (December 2002): 60–70. http://dx.doi.org/10.1016/s0021-8693(02)00533-1.
Full textDissertations / Theses on the topic "Coadjoint orbits"
Mihov, Diko. "Quantization of nilpotent coadjoint orbits." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/38410.
Full textLi, Zongyi. "Coadjoint orbits and induced representations." Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/43270.
Full textAstashkevich, Alexander. "Fedosov's quantization of semisimple coadjoint orbits." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/38396.
Full textDai, Jialing. "Conjugacy classes, characters and coadjoint orbits of Diff⁺S¹." Diss., The University of Arizona, 2000. http://hdl.handle.net/10150/284342.
Full textAndré, Carlos Alberto Martins. "Irreducible characters of the unitriangular group and coadjoint orbits." Thesis, University of Warwick, 1992. http://wrap.warwick.ac.uk/110600/.
Full textNevins, Monica 1973. "Admissible nilpotent coadjoint orbits of p-adic reductive Lie groups." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/47467.
Full textPlummer, Michael. "Stratified fibre bundles and symplectic reduction on coadjoint orbits of SU(n)." Thesis, University of Surrey, 2008. http://epubs.surrey.ac.uk/842671/.
Full textVilla, Patrick Björn [Verfasser], Peter [Akademischer Betreuer] Heinzner, and Alan T. [Akademischer Betreuer] Huckleberry. "Kählerian structures of coadjoint orbits of semisimple Lie groups and their orbihedra / Patrick Björn Villa. Gutachter: Peter Heinzner ; Alan T. Huckleberry." Bochum : Ruhr-Universität Bochum, 2015. http://d-nb.info/1079843477/34.
Full textDeltour, Guillaume. "Propriétés symplectiques et hamiltoniennes des orbites coadjointes holomorphes." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2010. http://tel.archives-ouvertes.fr/tel-00552150.
Full textZergane, Amel. "Séparation des représentations des groupes de Lie par des ensembles moments." Thesis, Dijon, 2011. http://www.theses.fr/2011DIJOS086/document.
Full textTo a unitary irreducible representation (π,H) of a Lie group G, is associated a moment map Ψπ. The closure of the range of Ψπ is the moment set of π. Generally, this set is Conv(Oπ), if Oπ is the corresponding coadjoint orbit. Unfortunately, it does not characterize π : 2 distincts orbits can have the same closed convex hull. We can overpass this di culty, by considering an overgroup G+ for G and a non linear map ø from g* into (g+)* such that, for generic orbits, ø(O) is an orbit and Conv( ø(O)) characterizes O. In the present thesis, we show that we can choose the pair (G+,ø), with deg ø ≤2 for all the nilpotent groups with dimension ≤6, except one, for all solvable groups with diemnsion ≤4, and for an example of motion group. Then we study the G=SL(n,R) case. For these groups, there exists ø with deg ø =n, if n>2, there is no such ø with deg ø=2, if n=4, there is no such ø with deg ø=3. Finally, we show that the moment map Ψπ is coming from a stronly Hamiltonian G-action on the Frécht symplectic manifold PH∞. We build a functor, which associates to each G an infi nite diemnsional Fréchet-Lie overgroup G̃,and, to each π a strongly Hamiltonian action, whose moment set characterizes π
Books on the topic "Coadjoint orbits"
André, Carlos Alberto Martins. Irreducible characters of the unitriangular group and coadjoint orbits. [s.l.]: typescript, 1992.
Find full text1943-, Seitz Gary M., ed. Unipotent and nilpotent classes in simple algebraic groups and lie algebras. Providence, R.I: American Mathematical Society, 2012.
Find full textBook chapters on the topic "Coadjoint orbits"
Marsden, Jerrold E., and Tudor S. Ratiu. "Coadjoint Orbits." In Texts in Applied Mathematics, 443–79. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-0-387-21792-5_14.
Full textMarsden, Jerrold E., and Tudor S. Ratiu. "Coadjoint Orbits." In Texts in Applied Mathematics, 399–430. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-2682-6_14.
Full textOblak, Blagoje. "Virasoro Coadjoint Orbits." In Springer Theses, 201–40. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61878-4_7.
Full textKirillov, A. "Geometry of coadjoint orbits." In Graduate Studies in Mathematics, 1–29. Providence, Rhode Island: American Mathematical Society, 2004. http://dx.doi.org/10.1090/gsm/064/01.
Full textOblak, Blagoje. "Coadjoint Orbits and Geometric Quantization." In Springer Theses, 109–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61878-4_5.
Full textDwivedi, Shubham, Jonathan Herman, Lisa C. Jeffrey, and Theo van den Hurk. "The Symplectic Structure on Coadjoint Orbits." In SpringerBriefs in Mathematics, 27–29. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27227-2_5.
Full textGraham, William, and David A. Vogan. "Geometric Quantization for Nilpotent Coadjoint Orbits." In Progress in Mathematics, 69–137. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-4162-1_6.
Full textAdams, M. R., J. Harnad, and J. Hurtubise. "Coadjoint Orbits, Spectral Curves and Darboux Coordinates." In Mathematical Sciences Research Institute Publications, 9–21. New York, NY: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4613-9725-0_2.
Full textLozano, Yolanda, Steven Duplij, Malte Henkel, Malte Henkel, Euro Spallucci, Steven Duplij, Malte Henkel, et al. "Supersymmetry Methods, particle dynamics on coadjoint orbits." In Concise Encyclopedia of Supersymmetry, 472–73. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_631.
Full textAstashkevich, Alexander. "On Karabegov’s Quantizations of Semisimple Coadjoint Orbits." In Advances in Geometry, 1–18. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-1770-1_1.
Full textConference papers on the topic "Coadjoint orbits"
GOLDIN, GERALD A. "QUANTIZATION ON COADJOINT ORBITS OF DIFFEOMORPHISM GROUPS: SOME RESEARCH DIRECTIONS." In Proceedings of XI Workshop on Geometric Methods in Physics. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814440844_0007.
Full textIglesias-Zemmour, Patrick. "Every Symplectic Manifold Is A Coadjoint Orbit." In Frontiers of Fundamental Physics 14. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.224.0141.
Full textOh, Phillial. "Field Theory on Coadjoint Orbit and Self-Dual Chern-Simons Solitons." In Proceedings of the APCTP Winter School. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814447287_0010.
Full textReports on the topic "Coadjoint orbits"
Bernatska, Julia. Geometry and Topology of Coadjoint Orbits of Semisimple Lie Groups. GIQ, 2012. http://dx.doi.org/10.7546/giq-9-2008-146-166.
Full text