Journal articles on the topic 'Co2P Nanoparticles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Co2P Nanoparticles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Green, Michael, Lihong Tian, Peng Xiang, James Murowchick, Xinyu Tan, and Xiaobo Chen. "Co2P nanoparticles for microwave absorption." Materials Today Nano 1 (March 2018): 1–7. http://dx.doi.org/10.1016/j.mtnano.2018.04.004.
Full textSun, Xingwei, Haiou Liang, Haiyan Yu, Jie Bai, and Chunping Li. "Embedding Co2P nanoparticles in Cu doping carbon fibers for Zn–air batteries and supercapacitors." Nanotechnology 33, no. 13 (January 7, 2022): 135202. http://dx.doi.org/10.1088/1361-6528/ac43ea.
Full textWang, Ke, Ruimin Zhang, Yun Guo, Yunjie Liu, Yu Tian, Xiaojun Wang, Peng Wang, and Zhiming Liu. "One-Step Construction of Co2P Nanoparticles Encapsulated into N-Doped Porous Carbon Sheets for Efficient Oxygen Evolution Reaction." Energies 16, no. 1 (January 1, 2023): 478. http://dx.doi.org/10.3390/en16010478.
Full textShi, Qing, Yapeng Zheng, Weijun Li, Bin Tang, Lin Qin, Weiyou Yang, and Qiao Liu. "A rationally designed bifunctional oxygen electrocatalyst based on Co2P nanoparticles for Zn–air batteries." Catalysis Science & Technology 10, no. 15 (2020): 5060–68. http://dx.doi.org/10.1039/d0cy01012j.
Full textZhang, Xiaofang, Aixian Shan, Sibin Duan, Haofei Zhao, Rongming Wang, and Woon-Ming Lau. "Au@Co2P core/shell nanoparticles as a nano-electrocatalyst for enhancing the oxygen evolution reaction." RSC Advances 9, no. 70 (2019): 40811–18. http://dx.doi.org/10.1039/c9ra07535f.
Full textJebaslinhepzybai, Balasingh Thangadurai, Thamodaran Partheeban, Deepak S. Gavali, Ranjit Thapa, and Manickam Sasidharan. "One-pot solvothermal synthesis of Co2P nanoparticles: An efficient HER and OER electrocatalysts." International Journal of Hydrogen Energy 46, no. 42 (June 2021): 21924–38. http://dx.doi.org/10.1016/j.ijhydene.2021.04.022.
Full textDas, Debanjan, Debasish Sarkar, Sudhan Nagarajan, and David Mitlin. "Cobalt phosphide (Co2P) encapsulated in nitrogen-rich hollow carbon nanocages with fast rate potassium ion storage." Chemical Communications 56, no. 94 (2020): 14889–92. http://dx.doi.org/10.1039/d0cc07123d.
Full textStelmakova, M., M. Streckova, R. Orinakova, A. Guboova, M. Balaz, V. Girman, E. Mudra, C. Bera, and M. Batkova. "Effect of heat treatment on the morphology of carbon fibers doped with Co2p nanoparticles." Chemical Papers 76, no. 2 (October 7, 2021): 855–67. http://dx.doi.org/10.1007/s11696-021-01897-0.
Full textZhang, Dan, Panpan Sun, Zhuang Zuo, Tao Gong, Niu Huang, Xiaowei Lv, Ye Sun, and Xiaohua Sun. "N, P-co doped carbon nanotubes coupled with Co2P nanoparticles as bifunctional oxygen electrocatalyst." Journal of Electroanalytical Chemistry 871 (August 2020): 114327. http://dx.doi.org/10.1016/j.jelechem.2020.114327.
Full textDiao, Lechen, Tao Yang, Biao Chen, Biao Zhang, Naiqin Zhao, Chunsheng Shi, Enzuo Liu, Liying Ma, and Chunnian He. "Electronic reconfiguration of Co2P induced by Cu doping enhancing oxygen reduction reaction activity in zinc–air batteries." Journal of Materials Chemistry A 7, no. 37 (2019): 21232–43. http://dx.doi.org/10.1039/c9ta07652b.
Full textLiang, Zhibin, and Xinfa Dong. "Co2P nanosheet cocatalyst-modified Cd0.5Zn0.5S nanoparticles as 2D-0D heterojunction photocatalysts toward high photocatalytic activity." Journal of Photochemistry and Photobiology A: Chemistry 407 (February 2021): 113081. http://dx.doi.org/10.1016/j.jphotochem.2020.113081.
Full textZhuang, Minghao, Xuewu Ou, Yubing Dou, Lulu Zhang, Qicheng Zhang, Ruizhe Wu, Yao Ding, Minhua Shao, and Zhengtang Luo. "Polymer-Embedded Fabrication of Co2P Nanoparticles Encapsulated in N,P-Doped Graphene for Hydrogen Generation." Nano Letters 16, no. 7 (June 9, 2016): 4691–98. http://dx.doi.org/10.1021/acs.nanolett.6b02203.
Full textLiu, Guang, Na Li, Yong Zhao, Rui Yao, Muheng Wang, Dongying He, and Jinping Li. "Fabrication of Fe-doped Co2P nanoparticles as efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation." Electrochimica Acta 283 (September 2018): 1490–97. http://dx.doi.org/10.1016/j.electacta.2018.07.107.
Full textDuan, Ran, Yejun Li, Shen Gong, Yonggang Tong, Zhou Li, and Weihong Qi. "Hierarchical CoFe oxyhydroxides nanosheets and Co2P nanoparticles grown on Ni foam for overall water splitting." Electrochimica Acta 360 (November 2020): 136994. http://dx.doi.org/10.1016/j.electacta.2020.136994.
Full textHua, Yanping, Qiucheng Xu, Yanjie Hu, Hao Jiang, and Chunzhong Li. "Interface-strengthened CoP nanosheet array with Co2P nanoparticles as efficient electrocatalysts for overall water splitting." Journal of Energy Chemistry 37 (October 2019): 1–6. http://dx.doi.org/10.1016/j.jechem.2018.11.010.
Full textWang, Haitao, Wei Wang, Yang Yang Xu, Muhammad Asif, Hongfang Liu, and Bao Yu Xia. "Ball-milling synthesis of Co2P nanoparticles encapsulated in nitrogen doped hollow carbon rods as efficient electrocatalysts." Journal of Materials Chemistry A 5, no. 33 (2017): 17563–69. http://dx.doi.org/10.1039/c7ta05510b.
Full textSchweyer-Tihay, F., P. Braunstein, C. Estournès, J. L. Guille, B. Lebeau, J. L. Paillaud, M. Richard-Plouet, and J. Rosé. "Synthesis and Characterization of Supported Co2P Nanoparticles by Grafting of Molecular Clusters into Mesoporous Silica Matrixes‖." Chemistry of Materials 15, no. 1 (January 2003): 57–62. http://dx.doi.org/10.1021/cm020132m.
Full textWang, Xiaoyang, Chunhong Liu, Chun Wu, Xiaomin Tian, Kai Wang, Wenli Pei, and Qiang Wang. "Magnetic field assisted synthesis of Co2P hollow nanoparticles with controllable shell thickness for hydrogen evolution reaction." Electrochimica Acta 330 (January 2020): 135191. http://dx.doi.org/10.1016/j.electacta.2019.135191.
Full textChen, Kuiyong, Xiaobin Huang, Chaoying Wan, and Hong Liu. "Hybrids based on transition metal phosphide (Mn2P, Co2P, Ni2P) nanoparticles and heteroatom-doped carbon nanotubes for efficient oxygen reduction reaction." RSC Advances 5, no. 113 (2015): 92893–98. http://dx.doi.org/10.1039/c5ra21385a.
Full textSun, Xingwei, Huan Liu, Guangran Xu, Jie Bai, and Chunping Li. "Embedding Co2P nanoparticles into N&P co-doped carbon fibers for hydrogen evolution reaction and supercapacitor." International Journal of Hydrogen Energy 46, no. 2 (January 2021): 1560–68. http://dx.doi.org/10.1016/j.ijhydene.2020.10.018.
Full textWang, Xiaoqing, Jijian Xu, Mingjia Zhi, Zhanglian Hong, and Fuqiang Huang. "Synthesis of Co2P nanoparticles decorated nitrogen, phosphorus Co-doped Carbon-CeO2 composites for highly efficient oxygen reduction." Journal of Alloys and Compounds 801 (September 2019): 192–98. http://dx.doi.org/10.1016/j.jallcom.2019.06.087.
Full textLi, Yan, Mengnan Cui, Tianjiao Li, Yu Shen, Zhenjun Si, and Heng-guo Wang. "Embedding Co2P nanoparticles into co-doped carbon hollow polyhedron as a bifunctional electrocatalyst for efficient overall water splitting." International Journal of Hydrogen Energy 45, no. 33 (June 2020): 16540–49. http://dx.doi.org/10.1016/j.ijhydene.2020.04.137.
Full textYang, Yuanyuan, Xiongyi Liang, Feng Li, Shuwen Li, Xinzhe Li, Siu-Pang Ng, Chi-Man Lawrence Wu, and Rong Li. "Encapsulating Co2P@C Core-Shell Nanoparticles in a Porous Carbon Sandwich as Dual-Doped Electrocatalyst for Hydrogen Evolution." ChemSusChem 11, no. 2 (January 9, 2018): 376–88. http://dx.doi.org/10.1002/cssc.201701705.
Full textLi, Di, Zengyong Li, Jiaojiao Ma, Xinwen Peng, and Chuanfu Liu. "One-step construction of Co2P nanoparticles encapsulated in N, P co-doped biomass-based porous carbon as bifunctional efficient electrocatalysts for overall water splitting." Sustainable Energy & Fuels 5, no. 9 (2021): 2477–85. http://dx.doi.org/10.1039/d1se00062d.
Full textDas, Debanjan, and Karuna Kar Nanda. "One-step, integrated fabrication of Co2P nanoparticles encapsulated N, P dual-doped CNTs for highly advanced total water splitting." Nano Energy 30 (December 2016): 303–11. http://dx.doi.org/10.1016/j.nanoen.2016.10.024.
Full textJiang, Deli, Wanxia Ma, Yimeng Zhou, Yingying Xing, Biao Quan, and Di Li. "Coupling Co2P and CoP nanoparticles with copper ions incorporated Co9S8 nanowire arrays for synergistically boosting hydrogen evolution reaction electrocatalysis." Journal of Colloid and Interface Science 550 (August 2019): 10–16. http://dx.doi.org/10.1016/j.jcis.2019.04.080.
Full textLei, Chaojun, Fenfen Wang, Jian Yang, Xianfeng Gao, Xinyao Yu, Bin Yang, Guohua Chen, Chris Yuan, Lecheng Lei, and Yang Hou. "Embedding Co2P Nanoparticles in N-Doped Carbon Nanotubes Grown on Porous Carbon Polyhedra for High-Performance Lithium-Ion Batteries." Industrial & Engineering Chemistry Research 57, no. 39 (September 10, 2018): 13019–25. http://dx.doi.org/10.1021/acs.iecr.8b02036.
Full textZhou, Dan, and Li-Zhen Fan. "Co2P nanoparticles encapsulated in 3D porous N-doped carbon nanosheet networks as an anode for high-performance sodium-ion batteries." Journal of Materials Chemistry A 6, no. 5 (2018): 2139–47. http://dx.doi.org/10.1039/c7ta09609g.
Full textLi, Xiang, Jingwen Ma, Jiaqing Luo, Shuting Cheng, Hanzhang Gong, Jian Liu, Chunming Xu, et al. "Porous N, P co-doped carbon-coated ultrafine Co2P nanoparticles derived from DNA: An electrocatalyst for highly efficient hydrogen evolution reaction." Electrochimica Acta 393 (October 2021): 139051. http://dx.doi.org/10.1016/j.electacta.2021.139051.
Full textDuan, Jingmin, Zhongqing Xiang, Hongsong Zhang, Bing Zhang, and Xu Xiang. "Pd-Co2P nanoparticles supported on N-doped biomass-based carbon microsheet with excellent catalytic performance for hydrogen evolution from formic acid." Applied Surface Science 530 (November 2020): 147191. http://dx.doi.org/10.1016/j.apsusc.2020.147191.
Full textOu, Guanrong, Zhijian Peng, Yuling Zhang, Zhaohui Xu, Akif Zeb, Zhenyu Wu, Xiaoming Lin, Guozheng Ma, and Yongbo Wu. "A metal-organic framework-derived engineering of carbon-encapsulated monodispersed CoP/Co2P@N C electroactive nanoparticles toward highly efficient lithium storage." Electrochimica Acta 467 (November 2023): 143098. http://dx.doi.org/10.1016/j.electacta.2023.143098.
Full textShao, Qi, Yan Li, Xu Cui, Tianjiao Li, Heng-guo Wang, Yanhui Li, Qian Duan, and Zhenjun Si. "Metallophthalocyanine-Based Polymer-Derived Co2P Nanoparticles Anchoring on Doped Graphene as High-Efficient Trifunctional Electrocatalyst for Zn-Air Batteries and Water Splitting." ACS Sustainable Chemistry & Engineering 8, no. 16 (April 1, 2020): 6422–32. http://dx.doi.org/10.1021/acssuschemeng.0c00852.
Full textWang, Xuting, Zuoyi Xiao, Wensha Niu, Zhenyu Zhao, Hui Lv, Shangru Zhai, Li Wei, Qingda An, and Chengrong Qin. "Co2P-Co3(PO4)2 nanoparticles immobilized on kelp-derived 3D honeycomb-like P-doped porous carbon as cathode electrode for high-performance asymmetrical supercapacitor." Colloids and Surfaces A: Physicochemical and Engineering Aspects 655 (December 2022): 130192. http://dx.doi.org/10.1016/j.colsurfa.2022.130192.
Full textLi, Xinzhe, Yiyun Fang, Feng Li, Min Tian, Xuefeng Long, Jun Jin, and Jiantai Ma. "Ultrafine Co2P nanoparticles encapsulated in nitrogen and phosphorus dual-doped porous carbon nanosheet/carbon nanotube hybrids: high-performance bifunctional electrocatalysts for overall water splitting." Journal of Materials Chemistry A 4, no. 40 (2016): 15501–10. http://dx.doi.org/10.1039/c6ta05485d.
Full textKaewtrakulchai, Napat, Rungnapa Kaewmeesri, Vorranutch Itthibenchapong, Apiluck Eiad-Ua, and Kajornsak Faungnawakij. "Palm Oil Conversion to Bio-Jet and Green Diesel Fuels over Cobalt Phosphide on Porous Carbons Derived from Palm Male Flowers." Catalysts 10, no. 6 (June 19, 2020): 694. http://dx.doi.org/10.3390/catal10060694.
Full textHan, Zhu, Jiu-Ju Feng, You-Qiang Yao, Zhi-Gang Wang, Lu Zhang, and Ai-Jun Wang. "Mn, N, P-tridoped bamboo-like carbon nanotubes decorated with ultrafine Co2P/FeCo nanoparticles as bifunctional oxygen electrocatalyst for long-term rechargeable Zn-air battery." Journal of Colloid and Interface Science 590 (May 2021): 330–40. http://dx.doi.org/10.1016/j.jcis.2021.01.053.
Full textAli, Asad, Yang Liu, Rongcheng Mo, Pinsong Chen, and Pei Kang Shen. "Facile one-step in-situ encapsulation of non-noble metal Co2P nanoparticles embedded into B, N, P tri-doped carbon nanotubes for efficient hydrogen evolution reaction." International Journal of Hydrogen Energy 45, no. 46 (September 2020): 24312–21. http://dx.doi.org/10.1016/j.ijhydene.2020.06.235.
Full textArslan, Mehmet Enes, Arzu Tatar, Özge Çağlar Yıldırım, İrfan Oğuz Şahin, Ozlem Ozdemir, Erdal Sonmez, Ahmet Hacımuftuoglu, et al. "In Vitro Transcriptome Analysis of Cobalt Boride Nanoparticles on Human Pulmonary Alveolar Cells." Materials 15, no. 23 (December 6, 2022): 8683. http://dx.doi.org/10.3390/ma15238683.
Full textSang, Xinxin, Hengbo Wu, Nan Zang, Huilian Che, Dongyin Liu, Xiangdao Nie, Dawei Wang, Xiaoxue Ma, and Wei Jin. "Co2P nanoparticle/multi-doped porous carbon nanosheets for the oxygen evolution reaction." New Journal of Chemistry 45, no. 19 (2021): 8769–74. http://dx.doi.org/10.1039/d1nj00613d.
Full textYi, Lanhua, Xiaoqin Peng, Yuan Meng, Yonglan Ding, Xianyou Wang, and Yebo Lu. "N-Doped carbon-coated Co2P-supported Au nanocomposite as the anode catalyst for borohydride electrooxidation." New Journal of Chemistry 45, no. 32 (2021): 14779–88. http://dx.doi.org/10.1039/d1nj02240g.
Full textGhasemi, Ali, Gholam Reza Gordani, and Ebrahim Ghasemi. "Co2W hexaferrite nanoparticles-carbon nanotube microwave absorbing nanocomposite." Journal of Magnetism and Magnetic Materials 469 (January 2019): 391–97. http://dx.doi.org/10.1016/j.jmmm.2018.09.010.
Full textReddy, M. Surya Sekhar, C. Sai Vandana, and Y. B. Kishore Kumar. "Tailoring the Inherent Magnetism of N:CdS Nanoparticles with Co2+ Doping." Indian Journal Of Science And Technology 16, no. 27 (July 24, 2023): 2024–34. http://dx.doi.org/10.17485/ijst/v16i27.596.
Full textCarroll, Kyler J., Zachary J. Huba, Steven R. Spurgeon, Meichun Qian, Shiv N. Khanna, Daniel M. Hudgins, Mitra L. Taheri, and Everett E. Carpenter. "Magnetic properties of Co2C and Co3C nanoparticles and their assemblies." Applied Physics Letters 101, no. 1 (July 2, 2012): 012409. http://dx.doi.org/10.1063/1.4733321.
Full textChoi, Young In, Ju Hyun Yang, So Jeong Park, and Youngku Sohn. "Energy Storage and CO2 Reduction Performances of Co/Co2C/C Prepared by an Anaerobic Ethanol Oxidation Reaction Using Sacrificial SnO2." Catalysts 10, no. 10 (September 25, 2020): 1116. http://dx.doi.org/10.3390/catal10101116.
Full textLin, Yi-Heng, Po-Chia Huang, Sheng-Chang Wang, and Jow-Lay Huang. "Highly active electrocatalyst cobalt-carbide nanoparticles synthesized by wet-chemistry method for hydrogen evolution reaction." Modern Physics Letters B 34, no. 07n09 (March 16, 2020): 2040022. http://dx.doi.org/10.1142/s0217984920400229.
Full textLi, Z. W., L. Chen, C. K. Ong, and Z. Yang. "Static and dynamic magnetic properties of Co2Z barium ferrite nanoparticle composites." Journal of Materials Science 40, no. 3 (February 2005): 719–23. http://dx.doi.org/10.1007/s10853-005-6312-y.
Full textWang, Pengyan, Jiawei Zhu, Zonghua Pu, Rui Qin, Chengtian Zhang, Ding Chen, Qian Liu, et al. "Interfacial engineering of Co nanoparticles/Co2C nanowires boosts overall water splitting kinetics." Applied Catalysis B: Environmental 296 (November 2021): 120334. http://dx.doi.org/10.1016/j.apcatb.2021.120334.
Full textYu, Shi, and Gan Moog Chow. "Carboxyl group (–CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications." J. Mater. Chem. 14, no. 18 (2004): 2781–86. http://dx.doi.org/10.1039/b404964k.
Full textNikzad, Alireza, Ali Ghasemi, Masoud Kavosh Tehrani, and Gholam Reza Gordani. "Correlation Between Structural Features and Microwave Analysis of Substituted Sr-Co2Y Ceramic Nanoparticles." Journal of Superconductivity and Novel Magnetism 29, no. 6 (February 17, 2016): 1657–64. http://dx.doi.org/10.1007/s10948-016-3430-5.
Full textNovio, Fernando, Julia Lorenzo, Fabiana Nador, Karolina Wnuk, and Daniel Ruiz-Molina. "Carboxyl Group (CO2H) Functionalized Coordination Polymer Nanoparticles as Efficient Platforms for Drug Delivery." Chemistry - A European Journal 20, no. 47 (October 5, 2014): 15443–50. http://dx.doi.org/10.1002/chem.201403441.
Full text