Journal articles on the topic 'CO2 reduction catalysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CO2 reduction catalysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Dagorne, Samuel. "Recent Developments on N-Heterocyclic Carbene Supported Zinc Complexes: Synthesis and Use in Catalysis." Synthesis 50, no. 18 (June 28, 2018): 3662–70. http://dx.doi.org/10.1055/s-0037-1610088.
Full textTian, Jindan, Ru Han, Qiangsheng Guo, Zhe Zhao, and Na Sha. "Direct Conversion of CO2 into Hydrocarbon Solar Fuels by a Synergistic Photothermal Catalysis." Catalysts 12, no. 6 (June 2, 2022): 612. http://dx.doi.org/10.3390/catal12060612.
Full textSrivastava, Sumit, Manvender S. Dagur, Afsar Ali, and Rajeev Gupta. "Trinuclear {Co2+–M3+–Co2+} complexes catalyze reduction of nitro compounds." Dalton Transactions 44, no. 40 (2015): 17453–61. http://dx.doi.org/10.1039/c5dt03442f.
Full textLisovski, Oleg, Sergei Piskunov, Dmitry Bocharov, Yuri Zhukovskii, Janis Kleperis, Ainars Knoks, and Peteris Lesnicenoks. "CO2 and CH2 Adsorption on Copper-Decorated Graphene: Predictions from First Principle Calculations." Crystals 12, no. 2 (January 28, 2022): 194. http://dx.doi.org/10.3390/cryst12020194.
Full textPetersen, Haley A., Tessa H. T. Myren, and Oana R. Luca. "Redox-Active Manganese Pincers for Electrocatalytic CO2 Reduction." Inorganics 8, no. 11 (November 11, 2020): 62. http://dx.doi.org/10.3390/inorganics8110062.
Full textHahn, Christopher. "(Invited) Steering Electrocatalytic CO2 Reduction Reactivity Using Microenvironments." ECS Meeting Abstracts MA2022-02, no. 49 (October 9, 2022): 1879. http://dx.doi.org/10.1149/ma2022-02491879mtgabs.
Full textCao, Yanwei, Qiongyao Chen, Chaoren Shen, and Lin He. "Polyoxometalate-Based Catalysts for CO2 Conversion." Molecules 24, no. 11 (May 30, 2019): 2069. http://dx.doi.org/10.3390/molecules24112069.
Full textZhou, Yiying, Junxi Cai, Yuming Sun, Shuhan Jia, Zhonghuan Liu, Xu Tang, Bo Hu, Yue Zhang, Yan Yan, and Zhi Zhu. "Research on Cu-Site Modification of g-C3N4/CeO2-like Z-Scheme Heterojunction for Enhancing CO2 Reduction and Mechanism Insight." Catalysts 14, no. 8 (August 20, 2024): 546. http://dx.doi.org/10.3390/catal14080546.
Full textXue, Sensen, Xingyou Liang, Qing Zhang, Xuefeng Ren, Liguo Gao, Tingli Ma, and Anmin Liu. "Density Functional Theory Study of CuAg Bimetal Electrocatalyst for CO2RR to Produce CH3OH." Catalysts 14, no. 1 (December 20, 2023): 7. http://dx.doi.org/10.3390/catal14010007.
Full textHall, Anthony Shoji, Youngmin Yoon, Anna Wuttig, and Yogesh Surendranath. "Mesostructure-Induced Selectivity in CO2 Reduction Catalysis." Journal of the American Chemical Society 137, no. 47 (November 18, 2015): 14834–37. http://dx.doi.org/10.1021/jacs.5b08259.
Full textGeri, Jacob B., Joanna L. Ciatti, and Nathaniel K. Szymczak. "Charge effects regulate reversible CO2 reduction catalysis." Chemical Communications 54, no. 56 (2018): 7790–93. http://dx.doi.org/10.1039/c8cc04370a.
Full textJia, Mingwen, Qun Fan, Shizhen Liu, Jieshan Qiu, and Zhenyu Sun. "Single-atom catalysis for electrochemical CO2 reduction." Current Opinion in Green and Sustainable Chemistry 16 (April 2019): 1–6. http://dx.doi.org/10.1016/j.cogsc.2018.11.002.
Full textGrills, David C., Mehmed Z. Ertem, Meaghan McKinnon, Ken T. Ngo, and Jonathan Rochford. "Mechanistic aspects of CO2 reduction catalysis with manganese-based molecular catalysts." Coordination Chemistry Reviews 374 (November 2018): 173–217. http://dx.doi.org/10.1016/j.ccr.2018.05.022.
Full textXie, Wen-Jun, Olga M. Mulina, Alexander O. Terent’ev, and Liang-Nian He. "Metal–Organic Frameworks for Electrocatalytic CO2 Reduction into Formic Acid." Catalysts 13, no. 7 (July 15, 2023): 1109. http://dx.doi.org/10.3390/catal13071109.
Full textCobb, Samuel J., Azim M. Dharani, Ana Rita Oliveira, Inês A. C. Pereira, and Erwin Reisner. "Using Enzymes to Understand and Control the Local Environment of Catalysis." ECS Meeting Abstracts MA2023-02, no. 52 (December 22, 2023): 2530. http://dx.doi.org/10.1149/ma2023-02522530mtgabs.
Full textMarquart, Wijnand, Shaine Raseale, Gonzalo Prieto, Anna Zimina, Bidyut Bikash Sarma, Jan-Dierk Grunwaldt, Michael Claeys, and Nico Fischer. "CO2 Reduction over Mo2C-Based Catalysts." ACS Catalysis 11, no. 3 (January 20, 2021): 1624–39. http://dx.doi.org/10.1021/acscatal.0c05019.
Full textYuan, Zhimin, Xianhui Sun, Haiquan Wang, Xingling Zhao, and Zaiyong Jiang. "Applications of Ni-Based Catalysts in Photothermal CO2 Hydrogenation Reaction." Molecules 29, no. 16 (August 16, 2024): 3882. http://dx.doi.org/10.3390/molecules29163882.
Full textSt. John, Allison, Esraa Ahmad, Tianqi Jin, and Gonghu Li. "(Invited) Single Atom Catalysts in Functionalized Carbon Nitride for Efficient Solar CO2 Reduction." ECS Meeting Abstracts MA2023-01, no. 37 (August 28, 2023): 2160. http://dx.doi.org/10.1149/ma2023-01372160mtgabs.
Full textXuemei Yang and Xiaohua Wang, Xuemei Yang and Xiaohua Wang. "Reduction Reactions of CO2 on Rutile TiO2 (110) Nanosheet via Coordination Activation." Journal of the chemical society of pakistan 44, no. 6 (2022): 576. http://dx.doi.org/10.52568/001180/jcsp/44.06.2022.
Full textHahn, Christopher, and Thomas F. Jaramillo. "Electrocatalysis for CO2 Reduction: Controlling Selectivity to Oxygenates and Multicarbon Products." ECS Meeting Abstracts MA2018-01, no. 31 (April 13, 2018): 1832. http://dx.doi.org/10.1149/ma2018-01/31/1832.
Full textBuonsanti, Raffaella. "Developing the Chemistry of Colloidal Cu Nanocrystals to Advance the CO2 Electrochemical Reduction." CHIMIA International Journal for Chemistry 75, no. 7 (August 25, 2021): 598–604. http://dx.doi.org/10.2533/chimia.2021.598.
Full textHe, Liang-Nian, Xiao-Fang Liu, Xiao-Ya Li, and Chang Qiao. "Transition-Metal-Free Catalysis for the Reductive Functionalization of CO2 with Amines." Synlett 29, no. 05 (January 31, 2018): 548–55. http://dx.doi.org/10.1055/s-0036-1591533.
Full textAl-Omari, Abdulhadi, Zain Yamani, and Ha Nguyen. "Electrocatalytic CO2 Reduction: From Homogeneous Catalysts to Heterogeneous-Based Reticular Chemistry." Molecules 23, no. 11 (November 1, 2018): 2835. http://dx.doi.org/10.3390/molecules23112835.
Full textSelva Ochoa, Angela Gabriela, Faezeh Habibzadeh, and Elod Lajos Gyenge. "Metal-Organic Framework-Based Electrodes for Efficient CO2 Electroreduction to Formate at High Current Densities (up to 1 A cm−2)." ECS Meeting Abstracts MA2024-01, no. 56 (August 9, 2024): 2977. http://dx.doi.org/10.1149/ma2024-01562977mtgabs.
Full textRoldan Cuenya, Beatriz. "(Invited) Dynamics in the Electrocatalytic Reduction of CO2 ." ECS Meeting Abstracts MA2023-01, no. 37 (August 28, 2023): 2163. http://dx.doi.org/10.1149/ma2023-01372163mtgabs.
Full textCobb, Samuel J., Vivek M. Badiani, Azim M. Dharani, Andreas Wagner, Sónia Zacarias, Ana Rita Oliveira, Inês A. C. Pereira, and Erwin Reisner. "Fast CO2 hydration kinetics impair heterogeneous but improve enzymatic CO2 reduction catalysis." Nature Chemistry 14, no. 4 (February 28, 2022): 417–24. http://dx.doi.org/10.1038/s41557-021-00880-2.
Full textKhajonvittayakul, Chalempol, Vut Tongnan, Suksun Amornraksa, Navadol Laosiripojana, Matthew Hartley, and Unalome Wetwatana Hartley. "CO2 Hydrogenation to Synthetic Natural Gas over Ni, Fe and Co–Based CeO2–Cr2O3." Catalysts 11, no. 10 (September 26, 2021): 1159. http://dx.doi.org/10.3390/catal11101159.
Full textKwak, Ja Hun, Libor Kovarik, and János Szanyi. "Heterogeneous Catalysis on Atomically Dispersed Supported Metals: CO2 Reduction on Multifunctional Pd Catalysts." ACS Catalysis 3, no. 9 (August 16, 2013): 2094–100. http://dx.doi.org/10.1021/cs4001392.
Full textFernández-Alvarez, Francisco J., Abdullah M. Aitani, and Luis A. Oro. "Homogeneous catalytic reduction of CO2 with hydrosilanes." Catal. Sci. Technol. 4, no. 3 (2014): 611–24. http://dx.doi.org/10.1039/c3cy00948c.
Full textGuo, Mengquan, Xiangxiang Li, Yuxin Huang, Linfa Li, Jixiao Li, Yiren Lu, Yanhong Xu, and Lihong Zhang. "CO2-Induced Fibrous Zn Catalyst Promotes Electrochemical Reduction of CO2 to CO." Catalysts 11, no. 4 (April 8, 2021): 477. http://dx.doi.org/10.3390/catal11040477.
Full textLi, Xiangxiang, Shuling Chang, Yanting Wang, and Lihong Zhang. "Silver-Carbonaceous Microsphere Precursor-Derived Nano-Coral Ag Catalyst for Electrochemical Carbon Dioxide Reduction." Catalysts 12, no. 5 (April 23, 2022): 479. http://dx.doi.org/10.3390/catal12050479.
Full textRahmati, Farnood, Negar Sabouhanian, Jacek Lipkowski, and Aicheng Chen. "Synthesis of 3D Porous Cu Nanostructures on Ag Thin Film Using Dynamic Hydrogen Bubble Template for Electrochemical Conversion of CO2 to Ethanol." Nanomaterials 13, no. 4 (February 20, 2023): 778. http://dx.doi.org/10.3390/nano13040778.
Full textReisner, Erwin. "(Keynote) Reversible CO2 Reduction Electrocatalysis in Solar-Powered Chemistry." ECS Meeting Abstracts MA2023-02, no. 52 (December 22, 2023): 2517. http://dx.doi.org/10.1149/ma2023-02522517mtgabs.
Full textLi, Qianwen, Mei Li, Shengbo Zhang, Xiao Liu, Xinli Zhu, Qingfeng Ge, and Hua Wang. "Tuning Sn-Cu Catalysis for Electrochemical Reduction of CO2 on Partially Reduced Oxides SnOx-CuOx-Modified Cu Electrodes." Catalysts 9, no. 5 (May 22, 2019): 476. http://dx.doi.org/10.3390/catal9050476.
Full textCai, Fan, Dunfeng Gao, Hu Zhou, Guoxiong Wang, Ting He, Huimin Gong, Shu Miao, Fan Yang, Jianguo Wang, and Xinhe Bao. "Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction." Chemical Science 8, no. 4 (2017): 2569–73. http://dx.doi.org/10.1039/c6sc04966d.
Full textZhang, Hanguang, John Weiss, Luigi Osmieri, and Piotr Zelenay. "M-N-C-Supported Catalysts for Carbon Dioxide Reduction Reaction." ECS Meeting Abstracts MA2023-01, no. 26 (August 28, 2023): 1703. http://dx.doi.org/10.1149/ma2023-01261703mtgabs.
Full textTawil, Sumana, Hathaichanok Seelajaroen, Amorn Petsom, Niyazi Serdar Sariciftci, and Patchanita Thamyongkit. "Clam-shaped cyclam-functionalized porphyrin for electrochemical reduction of carbon dioxide." Journal of Porphyrins and Phthalocyanines 23, no. 04n05 (April 2019): 453–61. http://dx.doi.org/10.1142/s1088424619500548.
Full textManan, Wan Nabilah, Wan Nor Roslam Wan Isahak, and Zahira Yaakob. "CeO2-Based Heterogeneous Catalysts in Dry Reforming Methane and Steam Reforming Methane: A Short Review." Catalysts 12, no. 5 (April 19, 2022): 452. http://dx.doi.org/10.3390/catal12050452.
Full textCui, Yan, Pengxiang Ge, Mindong Chen, and Leilei Xu. "Research Progress in Semiconductor Materials with Application in the Photocatalytic Reduction of CO2." Catalysts 12, no. 4 (March 24, 2022): 372. http://dx.doi.org/10.3390/catal12040372.
Full textTian, Pengfei, Bo Zhang, Jiacheng Chen, Jing Zhang, Libei Huang, Ruquan Ye, Bo Bao, and Minghui Zhu. "Curvature-induced electronic tuning of molecular catalysts for CO2 reduction." Catalysis Science & Technology 11, no. 7 (2021): 2491–96. http://dx.doi.org/10.1039/d0cy01589j.
Full textWang, Luhui, Junang Hu, Hui Liu, Qinhong Wei, Dandan Gong, Liuye Mo, Hengcong Tao, and Chengyang Zhang. "Three-Dimensional Mesoporous Ni-CeO2 Catalysts with Ni Embedded in the Pore Walls for CO2 Methanation." Catalysts 10, no. 5 (May 8, 2020): 523. http://dx.doi.org/10.3390/catal10050523.
Full textDharmasaroja, Nichthima, Tanakorn Ratana, Sabaithip Tungkamani, Thana Sornchamni, David S. A. Simakov, and Monrudee Phongaksorn. "The Effects of CeO2 and Co Doping on the Properties and the Performance of the Ni/Al2O3-MgO Catalyst for the Combined Steam and CO2 Reforming of Methane Using Ultra-Low Steam to Carbon Ratio." Catalysts 10, no. 12 (December 11, 2020): 1450. http://dx.doi.org/10.3390/catal10121450.
Full textHong, Xiaolei, Haiyan Zhu, Dianchen Du, Quanshen Zhang, and Yawei Li. "Research Progress of Copper-Based Bimetallic Electrocatalytic Reduction of CO2." Catalysts 13, no. 2 (February 9, 2023): 376. http://dx.doi.org/10.3390/catal13020376.
Full textLeung, Chi-Fai, and Pui-Yu Ho. "Molecular Catalysis for Utilizing CO2 in Fuel Electro-Generation and in Chemical Feedstock." Catalysts 9, no. 9 (September 10, 2019): 760. http://dx.doi.org/10.3390/catal9090760.
Full textLiu, Di-Jia. "(Invited) Understanding the Electrocatalytic Mechanisms of Oxygen and Carbon Dioxide Reduction Reactions." ECS Meeting Abstracts MA2022-01, no. 35 (July 7, 2022): 1468. http://dx.doi.org/10.1149/ma2022-01351468mtgabs.
Full textCai, Fan, Dunfeng Gao, Hu Zhou, Guoxiong Wang, Ting He, Huimin Gong, Shu Miao, Fan Yang, Jianguo Wang, and Xinhe Bao. "Correction: Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction." Chemical Science 8, no. 4 (2017): 3277. http://dx.doi.org/10.1039/c7sc90011b.
Full textChen, Pengfei, Yiao Huang, Zuhao Shi, Xingzhu Chen, and Neng Li. "Improving the Catalytic CO2 Reduction on Cs2AgBiBr6 by Halide Defect Engineering: A DFT Study." Materials 14, no. 10 (May 11, 2021): 2469. http://dx.doi.org/10.3390/ma14102469.
Full textWang, Nannan, Wenbin Jiang, Jing Yang, Haisong Feng, Youbin Zheng, Sheng Wang, Bofan Li, et al. "Contact-electro-catalytic CO2 reduction from ambient air." Nature Communications 15, no. 1 (July 13, 2024). http://dx.doi.org/10.1038/s41467-024-50118-1.
Full textYun, Ruirui, Beibei Zhang, Ruiming Xu, Shichang Song, Junjie Mao, and Zhaoxu Wang. "Atomically Dispersed Copper Catalysts for Highly Selective CO2 Reduction." Inorganic Chemistry Frontiers, 2022. http://dx.doi.org/10.1039/d2qi02288e.
Full textWang, Hongming, Liming Hong, Xian Liu, Baozhu Chi, and Guomin Xia. "Diatomic Molecule Catalysts toward Synergistic Electrocatalytic Carbon Dioxide Reduction." Journal of Materials Chemistry A, 2023. http://dx.doi.org/10.1039/d2ta09831h.
Full text