Academic literature on the topic 'CO2 fluid'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CO2 fluid.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "CO2 fluid"

1

Jian, Wei, Moritz Albrecht, Bernd Lehmann, Jingwen Mao, Ingo Horn, Yanhe Li, Huishou Ye, Zongyan Li, Guanguan Fang, and Yongsheng Xue. "UV-fs-LA-ICP-MS Analysis of CO2-Rich Fluid Inclusions in a Frozen State: Example from the Dahu Au-Mo Deposit, Xiaoqinling Region, Central China." Geofluids 2018 (2018): 1–17. http://dx.doi.org/10.1155/2018/3692180.

Full text
Abstract:
The recently developed technique of ultraviolet femtosecond laser ablation inductively coupled plasma mass spectrometry (UV-fs-LA-ICP-MS) combined with a freezing cell is expected to improve the analysis of CO2-rich fluid inclusions by decreasing their internal pressure and avoiding the common problem of uncontrolled explosive fluid release on ablation. Here, we report the application of this technique through the case study of CO2-rich fluid inclusions from the quartz vein-style Au-Mo deposit of Dahu in the Xiaoqinling region of central China. The concentrations of Li, B, Na, Al, K, Ca, Mn, Fe, Cu, Zn, Rb, Sr, Mo, Ag, Te, Cs, Ba, Au, Pb, and Bi were analyzed in 124 (not all for Al and Ca) fluid inclusions, which have low to moderate salinity and multiphase composition (liquid H2O + liquid CO2 ± vapor CO2 ± solids). The Dahu fluids are dominated by Na and K. The concentrations of Mo are always below the detection limit from 0.005 to 2 ppm (excluding values obtained from fluid inclusions with accidentally trapped solids). The Dahu ore fluids differ from metamorphic fluids in compositions and most likely represent two separate pulses of spent fluids evolved from an unexposed and oxidized magmatic system. The UV-fs-LA-ICP-MS analysis of fluid inclusions in a frozen state improves the overpressure problem of CO2-rich fluid inclusions during laser ablation. The transformation of gaseous and liquid CO2 into the solid state leads to a significant decline in the internal pressure of the fluid inclusions, while femtosecond laser pulses generate a minimal heat input in the sample and thus maintain the frozen state during ablation. Transient signals of CO2-rich fluid inclusions obtained in this study typically had one or multiple peaks lasting for more than 15 seconds, without an initial short signal spike as obtained by ns-LA-ICP-MS analysis of CO2-rich fluid inclusions at room temperature.
APA, Harvard, Vancouver, ISO, and other styles
2

Zozulya, Dmitry, Lyudmila Lyalina, Ray Macdonald, Bogusław Bagiński, Yevgeny Savchenko, and Petras Jokubauskas. "Britholite Group Minerals from REE-Rich Lithologies of Keivy Alkali Granite—Nepheline Syenite Complex, Kola Peninsula, NW Russia." Minerals 9, no. 12 (November 27, 2019): 732. http://dx.doi.org/10.3390/min9120732.

Full text
Abstract:
The Keivy alkali granite-nepheline syenite complex, Kola Peninsula, NW Russia, contains numerous associated Zr-REE-Y-Nb occurrences and deposits, formed by a complex sequence of magmatic, late-magmatic, and post-magmatic (including pegmatitic, hydrothermal, and metasomatic) processes. The REE-rich lithologies have abundant (some of economic importance) and diverse britholite group minerals. The REE and actinides distribution in host rocks indicates that the emanating fluids were alkaline, with significant amounts of F and CO2. From chemical studies (REE and F variations) of the britholites the possible fluid compositions in different lithologies are proposed. Fluorbritholite-(Y) and britholite-(Y) from products of alkali granite (mineralized granite, pegmatite, quartzolite) formed under relatively high F activity in fluids with low CO2/H2O ratio. The highest F and moderate CO2 contents are characteristic of fluid from a mineralized nepheline syenite, resulting in crystallization of fluorbritholite-(Ce). Britholite group minerals (mainly fluorcalciobritholite and ‘calciobritholite’) from a nepheline syenite pegmatite formed from a fluid with composition changing from low F and high CO2 to moderate F and CO2. An extremely high F content is revealed for metasomatizing fluids emanating from alkali granitic magma and which affected the basic country rocks. The dominant substitution scheme for Keivy britholites is REE3+ + Si4+ = Ca2+ + P5+, showing the full range of ‘britholite’ and ‘calciobritholite’ compositions up to theoretical apatite.
APA, Harvard, Vancouver, ISO, and other styles
3

Peletiri, Suoton, Nejat Rahmanian, and Iqbal Mujtaba. "CO2 Pipeline Design: A Review." Energies 11, no. 9 (August 21, 2018): 2184. http://dx.doi.org/10.3390/en11092184.

Full text
Abstract:
There is a need to accurately design pipelines to meet the expected increase in the construction of carbon dioxide (CO2) pipelines after the signing of the Paris Climate Agreement. CO2 pipelines are usually designed with the assumption of a pure CO2 fluid, even though it usually contains impurities, which affect the critical pressure, critical temperature, phase behaviour, and pressure and temperature changes in the pipeline. The design of CO2 pipelines and the calculation of process parameters and fluid properties is not quite accurate with the assumption of pure CO2 fluids. This paper reviews the design of rich CO2 pipelines including pipeline route selection, length and right of way, fluid flow rates and velocities, need for single point-to-point or trunk pipelines, pipeline operating pressures and temperatures, pipeline wall thickness, fluid stream composition, fluid phases, and pipeline diameter and pressure drop calculations. The performance of a hypothetical pipeline was simulated using gPROMS (ver. 4.2.0) and Aspen HYSYS (ver.10.1) and the results of both software were compared to validate equations. Pressure loss due to fluid acceleration was ignored in the development of the diameter/pressure drop equations. Work is ongoing to incorporate fluid acceleration effect and the effects of impurities to improve the current models.
APA, Harvard, Vancouver, ISO, and other styles
4

Cai, Mingyu, Yuliang Su, Lei Li, Yongmao Hao, and Xiaogang Gao. "CO2-Fluid-Rock Interactions and the Coupled Geomechanical Response during CCUS Processes in Unconventional Reservoirs." Geofluids 2021 (February 26, 2021): 1–22. http://dx.doi.org/10.1155/2021/6671871.

Full text
Abstract:
The difficulty of deploying remaining oil from unconventional reservoirs and the increasing CO2 emissions has prompted researchers to delve into carbon emissions through Carbon Capture, Utilization, and Storage (CCUS) technologies. Under the confinement of nanopore in unconventional formation, CO2 and hydrocarbon molecules show different density distribution from in the bulk phase, which leads to a unique phase state and interface behavior that affects fluid migration. At the same time, mineral reactions, asphaltene deposition, and CO2 pressurization will cause the change of porous media geometry, which will affect the multiphase flow. This review highlights the physical and chemical effects of CO2 injection into unconventional reservoirs containing a large number of micro-nanopores. The interactions between CO2 and in situ fluids and the resulting unique fluid phase behavior, gas-liquid equilibrium calculation, CO2 adsorption/desorption, interfacial tension, and minimum miscible pressure (MMP) are reviewed. The pore structure changes and stress distribution caused by the interactions between CO2, in situ fluids, and rock surface are discussed. The experimental and theoretical approaches of these fluid-fluid and fluid-solid reactions are summarized. Besides, deficiencies in the application and safety assessment of CCUS in unconventional reservoirs are described, which will help improve the design and operation of CCUS.
APA, Harvard, Vancouver, ISO, and other styles
5

Kampman, N., A. Maskell, M. J. Bickle, J. P. Evans, M. Schaller, G. Purser, Z. Zhou, et al. "Scientific drilling and downhole fluid sampling of a natural CO<sub>2</sub> reservoir, Green River, Utah." Scientific Drilling 16 (November 5, 2013): 33–43. http://dx.doi.org/10.5194/sd-16-33-2013.

Full text
Abstract:
Abstract. A scientific borehole, CO2W55, was drilled into an onshore anticline, near the town of Green River, Utah for the purposes of studying a series of natural CO2 reservoirs. The objective of this research project is to recover core and fluids from natural CO2 accumulations in order to study and understand the long-term consequences of exposure of supercritical CO2, CO2-gas and CO2-charged fluids on geological materials. This will improve our ability to predict the security of future geological CO2 storage sites and the behaviour of CO2 during migration through the overburden. The Green River anticline is thought to contain supercritical reservoirs of CO2 in Permian sandstone and Mississippian-Pennsylvanian carbonate and evaporite formations at depths > 800 m. Migration of CO2 and CO2-charged brine from these deep formations, through the damage zone of two major normal faults in the overburden, feeds a stacked series of shallow reservoirs in Jurassic sandstones from 500 m depth to near surface. The drill-hole was spudded into the footwall of the Little Grand Wash normal fault at the apex of the Green River anticline, near the site of Crystal Geyser, a CO2-driven cold water geyser. The hole was drilled using a CS4002 Truck Mounted Core Drill to a total depth of 322 m and DOSECC’s hybrid coring system was used to continuously recover core. CO2-charged fluids were first encountered at ~ 35 m depth, in the basal sandstones of the Entrada Sandstone, which is open to surface, the fluids being effectively sealed by thin siltstone layers within the sandstone unit. The well penetrated a ~ 17 m thick fault zone within the Carmel Formation, the footwall damage zone of which hosted CO2-charged fluids in open fractures. CO2-rich fluids were encountered throughout the thickness of the Navajo Sandstone. The originally red sandstone and siltstone units, where they are in contact with the CO2-charged fluids, have been bleached by dissolution of hematite grain coatings. Fluid samples were collected from the Navajo Sandstone at formation pressures using a positive displacement wireline sampler, and fluid CO2 content and pH were measured at surface using high pressure apparatus. The results from the fluid sampling show that the Navajo Sandstone is being fed by active inflow of CO2-saturated brines through the fault damage zone; that these brines mix with meteoric fluid flowing laterally into the fault zone; and that the downhole fluid sampling whilst drilling successfully captures this dynamic process.
APA, Harvard, Vancouver, ISO, and other styles
6

Kulazynski, Marek, Marek Stolarski, Hanna Faltynowicz, Beata Narowska, Lukasz Swiatek, and Marcin Lukaszewicz. "Supercritical Fluid Extraction of Vegetable Materials." Chemistry & Chemical Technology 10, no. 4s (December 25, 2016): 637–43. http://dx.doi.org/10.23939/chcht10.04si.637.

Full text
Abstract:
The paper presents the base and conditions for the extraction of organic materials with solvents in the supercritical state with particular attention to use of CO2 as the extraction agent. The advantages and disadvantages of this process are described. The examples of extraction of organic materials using supercritical of CO2 are presented.
APA, Harvard, Vancouver, ISO, and other styles
7

Kampman, Niko, Mike Bickle, Max Wigley, and Benoit Dubacq. "Fluid flow and CO2–fluid–mineral interactions during CO2-storage in sedimentary basins." Chemical Geology 369 (March 2014): 22–50. http://dx.doi.org/10.1016/j.chemgeo.2013.11.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lüttge, Andreas, Paul Metz, Johannes Walther, Egon Althaus, and Wllhelm Heinrich. "CO2-H2O fluid inclusions in forsterite: An experimental study." European Journal of Mineralogy 8, no. 5 (October 30, 1996): 997–1014. http://dx.doi.org/10.1127/ejm/8/5/0997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yamamoto, Junji, Kazuhiko Otsuka, Hiroaki Ohfuji, Hidemi Ishibashi, Naoto Hirano, and Hiroyuki Kagi. "Retentivity of CO2 in fluid inclusions in mantle minerals." European Journal of Mineralogy 23, no. 5 (December 1, 2011): 805–15. http://dx.doi.org/10.1127/0935-1221/2011/0023-2150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Channer, D. M. DeR, and E. T. C. Spooner. "Geochemistry of late (~ 1.1 Ga) fluid inclusions in rocks of the Kapuskasing Archean crustal section." Canadian Journal of Earth Sciences 31, no. 7 (July 1, 1994): 1235–55. http://dx.doi.org/10.1139/e94-109.

Full text
Abstract:
Three outcrops, well constrained by geochronological and structural studies, and representing a traverse running from tonalite-dominated outcrops in the eastern Wawa gneiss terrane to high-grade granulites of the Kapuskasing structural zone, were mapped and sampled in detail in order to study the trapped fluids. All fluid inclusions in quartz are secondary and consist mostly of CO2-dominated (type II) and saline aqueous (type IIIa) fluids usually occurring on separate healed fractures but also coexisting on some fractures. Healed fractures in quartz contain fluid inclusions but are associated with carbonate–sericite alteration where they pass into adjacent mineral grains. Homogeneous H2O–CO2–salt fluid inclusions (type Ia) in carbonate-rich veins of probable Keweenawan (~ 1.1 Ga) age were trapped at 400–550 °C and ambient pressures of 1.5–2 kbar (1 kbar = 100 MPa). As these fluids cooled on penetration into cool (~ 200 °C) country rocks along fractures they underwent open-system H2O-CO2 phase separation from ~ 350 °C down to ~ 190 °C, producing a range of fluid compositions, including physically segregated CO2-rich (type II) and H2O–salt–rich (type IIIa). Combined gas and ion chromatographic bulk fluid inclusion analyses show that fluid types II and IIIa are not related to shield brines. Br−/Cl− ratios of samples containing phase-separated fluids are similar to the Br−/Cl− ratio of fluids in the carbonate-rich vein. The results of this study show that Keweenawan alkalic magmatism caused widespread carbonate alteration throughout the Kapuskasing structural zone and Wawa gneiss domain. The CO2 component of the fluids is probably magmatic in origin, whereas the aqueous part could also be magmatic or, alternatively, formation waters activated by Keweenawan magmatism.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "CO2 fluid"

1

Kus, Bartosz. "Oil-free turbocompressors for CO2 as working fluid." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-23781.

Full text
Abstract:
Compressing equipment can be found in almost every area of our industrialized society. Compressors drive our fridges, air conditioning systems and enable turbine engines to propel the aircrafts we use when going for holidays or a business trip. Without compressors an operation of virtually any conventional power plant providing electricity to our houses would not be possible. The compressor technology can therefore be regarded as a mature area of engineering with a vast theoretical and operational experience. It may happen however that a traditional approach to certain new problems will not suffice, and alternative ways must be searched for. Such open-mindedness was required when the idea of introducing an oil-free compressor for a CO2 commercial refrigeration system was born. Initially, hermetic radial turbomachinery was identified as a potential candidate for this task. However, it turned out that rather special properties of carbon dioxide, compared to other common refrigerants, will result in challenges uncommon in turbomachinery found in other applications. While the initial technology choice still seemed feasible, high density of the CO2 at relevant operating conditions and significant rotational speeds required for a relatively small machine were indicating excessive levels of windage losses generated by the spinning rotor of the compressor. It was decided to build a 1D tool for prediction of efficiencies for a wide range of machines based on a radial turbocompressor principle, but designed for CO2 applications with different operating pressures and capacities. The predictions of the tool were compared against numerical and experimental data. Good match was found. The 1D study revealed that high compression efficiencies, exceeding 70 %, are possible for the oil-free radial compressor concept in a relatively wide range of capacities provided that the inlet pressure is low, around 1 MPa, and that the pressure ratio is moderate, below 3. Potential for good efficiency is expected to deteriorate rapidly with increasing operational pressures due to windage losses. There is no obvious strategy for improvement of overall compressor efficiency when smaller capacities and close to supercritical pressures are in the focus. The major fraction of undesirable rotational losses is generated by the electrical motor. It can be reduced either by installing longer more slender motor or by reduction of rotational speeds. Efficiency improvement reached with application of a longer motor is shown to be of limited impact and is expected to be challenging from the rotordynamics point of view. Alternatively, multi-stage multi-shaft machine can be designed, but economic viability of such a strategy remains questionable. Reduction of the compressor speed is not straightforward either, especially at low volumetric flows when low speeds would be detrimental to the impeller and diffuser efficiency. A non-standard approach introducing partially admitted radial machine was therefore proposed. A numerical analysis of a partially admitted compressor stage with a 16 cm impeller rotating at 13000 rpm is carried out. Transient 2D simulations indicate more than 80% efficiency of the wheel at the total pressure ratio of around 1.4. To estimate the final stage efficiency, 3D effects such as the end-wall losses, the radial leakage, and the diffuser performance must be taken into account. A transient 3D analysis of the complete stage of the novel compressor has not been completed due to its time consuming nature. 3D simulations performed for various diffuser configurations indicate however that around 75% overall stage efficiencies might be possible. It would require further optimization of both blade and diffuser shapes. Comparison of non-stage losses, for both centrifugal and partial admission concepts, allow presuming that the novel machine could be superior in terms of the overall performance provided that comparable systems are characterized by close to supercritical mean operating pressures and capacities typical for commercial scale applications. To verify the initial insights of the present work, further research, including laboratory testing, is needed.
APA, Harvard, Vancouver, ISO, and other styles
2

Gharbi, Oussama. "Fluid-rock interactions in carbonates : applications to CO2 storage." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/24928.

Full text
Abstract:
It is well established that more than half of the world's hydrocarbon reserves are contained in carbonate reservoirs. In a global context, which is characterized by an increasing demand in energy, population growth and overall economic development, it is very important to unlock potential carbonate resources while mitigating the effects of climate change. Moreover, significant volumes of carbon dioxide - the major greenhouse gas contributor to global warming - can be stored in carbonate subsurface formations such as carbonate depleted reservoirs and deep saline aquifers. Therefore, better understanding of carbonate porous media has a wide range of major industrial and environmental applications. However, because of complex pore structures, including the presence of micro-porosity, heterogeneities at different scales, combined with high chemical reactivity, it remains very challenging to describe flow and transport in carbonates. In this thesis, we focus on carbonate porous media and aim to better describe flow, transport and reaction in them. The main application of this work is related to carbon storage in deep saline carbonate aquifers. More particularly, we address fluid-rock interactions e.g. wettability alterations and reactive transport, that occur in carbonate formations. First, we investigate the impact of wettability alteration on multi-phase flow properties. We use pore-network modelling to analyze the impact of wettability alteration by modelling water-flood relative permeability for six different carbonate samples with different connectivity. Pore-scale multi-phase flow physics is described in detail and the efficiency of water-flooding in mixed-wet carbonates is related to the wettability and pore connectivity. We study six carbonate samples. Four quarry samples - Indiana, Portland, Guiting and Mount Gambier - and two subsurface samples obtained from a deep saline Middle Eastern aquifer. The pore space is imaged in three dimensions using X-ray micro-tomography at a resolution of a few microns. The images are segmented into pore and void and a topologically representative network of pores and throats is extracted from these images. We then simulate quasi-static displacement in the networks. We represent mixed-wet behaviour by varying the oil-wet fraction of the pore space. The relative permeability is strongly dependent on both the wettability and the average coordination number of the network. We show that traditional measures of wettability based on the point where the relative permeability curves cross are not reliable. Good agreement is found between our calculations and measurements of relative permeability on carbonates in the literature. The work helps establish a library of benchmark samples for multi-phase flow and transport computations. The implications of the results for field-scale displacement mechanisms are discussed, and the efficiency of waterflooding as an oil recovery process in carbonate reservoirs is assessed depending on the wettability and pore space connectivity. Secondly, we investigate at the laboratory column scale (50 cm), fluid-rock interactions that occur through the injection of an acidic solution into carbonate porous media. Laboratory columns are packed with crushed and sieved porous Guiting carbonate grains. Therefore a homogenous porous medium at the Darcy scale is created and the effect of micro-heterogeneities on transport and reactive transport properties is highlighted. We first conduct a series of passive tracer experiments. Salinity is used as a non-reactive tracer as brine is injected at a constant flow rate into columns pre-saturated with equilibrated deionised water. Solute breakthrough curves are experimentally obtained by measuring the conductivity of collected effluent samples. Subsequently, by solving the advection-dispersion equations using PHREEQC geochemical software, we compare the experimental measurements with numerical predictions of breakthrough curves. A good match is obtained for a dual porosity model and a dispersion coefficient is estimated. We then investigate reactive transport by injecting at constant flow rate acidic brine (hydrochloric acid diluted in saline brine with an overall pH of 3) into columns pre-saturated with equilibrated brine. We measure the effluent concentrations using ICP-AES (inductively coupled plasma atomic emission spectroscopy) Moreover; scanning electron microscopy (SEM) is used to determine single grain-scale changes. We assess the impact of flow rate on the resident time distribution of solutes and reaction profiles along the columns. We discuss challenges encountered regarding the reproducibility of the results and we highlight the implications of such phenomenological studies on carbon storage in carbonates. Finally, we experimentally examine fluid-rock interactions that are induced by the injection of supercritical CO2 (sc-CO2) in carbonate formations at the pore scale. I designed and built a novel experimental apparatus that allows the injection of brine enriched with sc-CO2 at typical CO2 storage conditions. In our experiments the temperature is 500C and the injecting pressure is 9MPa. A novel methodology that combines pore-scale imaging, core flooding and pore-scale modelling is applied in the context of CO2-carbonate-brine interactions. We experimentally use a high pressure and temperature mixing vessel to generate brines enriched with sc-CO2.The mixture is then injected using high precision piston pumps at a constant flow rate (Q=0.1 ml/min) into carbonate micro samples (5 mm diameter and 20 mm length) saturated with pre-equilibrated high salinity brine. We measure the permeability changes in real time during the injection of reactive fluids, In addition, dry high-resolution micro-computed tomography scans are obtained prior to and after the experiments and the pore structure, connectivity and computed flow fields are compared using image analysis and pore-scale modelling techniques. We perform direct simulations of transport properties and velocity fields on the three-dimensional scans and we extract representative pore-throat networks to compute average coordination number and assess changes in pore and throat size distributions. Moreover, we assess the impact of reaction rate on reactive transport. We alter the reaction rate and hence the Damköhler number by under saturating the sc-CO2/brine mixture with crushed and sieved carbonate grains. Two regimes of dissolution are experimentally observed: dominant wormholing and a more uniform dissolution regime. High resolution 3D scans of the dissolution patterns confirm these observations. Permeability increases over several order of magnitude with wormholing whereas for the uniform dissolution, the increase in permeability is less pronounced. Overall, fewer pore and throats are present after dissolution while the average coordination number does not change significantly. Flow becomes concentrated in the wormhole regions after reactions although a very wide range of velocities is still observed. We then compare the observed results for single phase flow (wormholing induced by the injection of single phase brine saturated with sc-CO2) to two-phase flow reactive flow experiments (co injection of sc-CO2 and brine). Results show that wormholing is also seen in the two-phase experiments. Directions for future research in the area of fluid-rock interactions are then discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

REMIGI, SAMANTHA. "On the application of Raman micro-spectroscopy to the characterization of Earth's CO2 fluids." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/325898.

Full text
Abstract:
Questa tesi indaga l'applicabilità della micro-spettroscopia Raman per migliorare la caratterizzazione dei fluidi a CO2 terrestri, intrappolati come inclusioni fluide (FI) nelle peridotiti. Nello spettro Raman della CO2, la distanza delle due vibrazioni fondamentali è densità (d) dipendente, inoltre sono visibili le vibrazioni 13CO2 e 12CO2. Ciò permette alla micro-spettroscopia Raman di avere il potenziale per caratterizzare in situ FI a CO2, consentendo di comprendere meglio i meccanismi di trasporto del C all'interno della Terra. La proporzionalità tra le aree 13CO2 e 12CO2 con la loro concentrazione molare permette di calcolare il δ13CCO2 tramite micro-spettroscopia Raman. I rapporti delle aree richiedono precisione sulla 4° decimale per dare valori di δ13CCO2 rappresentativi dei serbatoi naturali terrestri. Gli spettri Raman sono influenzati da inevitabili effetti casuali che riducono la precisione dell'area. 42 FI a CO2 pura di alta d, provenienti dalla regione del Lago Tana e da El Hierro, sono state analizzate. Per ogni FI sono state acquisite due serie di spettri con tempi di acquisizione diversi. Di 84 serie di analisi, 23 avevano rapporti di area 13CO2/12CO2 diversi tra loro di più di un ordine di grandezza. Questi sono stati rimossi dal dataset. Il 95% dei restanti 61 set aveva riproducibilità dei rapporti di area <≈4‰, consentendo di calcolare valori di δ13CCO2 con precisione <±≈2‰. Solo poche analisi erano caratterizzate da una minore precisione. I valori di δ13CCO2 calcolati per FI nelle peridotiti dalla regione del Lago Tana hanno mostrato un’origine di mantello per la CO2, mentre quelli nelle peridotiti di El Hierro dai valori tipici di mantello. L'accuratezza delle misure è stata verificata tramite spettrometria di massa. Questa ha dimostrato che i valori di δ13CCO2 calcolati erano accurati, e consentivano di modellare la variazione isotopica a scala minerale. L’applicabilità della micro-spettroscopia Raman come densimetro per i fluidi a CO2 è stata precedentemente studiata. Molte equazioni di densimetro calcolano d differenti per gli stessi Δ, con distribuzione grafica bimodale, la cui origine non è stata ben compresa. L'origine di questa distribuzione è stata studiata nel presente lavoro calcolando la d di 40 FI a CO2 pura, provenienti da El Hierro, mediante microtermometria. I Δ sono stati misurati acquisendo spettri Raman con una procedura simile a quella adottata per altri densimetri, con risoluzione spettrale per px ≈1,50 cm-1/px. La distribuzione dei dati Δ-d è stata fittata al meglio con un'equazione polinomiale di III°, permettendo di calcolare le d della CO2 con un errore di ±0.015 g/cm3. L’equazione plottava con quelle ottenute mediante una risoluzione spettrale per px simile. Gli intervalli di confidenza al 95% della distribuzione Δ-d per tutte le equazioni sono stati calcolati mediante un algoritmo statistico. I CI hanno permesso di valutare l'accuratezza dei valori Δ-d e di definire un punto di cut-off al di sotto del quale la potenza di stima della d era bassa. Per tutti i densimetri, il punto di cut-off corrispondeva al punto in cui le distanze relative dei CI erano <7.5% (coincidenti con CO2 gassosa a P-T ambiente). Il confronto tra CI al 95% delle equazioni a bassa ed alta risoluzione spettrale per px ha mostrato che densimetri con risoluzione calcolano d statisticamente equivalente con una confidenza del 95%. Al contrario, densimetri con risoluzione diversa calcolano d non confrontabili. I risultati ottenuti hanno consentito di proporre un metodo preliminare per calcolare in situ i δ13CCO2 con una precisione ≈±2% per il 95% delle analisi. Inoltre, questi hanno migliorato la conoscenza della distribuzione Δ-d dei densimetri Raman, indicando che d di CO2 calcolate per mezzo di equazioni con risoluzione spettrale simile sono statisticamente equivalenti al 95% di confidenza per FI aventi d vicino e al di sopra del punto critico di CO2.
This thesis investigates the applicability of Raman micro-spectroscopy for CO2 density (d) and δ13CCO2 values calculations to improve characterisation of CO2 Earth’s fluid trapped as fluid inclusions (FI) in peridotites. Based on the properties of CO2 Raman spectrum, where the distance of two main vibrations is d-dependent and 13CO2 and 12CO2 vibrations are present, Raman micro-spectroscopy has the potential to become a complementary technique for in situ characterisation of CO2 FI, allowing to better understand the C transport mechanisms within Earth. The calculation of CCO2 isotopic composition by mean of Raman micro-spectroscopy is possible due to the proportionality between 13CO2 and 12CO2 areas with their molar concentration. Calculation of area ratios requires precision at 4th decimal place to obtain δ13CCO2 values representative of Earth’s natural reservoirs. Raman spectra are affected by unavoidable random effects that reduce area measurements’ precision. 42 high-d CO2-pure FI from Lake Tana region and El Hierro have been analysed. For each inclusion, two sets of spectra have been acquired by mean of different acquisition times. Among the 84 set of measurements, 23 were characterised by 13CO2/12CO2 area ratios differing more than one order of magnitude one another. These have been removed from dataset. 95% of remaining 61 sets were characterised by area ratios reproducibility <≈4‰, allowing to calculate FI δ13CCO2 values with precision <±≈2‰. Only few analyses were characterised by lower precision. Calculated δ13CCO2 values for FI trapped in peridotites from Lake Tana region showed CO2 mantle origin, while for those in peridotites from El Hierro differed from mantle isotopic signature. Accuracy of measurement has been checked by bulk measurements, proving that calculated δ13CCO2 values were accurate, and allowing to model δ13CCO2 variations at single mineral scale. The adoption of Raman micro-spectroscopy for calculating CO2 fluid d has been previously investigated. Many densimeter equations calculate different d for the same Δ values, with a bimodal graphic distribution, whose origin was not well understood. The origin of this distribution has been investigated in present work by calculating the d of 40 CO2-pure FI trapped in mantle xenoliths from El Hierro by mean of microthermometry. CO2 FI Δ values have been measured by acquiring Raman spectra applying analytical parameters common to those adopted for other densimeter equations, with spectral per px resolution ≈1.50 cm-1/px. A 3rd order polynomial equation best fitted obtained Δ-d data distribution. Equation calculates CO2 d with an error of ±0.015 g/cm3, and plots with those obtained by mean of a similar spectral per px resolution. The 95% confidence interval (CI) of Δ-d distribution for all the equations has been calculated by a bootstrapping statistical algorithm. CIs allowed to assess the accuracy of measured Δ-d values and define a cut-off point below which the CO2 d estimation power is low. For all the densimeters, cut-off point has been set where the relative distances of computed CIs were <7.5%, which corresponded for all the equations to gas-like CO2 at ambient conditions. The comparison of 95% CIs calculated for high and low spectral resolution per px equations showed that densimeters with similar spectral per px resolution calculate statistically equivalent CO2 d at 95% confidence. In contrast, densimeters with different resolution calculate incomparable CO2 d.Obtained results allowed to preliminarily propose an analytical procedure to calculate in situ δ13CCO2 with a precision of ≈±2% for 95% of the analyses. Moreover, these improved the knowledge about Δ-d distribution of Raman densimeters, indicating that CO2 d calculated by mean of equations having similar spectral resolution are statistically equivalent at 95% confidence for CO2 FI having d values near and above the CO2 critical point.
APA, Harvard, Vancouver, ISO, and other styles
4

Kilpatrick, Andrew David. "Fluid-mineral-CO2 interactions during geological storage of carbon dioxide." Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/8889/.

Full text
Abstract:
In order utilise geological carbon dioxide storage (GCS) at an industrial scale predictions of reservoir scale behaviour, both chemical and physical must be made. In order to ground-truth the geochemical data underlying such predictions, laboratory experiments at temperatures and CO2 pressures relevant to GCS are essential. Mineral dissolution rate, CO2 solubility and pH data has been collected from batch experiments carried out on quartz, K-feldspar, albite, calcite, dolomite and Sherwood Sandstone materials. These experiments were designed to assess the influence of a variety of factors on dissolution rates: changes in grain size from 125μm - 180μm to 500μm - 600μm; changes in fluid composition from deionised water to 1.36M NaCl solution; changes in CO2 pressure from 4 bar to 31 bar; changes in temperature from 22°C to 70°C. Experiments carried out on the Sherwood Sandstone material also included work on consolidated rock, rather than the powder used in other experiments. Calculated dissolution rates for silicates were found to agree well with values calculated from literature-sourced dissolution equations and the USGS-produced general rate equation (USGS 2004) was found to be suitable for predicting these rates. Calculated dissolution rates for the carbonate minerals was found to be strongly retarded due to transport effects, with literature-sourced equations significantly over-predicting dissolution rates. Dissolution of the sandstone material was found to be dominated by K-feldspar and dolomite dissolution, rates of which compare favourably with those obtained from the single mineral experiments. A significant increase in porosity was observed in the core flow-through experiment, associated with dolomite dissolution. Several experiments were carried out using a Hele-Shaw cell in order to visualise the formation and migration of density plumes which form as CO2 dissolved into unsaturated fluids. Introduction of NaCl and decreases in permeability were found to significantly retard migration of CO2 saturated fluid, while minor heterogeneities in the cells served to focus and accelerate plume movement. Modelling work suggests that predictive models currently underestimate the rapidity of formation and migration of these plumes.
APA, Harvard, Vancouver, ISO, and other styles
5

Kleine, Barbara. "How do fluids move through rocks? : High fluxes of CO2 in the Earth's crust." Licentiate thesis, Stockholms universitet, Institutionen för geologiska vetenskaper, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-84007.

Full text
Abstract:
Metamorphic hydrous, CO2-bearing fluids play a critical role in the global carbon cycle. However, how big this influence is on the global carbon cycle and therefore on global climatic processes, is unknown. The actual amount of CO2 which is released into the atmosphere due to metamorphic processes is still debated. For this purpose, fluid-driven reactions in metamorphic rocks must be studied by tracking fluid-rock interactions along pathways of ancient fluids. In the study presented in this thesis, we study fluid-rock interaction in the southeastern part of the Greek island Syros in the Cycladic Archipelago (Aegean). On Syros fluid-rock interaction is recorded by the preservation of blueschist facies assemblages at greenschist facies conditions along a normal shear zone. Blueschist preservation is caused by a combination of metasomatic addition of SiO2 and Na2O and elevated XCO2 which is maintained by high fluxes of a CO2-bearing, hydrous fluid along the shear zone. This research aims to provide a better understanding of the role of mountain building in the carbon cycle. Flux estimates for climate-forcing fluid components (e.g. carbon) require that their concentration in the fluid, fluid volumes and velocities are known. This will be the focus of future work. Further, whole rock chemistry and the availability of specific minerals will be studied to achieve knowledge about which kind of parameters influence and enhance the propagation of fluids through rocks.
APA, Harvard, Vancouver, ISO, and other styles
6

Lindon, Michael Allen. "CO2 Dissociation using the Versatile Atmospheric Dielectric Barrier Discharge Experiment (VADER)." Thesis, West Virginia University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3618122.

Full text
Abstract:

As of 2013, the Carbon Dioxide Information Analysis Center (CDIAC) estimates that the world emits approximately 36 trillion metric tons of Carbon Dioxide (CO2) into the atmosphere every year. These large emissions have been correlated to global warming trends that have many consequences across the globe, including glacial retraction, ocean acidification and increased severity of weather events. With green technologies still in the infancy stage, it can be expected that CO2 emissions will stay this way for along time to come. Approximately 41% of the emissions are due to electricity production, which pump out condensed forms of CO2. This danger to our world is why research towards new and innovative ways of controlling CO2 emissions from these large sources is necessary.

As of now, research is focused on two primary methods of CO2 reduction from condensed CO2 emission sources (like fossil fuel power plants): Carbon Capture and Sequestration (CCS) and Carbon Capture and Utilization (CCU). CCS is the process of collecting CO2 using absorbers or chemicals, extracting the gas from those absorbers and finally pumping the gas into reservoirs. CCU on the other hand, is the process of reacting CO2 to form value added chemicals, which can then be recycled or stored chemically.

A Dielectric Barrier discharge (DBD) is a pulsed, low temperature, non-thermal, atmospheric pressure plasma which creates high energy electrons suitable for dissociating CO2 into its components (CO and O) as one step in the CCU process. Here I discuss the viability of using a DBD for CO2 dissociation on an industrial scale as well as the fundamental physics and chemistry of a DBD for CO2 dissociation. This work involved modeling the DBD discharge and chemistry, which showed that there are specific chemical pathways and plasma parameters that can be adjusted to improve the CO2 reaction efficiencies and rates. Experimental studies using the Versatile Atmospheric dielectric barrier Discharge ExpeRiment (VADER) demonstrated how different factors, like voltage, frequency and the addition of a photocatalyst, change the efficiency of CO2 dissociation in VADER and the plasma chemistry involved.

APA, Harvard, Vancouver, ISO, and other styles
7

Beier, Katja [Verfasser]. "CO2-Sequestration on Laboratory Scale: Geochemical Interactions Between Injected CO2, Saline Fluid Phases, and Potential Reservoir Materials / Katja Beier." Kiel : Universitätsbibliothek Kiel, 2012. http://d-nb.info/1023040786/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Chen. "Thermodynamic Cycles using Carbon Dioxide as Working Fluid : CO2 transcritical power cycle study." Doctoral thesis, KTH, Tillämpad termodynamik och kylteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-50261.

Full text
Abstract:
The interest in utilizing the energy in low‐grade heat sources and waste heat is increasing. There is an abundance of such heat sources, but their utilization today is insufficient, mainly due to the limitations of the conventional power cycles in such applications, such as low efficiency, bulky size or moisture at the expansion outlet (e.g. problems for turbine blades). Carbon dioxide (CO2) has been widely investigated for use as a working fluid in refrigeration cycles, because it has no ozonedepleting potential (ODP) and low global warming potential (GWP). It is also inexpensive, non‐explosive, non‐flammable and abundant in nature. At the same time, CO2 has advantages in use as a working fluid in low‐grade heat resource recovery and energy conversion from waste heat, mainly because it can create a better matching to the heat source temperature profile in the supercritical region to reduce the irreversibility during the heating process. Nevertheless, the research in such applications is very limited. This study investigates the potential of using carbon dioxide as a working fluid in power cycles for low‐grade heat source/waste heat recovery. At the beginning of this study, basic CO2 power cycles, namely carbon dioxide transcritical power cycle, carbon dioxide Brayton cycle and carbon dioxide cooling and power combined cycle were simulated and studied to see their potential in different applications (e.g. low‐grade heat source applications, automobile applications and heat and power cogeneration applications). For the applications in automobile industries, low pressure drop on the engine’s exhaust gas side is crucial to not reducing the engine’s performance. Therefore, a heat exchanger with low‐pressure drop on the secondary side (i.e. the gas side) was also designed, simulated and tested with water and engine exhaust gases at the early stage of the study (Appendix 2). The study subsequently focused mainly on carbon dioxide transcritical power cycle, which has a wide range of applications. The performance of the carbon dioxide transcritical power cycle has been simulated and compared with the other most commonly employed power cycles in lowgrade heat source utilizations, i.e. the Organic Rankin Cycle (ORC). Furthermore, the annual performance of the carbon dioxide transcritical power cycle in utilizing the low‐grade heat source (i.e. solar) has also been simulated and analyzed with dynamic simulation in this work. Last but not least, the matching of the temperature profiles in the heat exchangers for CO2 and its influence on the cycle performance have also been discussed. Second law thermodynamic analyses of the carbon dioxide transcritical power systems have been completed. The simulation models have been mainly developed in the software known as Engineering Equation Solver (EES)1 for both cycle analyses and computer‐aided heat exchanger designs. The model has also been connected to TRNSYS for dynamic system annual performance simulations. In addition, Refprop 7.02 is used for calculating the working fluid properties, and the CFD tool (COMSOL) 3 has been employed to investigate the particular phenomena influencing the heat exchanger performance.
QC 20111205
APA, Harvard, Vancouver, ISO, and other styles
9

Elnan, Åsmund. "Development of new heat pump cloth drum dryer with CO2 as working fluid." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18342.

Full text
Abstract:
Since early the early 20th century the electrical tumble dryer became an appliance to dry clothes. During many years of improvements different configurations to solve issues on decreased drying time and more energy efficient solutions has been performed. Several different configurations have been developed; air vented dryers, condensing dryers and the most recent heat pump dryers. The heat pumps in drying technology became the next solution based on improved drying time and decreased energy consumption. With today’s focus on energy consumption, with energy demanding appliance such as the clothes dryer; new technology that satisfy the customers need must be available. By introducing the heat pump to the drying technology, a suitable refrigerant must be chosen. The choice should be based on several factors; the performance of the heat pump and the refrigerants GWP and ODP values, its toxicity and safety for the consumer. This report is based on a heat pump dryer made for an R134a system. R134a has a global warming potential (GWP) 1300 times the value of R744 (carbon dioxide). This report will present the feasibility of replacing the R134a system with a system designed for carbon dioxide as refrigerant. Carbon dioxide or R744 is a natural refrigerant, and it is in contrast to other commonly used refrigerants operating in the transcritical region. This implies that the heat rejection is performed with gliding temperature exchange, not by condensation as for the R134a. This is due to the low critical temperature of carbon dioxide; a critical pressure of 73.8 Bara and a critical temperature of 31.1&#730;C. Despite the required high pressures, the heat exchange properties of carbon dioxide in the critical region are very good, and new technology can take advantage of this. By SINTEF developed simulation tool HX SIM Basic 2007, based on results from the R134a cycle, heat exchangers have been designed to reach the optimal solution. The capacity of the heat changers and the compressor will be the same as the R134a system. The system is built with a manual throttling valve in parallel to a capillary tube, during the experiments the system will be tested to find the most optimal set point. Evaporating pressures from 40 to 50 Bara and gas cooler pressures from critical pressures to 120 Bara have been applied in the experiments. The main purpose of the experiments is to find a system design that will fulfil both energy saving requirements and have a simple enough construction for it to be a market product. Based on the experiments on this first prototype and the results obtained; a conclusion is that the dryer with CO2 as refrigerant is using marginally more energy than the R134a system. However this is a first prototype and its potential should be investigated further.
APA, Harvard, Vancouver, ISO, and other styles
10

Wigley, Max Merlin. "Fluid-mineral reactions in an exhumed CO2-charged aquifer, Green River, Utah, USA." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608145.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "CO2 fluid"

1

Saeedi, Ali. Experimental Study of Multiphase Flow in Porous Media during CO2 Geo-Sequestration Processes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bueno, Mariano. Fluir con la vida: Por el Camino de las Estrellas. Barcelona: Martínez Roca, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

McCobb, Timothy D. Detection of fresh ground water and a contaminant plume beneath Red Brook Harbor, Cape Cod, Massachusetts, 2000. Northborough, Mass: U.S. Dept. of the Interior, U.S. Geological Survey, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

McCobb, Timothy D. Detection of fresh ground water and a contaminant plume beneath Red Brook Harbor, Cape Cod, Massachusetts, 2000. Northborough, Mass: U.S. Dept. of the Interior, U.S. Geological Survey, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Experimental Study Of Multiphase Flow In Porous Media During Co2 Geosequestration Processes. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Saeedi, Ali. Experimental Study of Multiphase Flow in Porous Media During CO2 Geo-Sequestration Processes. Springer Berlin / Heidelberg, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nasimudeen, Abdul. Normal respiratory function. Edited by Patrick Davey and David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0125.

Full text
Abstract:
Respiration has two components: external respiration, which enables the absorption of O2 and the removal of CO2, and internal respiration, which enables the utilization of O2 and production of CO2 and mediates gas exchange between the cells and their fluid medium. This chapter addresses the mechanics of respiration; gas exchange in the lungs; the pulmonary circulation; lung defence mechanisms; and the metabolic and endocrine functions of the lungs.
APA, Harvard, Vancouver, ISO, and other styles
8

Gasparetto, Alessandro, and John Fritz Angle. Suprahepatic Catheter Placement for Hydrodissection. Edited by S. Lowell Kahn, Bulent Arslan, and Abdulrahman Masrani. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199986071.003.0070.

Full text
Abstract:
Heat injuries of adjacent organs need to be considered when radiofrequency and microwave ablation procedures of hepatocellular carcinoma or hepatic metastases are performed, especially when the target lesion is in a subcapsular portion of the liver. Hydrodissection can be performed prior to radiofrequency or microwave ablation procedures in which the target lesion is in a subcapsular portion of the liver and adjacent to another structure, particularly the diaphragm. This technique creates a fluid layer thick enough to separate the nearby structures from the target lesion in the liver, providing thermal insulation around the ablation area. Moreover, if fluid (rather than CO2) is used, it improves the sonic window when the target lesion is not visible or only partially visible due to overlapping bowel, lung, or ribs.
APA, Harvard, Vancouver, ISO, and other styles
9

Delgado Martín, Jordi, Andrea Muñoz-Ibáñez, and Ismael Himar Falcón-Suárez. 6th International Workshop on Rock Physics: A Coruña, Spain 13 -17 June 2022: Book of Abstracts. 2022nd ed. Servizo de Publicacións da UDC, 2022. http://dx.doi.org/10.17979/spudc.000005.

Full text
Abstract:
[Abstract] The 6th International Workshop on Rock Physics (6IWRP) was held A Coruña, Spain, between 13th and 17th of June, 2022. This meeting follows the track of the five successful encounters held in Golden (USA, 2011), Southampton (UK, 2013), Perth (Australia, 2015), Trondheim (Norway, 2017) and Hong Kong (China, 2019). The aim of the workshop was to bring together experiences allowing to illustrate, discuss and exchange recent advances in the wide realm of rock physics, including theoretical developments, in situ and laboratory scale experiments as well as digital analysis. While rock physics is at the core of the oil & gas industry applications, it is also essential to enable the energy transition challenge (e.g. CO2 and H2 storage, geothermal), ensure a safe and adequate use of natural resources and develop efficient waste management strategies. The topics of 6IWRP covered a broad spectrum of rock physics-related research activities, including: • Experimental rock physics. New techniques, approaches and applications; Characterization of the static and dynamic properties of rocks and fluids; Multiphysics measurements (NMR, electrical resistivity…); Deep/crustal scale rock physics. • Modelling and multiscale applications: from the lab to the field. Numerical analysis and model development; Data science applications; Upscaling; Microseismicity and earthquakes; Subsurface stresses and tectonic deformations. • Coupled phenomena and rock properties: exploring interactions. Anisotropy; Flow and fractures; Temperature effects; Rock-fluid interaction; Fluid and pressure effects on geophysical signatures. • The energy transition challenge. Applications to energy storage (hydrogen storage in porous media), geothermal resources, energy production (gas hydrates), geological utilization and storage of CO2, nuclear waste disposal. • Rock physics templates: advances and applications. Quantitative assessment; Applications to reser voir characterization (role of seismic wave anisotropy and fracture networks). • Advanced rock physics tools. Machine learning; application of imaging (X-ray CT, X-ray μCT, FIB-SEM…) to obtain rock proper ties. This book compiles more than 50 abstracts, summarizing the works presented in the 6IWRP by rock physicists from all over the world, belonging to both academia and industry. This book means an updated overview of the rock physics research worldwide.
APA, Harvard, Vancouver, ISO, and other styles
10

Green, Don W., and G. Paul Willhite. Enhanced Oil Recovery. Society of Petroleum EngineersRichardson, Texas, USA, 2018. http://dx.doi.org/10.2118/9781613994948.

Full text
Abstract:
Building on the comprehensive, fundamental mechanisms and mathematical computations detailed in the First Edition, the new Second Edition of Enhanced Oil Recovery presents the latest insights into the applications of EOR processes, including-Field-scale thermal-recovery such as steam-assisted gravity drainage and cyclic steam stimulation-Field-scale polymer flooding including horizontal wells-Field-scale miscible-displacement processes such as CO2 miscible flooding-Laboratory-scale chemical flooding in the development and testing of surfactant formulations An invaluable tool for petroleum engineering students, Enhanced Oil Recovery also serves as an important resource for those practicing oil recovery in the field or engaged in the design and operation of commercial projects involving enhanced-or improved-oil-recovery processes. A prior understanding of basic petrophysics, fluid properties, and material balance is recommended.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "CO2 fluid"

1

Bohn, D. "Future Aspects and Developments for Advanced CO2-Free Power Station Technologies." In Fluid Machinery and Fluid Mechanics, 57–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89749-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Song, Hongqing. "CO2 Storage in Saline Aquifer with Vertical Heterogeneity." In Engineering Fluid Mechanics, 227–51. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0173-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aresta, Michele, and Angela Dibenedetto. "Use of CO2 as Technical Fluid (Technological Uses of CO2)." In The Carbon Dioxide Revolution, 123–38. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59061-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Phuoc, Tran X., and Mehrdad Massoudi. "Compressed CO2 Refrigeration for Energy Storage and CO2 Utilization." In Recent Advances in Mechanics and Fluid-Structure Interaction with Applications, 345–56. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14324-3_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, S., and R. A. Marriott. "Sulfur Recovery in High Density CO2 Fluid." In Carbon Dioxide Capture and Acid Gas Injection, 63–69. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118938706.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chao, R. R., S. J. Mulvaney, M. E. Bailey, and H. Huang. "Fractionation of beef tallow with supercritical CO2." In Supercritical Fluid Processing of Food and Biomaterials, 202–13. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2169-3_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Santos, Diego T., Ádina L. Santana, M. Angela A. Meireles, M. Thereza M. S. Gomes, Ricardo Abel Del Castillo Torres, Juliana Q. Albarelli, Aikaterini Bakatselou, Adriano V. Ensinas, and François Maréchal. "Supercritical Fluid Biorefining Using Supercritical CO2 as an Antisolvent for Micronization, Coprecipitation, and Fractionation: Recent Applications." In Supercritical Fluid Biorefining, 13–32. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47055-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

de Medeiros, José Luiz, and Ofélia de Queiroz Fernandes Araújo. "Thermodynamic Modeling of CO2-Rich Natural Gas Fluid Systems." In Offshore Processing of CO2-Rich Natural Gas with Supersonic Separator, 55–96. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04006-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mishra, V. K., F. Temelli, and B. Ooraikul. "Supercritical CO2 extraction of oil from a seaweed, Palmaria palmata." In Supercritical Fluid Processing of Food and Biomaterials, 214–22. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2169-3_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Santos, Diego T., Ádina L. Santana, M. Angela A. Meireles, M. Thereza M. S. Gomes, Ricardo Abel Del Castillo Torres, Juliana Q. Albarelli, Aikaterini Bakatselou, Adriano V. Ensinas, and François Maréchal. "Supercritical Fluid Biorefining Using Supercritical CO2 as an Antisolvent for Micronization, Coprecipitation, and Fractionation: Fundamentals, Processing, and Effect of Process Conditions." In Supercritical Fluid Biorefining, 1–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47055-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "CO2 fluid"

1

Yarushina, V. M., and D. Bercovici. "Reservoir Compaction and Fluid Leakoff During Fluid Injection Operations." In Fourth EAGE CO2 Geological Storage Workshop. Netherlands: EAGE Publications BV, 2014. http://dx.doi.org/10.3997/2214-4609.20140115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Borges, F., and M. Landrø. "Time-Lapse Separation Of Fluid And Pressure Effects With An Arbitrary Fluid Mixing Law." In Fifth CO2 Geological Storage Workshop. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201802961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nasir, F. M., and Nurul Azrin Amiruddin. "Miscible CO2 Injection: Sensitivity to Fluid Properties." In SPE Asia Pacific Oil and Gas Conference and Exhibition. Society of Petroleum Engineers, 2008. http://dx.doi.org/10.2118/115314-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zheng, Laijiu, Dawei Gao, Shihui Gao, and Bing Du. "Automatic Control of Supercritical CO2 Fluid Dyeing." In 2009 International Conference on Artificial Intelligence and Computational Intelligence. IEEE, 2009. http://dx.doi.org/10.1109/aici.2009.24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gupta, D. V. S., G. Niechwiadowicz, and A. C. Jerat. "CO2 Compatible Non-Aqueous Methanol Fracturing Fluid." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2003. http://dx.doi.org/10.2118/84579-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nasir, F. M., and N. A. Amiruddin. "Miscible CO2 Injection: Sensitivity to Fluid Properties." In IPTC 2008: International Petroleum Technology Conference. European Association of Geoscientists & Engineers, 2008. http://dx.doi.org/10.3997/2214-4609-pdb.148.spe115314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bjørnarå, T. I. B., S. A. M. Mathias, J. M. Nordbotten, and J. Park. "Fast Evaluation of Fluid-rock Coupling in CO2 Storage." In Fourth EAGE CO2 Geological Storage Workshop. Netherlands: EAGE Publications BV, 2014. http://dx.doi.org/10.3997/2214-4609.20140087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fischer, S., L. Wolf, L. Fuhrmann, H. Gahre, and H. Rütters. "Simulated Fluid-Rock Interactions During Storage Of Temporally Varying Impure CO2 Streams." In Fifth CO2 Geological Storage Workshop. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201802988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Yiyan, Timothy Lawrence Pope, and Jesse C. Lee. "Novel CO2-Emulsified Viscoelastic Surfactant Fracturing Fluid System." In SPE European Formation Damage Conference. Society of Petroleum Engineers, 2005. http://dx.doi.org/10.2118/94603-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Khan, S. A., G. A. Pope, and Kamy Sepehrnoori. "Fluid Characterization of Three-Phase CO2/Oil Mixtures." In SPE/DOE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers, 1992. http://dx.doi.org/10.2118/24130-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "CO2 fluid"

1

Pruess, Karsten. Role of Fluid Pressure in the Production Behavior of EnhancedGeothermal Systems with CO2 as Working Fluid. Office of Scientific and Technical Information (OSTI), April 2007. http://dx.doi.org/10.2172/928785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pruess, Karsten. ECO2N: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl,and CO2. Office of Scientific and Technical Information (OSTI), August 2005. http://dx.doi.org/10.2172/877331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pruess, K. ECO2M: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2, Including Super- and Sub-Critical Conditions, and Phase Change Between Liquid and Gaseous CO2. Office of Scientific and Technical Information (OSTI), April 2011. http://dx.doi.org/10.2172/1016574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vasu, Subith. COMBUSTION KINETICS MODEL DEVELOPMENT & FLUID PROPERTY EXPERIMENTAL INVESTIGATION FOR IMPROVED DESIGN OF SUPERCRITICAL CO2 POWER CYCLE COMPONENTS. Office of Scientific and Technical Information (OSTI), December 2022. http://dx.doi.org/10.2172/1837889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bryan, Charles, Thomas Dewers, Jason Heath, Yifeng Wang, Edward Matteo, Stephen Meserole, and David Tallant. Fundamental study of CO2-H2O-mineral interactions for carbon sequestration, with emphasis on the nature of the supercritical fluid-mineral interface. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1096255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Riestenberg, David. Baseline Monitoring of CO2 Fluids. Office of Scientific and Technical Information (OSTI), May 2015. http://dx.doi.org/10.2172/1821418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Moza, Andreea, Florentina Duica, Panagiotis Antoniadis, Elena Silvia Bernad, Diana Lungeanu, Marius Craina, Brenda Cristiana Bernad, et al. Outcome of newborns in case of SARS-CoV-2 vertical infection. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, December 2022. http://dx.doi.org/10.37766/inplasy2022.12.0093.

Full text
Abstract:
Review question / Objective: To identify the types and examine the range of available evidence of vertical transmission of SARS-CoV-2 from mother to newborn. To clarify the key concepts and criteria for diagnosis of SARS-CoV-2 vertical infection in neonates. To summarize the existing evidence and advance the awareness on SARS-CoV-2 vertical infection in pregnancy. Background: Severe Acute Respiratory Syndrome Virus 2 (SARS-CoV-2), the virus that causes 2019 coronavirus disease (COVID-19), has been isolated from various tissues and body fluids, including the placenta, amniotic fluid, and umbilical cord of newborns. In the last few years, much scientific effort has been directed towards studying SARS-CoV-2, focusing on the different features of the virus, such as its structure and mechanisms of action. Moreover, much focus has been on developing accurate diagnostic tools and various drugs or vaccines to treat COVID-19.
APA, Harvard, Vancouver, ISO, and other styles
8

Lacerda Silva, P., G. R. Chalmers, A. M. M. Bustin, and R. M. Bustin. Gas geochemistry and the origins of H2S in the Montney Formation. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329794.

Full text
Abstract:
The geology of the Montney Formation and the geochemistry of its produced fluids, including nonhydrocarbon gases such as hydrogen sulfide were investigated for both Alberta and BC play areas. Key parameters for understanding a complex petroleum system like the Montney play include changes in thickness, depth of burial, mass balance calculations, timing and magnitudes of paleotemperature exposure, as well as kerogen concentration and types to determine the distribution of hydrocarbon composition, H2S concentrations and CO2 concentrations. Results show that there is first-, second- and third- order variations in the maturation patterns that impact the hydrocarbon composition. Isomer ratio calculations for butane and propane, in combination with excess methane estimation from produced fluids, are powerful tools to highlight effects of migration in the hydrocarbon distribution. The present-day distribution of hydrocarbons is a result of fluid mixing between hydrocarbons generated in-situ with shorter-chained hydrocarbons (i.e., methane) migrated from deeper, more mature areas proximal to the deformation front, along structural elements like the Fort St. John Graben, as well as through areas of lithology with higher permeability. The BC Montney play appears to have hydrocarbon composition that reflects a larger contribution from in-situ generation, while the Montney play in Alberta has a higher proportion of its hydrocarbon volumes from migrated hydrocarbons. Hydrogen sulphide is observed to be laterally discontinuous and found in discrete zones or pockets. The locations of higher concentrations of hydrogen sulphide do not align with the sulphate-rich facies of the Charlie Lake Formation but can be seen to underlie areas of higher sulphate ion concentrations in the formation water. There is some alignment between CO2 and H2S, particularly south of Dawson Creek; however, the cross-plot of CO2 and H2S illustrates some deviation away from any correlation and there must be other processes at play (i.e., decomposition of kerogen or carbonate dissolution). The sources of sulphur in the produced H2S were investigated through isotopic analyses coupled with scanning electron microscopy, energy dispersive spectroscopy, and mineralogy by X-ray diffraction. The Montney Formation in BC can contain small discrete amounts of sulphur in the form of anhydrite as shown by XRD and SEM-EDX results. Sulphur isotopic analyses indicate that the most likely source of sulphur is from Triassic rocks, in particular, the Charlie Lake Formation, due to its close proximity, its high concentration of anhydrite (18-42%), and the evidence that dissolved sulphate ions migrated within the groundwater in fractures and transported anhydrite into the Halfway Formation and into the Montney Formation. The isotopic signature shows the sulphur isotopic ratio of the anhydrite in the Montney Formation is in the same range as the sulphur within the H2S gas and is a lighter ratio than what is found in Devonian anhydrite and H2S gas. This integrated study contributes to a better understanding of the hydrocarbon system for enhancing the efficiency of and optimizing the planning of drilling and production operations. Operators in BC should include mapping of the Charlie Lake evaporites and structural elements, three-dimensional seismic and sulphate ion concentrations in the connate water, when planning wells, in order to reduce the risk of encountering unexpected souring.
APA, Harvard, Vancouver, ISO, and other styles
9

Leybourne, M. I., J. M. Peter, M A Schmidt, D. Layton-Matthews, A. Voinot, and L. Mathieu. Geochemical evidence for a magmatic contribution to the metal budget of the Windy Craggy Cu-Co(±Zn) volcanogenic massive-sulfide deposit, northwestern British Columbia. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/328018.

Full text
Abstract:
Volcanogenic massive-sulfide (VMS) deposits may have had metal contributions from magmatic degassing and leaching of footwall rocks. The Windy Craggy Cu-Co-Zn VMS deposit in northwestern British Columbia may include magmatic contributions, based on laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of fluid inclusions (enriched in Sb, Sn, and Bi) and lithogeochemistry. Sulfide-mineral trace-element abundances in the massive-sulfide orebody, underlying stockwork zone, gold zone, and altered and unaltered mafic rock and argillite were analyzed by LA-ICP-MS. Elevated Au, W, As, Bi, Sb, Se, Te, Tl, Ag, Co, and Mo contents occur within the gold and/or stockwork zones. Increasing 'magmatic metals' with increasing Co/Ni values suggest direct magmatic contribution to the deposit. Covariation of Co with these so-called 'magmatic elements' indicates that it, too, may be of magmatic origin, sourced via fluids exsolved from a crystallizing magma; however, evidence from the composition of rocks and sulfide minerals from Windy Craggy and other VMS deposits suggests that there is probably no meaningful distinction between hydrothermal leaching and direct magmatic contributions and that most - if not all - fluids that form VMS deposits should be termed 'magmatic-hydrothermal'.
APA, Harvard, Vancouver, ISO, and other styles
10

Wright, Steven Alan, Thomas M. Conboy, and David E. Ames. CO2-based mixtures as working fluids for geothermal turbines. Office of Scientific and Technical Information (OSTI), January 2012. http://dx.doi.org/10.2172/1049477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography