Journal articles on the topic 'CO2 capture and conversion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CO2 capture and conversion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sullivan, Ian, Andrey Goryachev, Ibadillah A. Digdaya, Xueqian Li, Harry A. Atwater, David A. Vermaas, and Chengxiang Xiang. "Coupling electrochemical CO2 conversion with CO2 capture." Nature Catalysis 4, no. 11 (November 2021): 952–58. http://dx.doi.org/10.1038/s41929-021-00699-7.
Full textTian, Sicong, Feng Yan, Zuotai Zhang, and Jianguo Jiang. "Calcium-looping reforming of methane realizes in situ CO2 utilization with improved energy efficiency." Science Advances 5, no. 4 (April 2019): eaav5077. http://dx.doi.org/10.1126/sciadv.aav5077.
Full textL. de Miranda, Jussara, Luiza C. de Moura, Heitor Breno P. Ferreira, and Tatiana Pereira de Abreu. "The Anthropocene and CO2: Processes of Capture and Conversion." Revista Virtual de Química 10, no. 6 (2018): 1915–46. http://dx.doi.org/10.21577/1984-6835.20180123.
Full textSullivan, Ian, Andrey Goryachev, Ibadillah A. Digdaya, Xueqian Li, Harry A. Atwater, David A. Vermaas, and Chengxiang Xiang. "Author Correction: Coupling electrochemical CO2 conversion with CO2 capture." Nature Catalysis 5, no. 1 (January 2022): 75–76. http://dx.doi.org/10.1038/s41929-022-00734-1.
Full textZhang, Kexin, Dongfang Guo, Xiaolong Wang, Ye Qin, Lin Hu, Yujia Zhang, Ruqiang Zou, and Shiwang Gao. "Sustainable CO2 management through integrated CO2 capture and conversion." Journal of CO2 Utilization 72 (June 2023): 102493. http://dx.doi.org/10.1016/j.jcou.2023.102493.
Full textManiam, Kranthi Kumar, Madhuri Maniam, Luis A. Diaz, Hari K. Kukreja, Athanasios I. Papadopoulos, Vikas Kumar, Panos Seferlis, and Shiladitya Paul. "Progress in Electrodeposited Copper Catalysts for CO2 Conversion to Valuable Products." Processes 11, no. 4 (April 8, 2023): 1148. http://dx.doi.org/10.3390/pr11041148.
Full textNing, Huanghao, Yongdan Li, and Cuijuan Zhang. "Recent Progress in the Integration of CO2 Capture and Utilization." Molecules 28, no. 11 (June 1, 2023): 4500. http://dx.doi.org/10.3390/molecules28114500.
Full textKafi, Maedeh, Hamidreza Sanaeepur, and Abtin Ebadi Amooghin. "Grand Challenges in CO2 Capture and Conversion." Journal of Resource Recovery 1, no. 2 (April 1, 2023): 0. http://dx.doi.org/10.52547/jrr.2302-1007.
Full textHu, Yong, Qian Xu, Yao Sheng, Xueguang Wang, Hongwei Cheng, Xingli Zou, and Xionggang Lu. "The Effect of Alkali Metals (Li, Na, and K) on Ni/CaO Dual-Functional Materials for Integrated CO2 Capture and Hydrogenation." Materials 16, no. 15 (August 2, 2023): 5430. http://dx.doi.org/10.3390/ma16155430.
Full textLiu, Lei, Chang-Ce Ke, Tian-Yi Ma, and Yun-Pei Zhu. "When Carbon Meets CO2: Functional Carbon Nanostructures for CO2 Utilization." Journal of Nanoscience and Nanotechnology 19, no. 6 (June 1, 2019): 3148–61. http://dx.doi.org/10.1166/jnn.2019.16590.
Full textJoshi, N., L. Sivachandiran, and A. A. Assadi. "Perspectives in advance technologies/strategies for combating rising CO2 levels in the atmosphere via CO2 utilisation: A review." IOP Conference Series: Earth and Environmental Science 1100, no. 1 (December 1, 2022): 012020. http://dx.doi.org/10.1088/1755-1315/1100/1/012020.
Full textRath, Gourav Kumar, Gaurav Pandey, Sakshi Singh, Nadezhda Molokitina, Asheesh Kumar, Sanket Joshi, and Geetanjali Chauhan. "Carbon Dioxide Separation Technologies: Applicable to Net Zero." Energies 16, no. 10 (May 15, 2023): 4100. http://dx.doi.org/10.3390/en16104100.
Full textBrettfeld, Eliza Gabriela, Daria Gabriela Popa, Tănase Dobre, Corina Ioana Moga, Diana Constantinescu-Aruxandei, and Florin Oancea. "CO2 Capture Using Deep Eutectic Solvents Integrated with Microalgal Fixation." Clean Technologies 6, no. 1 (December 30, 2023): 32–48. http://dx.doi.org/10.3390/cleantechnol6010003.
Full textZhang, Shuzhen, Celia Chen, Kangkang Li, Hai Yu, and Fengwang Li. "Materials and system design for direct electrochemical CO2 conversion in capture media." Journal of Materials Chemistry A 9, no. 35 (2021): 18785–92. http://dx.doi.org/10.1039/d1ta02751d.
Full textShcherbyna, Yevhen, Oleksandr Novoseltsev, and Tatiana Evtukhova. "Overview of carbon capture, utilisation and storage technologies to ensure low-carbon development of energy systems." System Research in Energy 2022, no. 2 (December 27, 2022): 4–12. http://dx.doi.org/10.15407/srenergy2022.02.004.
Full textAcuña-Girault, Adalberto, Ximena Gómez del Campo-Rábago, Marco Antonio Contreras-Ruiz, and Jorge G. Ibanez. "CO2 capture and conversion: A homemade experimental approach." Journal of Technology and Science Education 12, no. 2 (July 7, 2022): 440. http://dx.doi.org/10.3926/jotse.1610.
Full textKothandaraman, Jotheeswari, and David J. Heldebrant. "Towards environmentally benign capture and conversion: heterogeneous metal catalyzed CO2 hydrogenation in CO2 capture solvents." Green Chemistry 22, no. 3 (2020): 828–34. http://dx.doi.org/10.1039/c9gc03449h.
Full textLin, Roger, Jiaxun Guo, Xiaojia Li, Poojan Patel, and Ali Seifitokaldani. "Electrochemical Reactors for CO2 Conversion." Catalysts 10, no. 5 (April 26, 2020): 473. http://dx.doi.org/10.3390/catal10050473.
Full textTalekar, Sachin, Byung Hoon Jo, Jonathan S. Dordick, and Jungbae Kim. "Carbonic anhydrase for CO2 capture, conversion and utilization." Current Opinion in Biotechnology 74 (April 2022): 230–40. http://dx.doi.org/10.1016/j.copbio.2021.12.003.
Full textHanusch, Jan M., Isabel P. Kerschgens, Florian Huber, Markus Neuburger, and Karl Gademann. "Pyrrolizidines for direct air capture and CO2 conversion." Chemical Communications 55, no. 7 (2019): 949–52. http://dx.doi.org/10.1039/c8cc08574a.
Full textMelo Bravo, Paulina, and Damien P. Debecker. "Combining CO2 capture and catalytic conversion to methane." Waste Disposal & Sustainable Energy 1, no. 1 (April 23, 2019): 53–65. http://dx.doi.org/10.1007/s42768-019-00004-0.
Full textMezza, Alessio, Angelo Pettigiani, Nicolò B. D. Monti, Sergio Bocchini, M. Amin Farkhondehfal, Juqin Zeng, Angelica Chiodoni, Candido F. Pirri, and Adriano Sacco. "An Electrochemical Platform for the Carbon Dioxide Capture and Conversion to Syngas." Energies 14, no. 23 (November 24, 2021): 7869. http://dx.doi.org/10.3390/en14237869.
Full textNorth, M., and P. Styring. "Perspectives and visions on CO2 capture and utilisation." Faraday Discussions 183 (2015): 489–502. http://dx.doi.org/10.1039/c5fd90077h.
Full textSartape, Rohan, Aditya Prajapati, Nishithan Balaji C. Chidambara Kani, and Meenesh R. Singh. "(Invited) Design, Assessment, and Performance Evaluation of an Fully-Integrated Electrochemical Process for Direct Capture of CO2 from Flue Gas and Its Conversion to High-Purity Ethylene." ECS Meeting Abstracts MA2023-01, no. 26 (August 28, 2023): 1718. http://dx.doi.org/10.1149/ma2023-01261718mtgabs.
Full textYang, Zhibin, Ze Lei, Ben Ge, Xingyu Xiong, Yiqian Jin, Kui Jiao, Fanglin Chen, and Suping Peng. "Development of catalytic combustion and CO2 capture and conversion technology." International Journal of Coal Science & Technology 8, no. 3 (June 2021): 377–82. http://dx.doi.org/10.1007/s40789-021-00444-2.
Full textXiao, Yurou Celine, Christine M. Gabardo, Shijie Liu, Geonhui Lee, Yong Zhao, Colin P. O'Brien, Rui Kai Miao, et al. "Integrated Capture and Electrochemical Conversion of CO2 into CO." ECS Meeting Abstracts MA2023-02, no. 47 (December 22, 2023): 2390. http://dx.doi.org/10.1149/ma2023-02472390mtgabs.
Full textRen, Furao, and Weijun Liu. "Review of CO2 Adsorption Materials and Utilization Technology." Catalysts 13, no. 8 (August 1, 2023): 1176. http://dx.doi.org/10.3390/catal13081176.
Full textSaleh, Hosam M., and Amal I. Hassan. "Green Conversion of Carbon Dioxide and Sustainable Fuel Synthesis." Fire 6, no. 3 (March 22, 2023): 128. http://dx.doi.org/10.3390/fire6030128.
Full textLeverick, Graham, and Betar M. Gallant. "Electrochemical Reduction of Amine-Captured CO2 in Aqueous Solutions." ECS Meeting Abstracts MA2023-01, no. 26 (August 28, 2023): 1719. http://dx.doi.org/10.1149/ma2023-01261719mtgabs.
Full textBrunetti, Adele, and Enrica Fontananova. "CO2 Conversion by Membrane Reactors." Journal of Nanoscience and Nanotechnology 19, no. 6 (June 1, 2019): 3124–34. http://dx.doi.org/10.1166/jnn.2019.16649.
Full textZhang, Shuai, and Liang-Nian He. "Capture and Fixation of CO2 Promoted by Guanidine Derivatives." Australian Journal of Chemistry 67, no. 7 (2014): 980. http://dx.doi.org/10.1071/ch14125.
Full textSieradzka, Małgorzata, Ningbo Gao, Cui Quan, Agata Mlonka-Mędrala, and Aneta Magdziarz. "Biomass Thermochemical Conversion via Pyrolysis with Integrated CO2 Capture." Energies 13, no. 5 (February 26, 2020): 1050. http://dx.doi.org/10.3390/en13051050.
Full textZhang, Ruina, Daqing Hu, Ying Zhou, Chunliang Ge, Huayan Liu, Wenyang Fan, Lai Li, et al. "Tuning Ionic Liquid-Based Catalysts for CO2 Conversion into Quinazoline-2,4(1H,3H)-diones." Molecules 28, no. 3 (January 19, 2023): 1024. http://dx.doi.org/10.3390/molecules28031024.
Full textShen, Jialong, and Sonja Salmon. "Biocatalytic Membranes for Carbon Capture and Utilization." Membranes 13, no. 4 (March 23, 2023): 367. http://dx.doi.org/10.3390/membranes13040367.
Full textLee, Hyesung, Tae Wook Kim, Soung Hyoun Kim, Yu-Wei Lin, Chien-Tsung Li, YongMan Choi, and Changsik Choi. "Carbon Dioxide Capture and Product Characteristics Using Steel Slag in a Mineral Carbonation Plant." Processes 11, no. 6 (May 31, 2023): 1676. http://dx.doi.org/10.3390/pr11061676.
Full textBuyukcakir, Onur, Sang Hyun Je, Siddulu Naidu Talapaneni, Daeok Kim, and Ali Coskun. "Charged Covalent Triazine Frameworks for CO2 Capture and Conversion." ACS Applied Materials & Interfaces 9, no. 8 (February 20, 2017): 7209–16. http://dx.doi.org/10.1021/acsami.6b16769.
Full textLi, Ruipeng, Yanfei Zhao, Zhiyong Li, Yunyan Wu, Jianji Wang, and Zhimin Liu. "Choline-based ionic liquids for CO2 capture and conversion." Science China Chemistry 62, no. 2 (November 9, 2018): 256–61. http://dx.doi.org/10.1007/s11426-018-9358-6.
Full textHollingsworth, Nathan, S. F. Rebecca Taylor, Miguel T. Galante, Johan Jacquemin, Claudia Longo, Katherine B. Holt, Nora H. de Leeuw, and Christopher Hardacre. "CO2 capture and electrochemical conversion using superbasic [P66614][124Triz]." Faraday Discussions 183 (2015): 389–400. http://dx.doi.org/10.1039/c5fd00091b.
Full textLiu, Zhi-Wei, and Bao-Hang Han. "Ionic porous organic polymers for CO2 capture and conversion." Current Opinion in Green and Sustainable Chemistry 16 (April 2019): 20–25. http://dx.doi.org/10.1016/j.cogsc.2018.11.008.
Full textZhao, Lan, Hai-Yang Hu, An-Guo Wu, Alexander O. Terent’ev, Liang-Nian He, and Hong-Ru Li. "CO2 capture and in-situ conversion to organic molecules." Journal of CO2 Utilization 82 (April 2024): 102753. http://dx.doi.org/10.1016/j.jcou.2024.102753.
Full textPeres, Christiano B., Pedro M. R. Resende, Leonel J. R. Nunes, and Leandro C. de Morais. "Advances in Carbon Capture and Use (CCU) Technologies: A Comprehensive Review and CO2 Mitigation Potential Analysis." Clean Technologies 4, no. 4 (November 17, 2022): 1193–207. http://dx.doi.org/10.3390/cleantechnol4040073.
Full textPérez-Gallent, Elena, Chirag Vankani, Carlos Sánchez-Martínez, Anca Anastasopol, and Earl Goetheer. "Integrating CO2 Capture with Electrochemical Conversion Using Amine-Based Capture Solvents as Electrolytes." Industrial & Engineering Chemistry Research 60, no. 11 (March 10, 2021): 4269–78. http://dx.doi.org/10.1021/acs.iecr.0c05848.
Full textKhdary, Nezar H., Alhanouf S. Alayyar, Latifah M. Alsarhan, Saeed Alshihri, and Mohamed Mokhtar. "Metal Oxides as Catalyst/Supporter for CO2 Capture and Conversion, Review." Catalysts 12, no. 3 (March 7, 2022): 300. http://dx.doi.org/10.3390/catal12030300.
Full textTan, Wei Jie, and Poernomo Gunawan. "Integration of CO2 Capture and Conversion by Employing Metal Oxides as Dual Function Materials: Recent Development and Future Outlook." Inorganics 11, no. 12 (November 30, 2023): 464. http://dx.doi.org/10.3390/inorganics11120464.
Full textLi, Ying Jie, Xin Xie, Chang Tian Liu, and Sheng Li Niu. "Cyclic Carbonation Properties of CMA as CO2 Sorbent at High Temperatures." Advanced Materials Research 518-523 (May 2012): 655–58. http://dx.doi.org/10.4028/www.scientific.net/amr.518-523.655.
Full textPang, Xueqi, Sumit Verma, Chao Liu, and Daniel V. Esposito. "Electrochemical CO2 Conversion with Packed Bed Membraneless Electrolyzers." ECS Meeting Abstracts MA2022-02, no. 49 (October 9, 2022): 1884. http://dx.doi.org/10.1149/ma2022-02491884mtgabs.
Full textYang, Zhen-Zhen, Ya-Nan Zhao, and Liang-Nian He. "CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion." RSC Advances 1, no. 4 (2011): 545. http://dx.doi.org/10.1039/c1ra00307k.
Full textAkpasi, Stephen Okiemute, and Yusuf Makarfi Isa. "Review of Carbon Capture and Methane Production from Carbon Dioxide." Atmosphere 13, no. 12 (November 24, 2022): 1958. http://dx.doi.org/10.3390/atmos13121958.
Full textRodríguez-Alegre, Rubén, Alba Ceballos-Escalera, Daniele Molognoni, Pau Bosch-Jimenez, David Galí, Edxon Licon, Monica Della Pirriera, Julia Garcia-Montaño, and Eduard Borràs. "Integration of Membrane Contactors and Bioelectrochemical Systems for CO2 Conversion to CH4." Energies 12, no. 3 (January 23, 2019): 361. http://dx.doi.org/10.3390/en12030361.
Full textPapangelakis, Panagiotis, Rui Kai Miao, Ruihu Lu, Adnan Ozden, Shijie Liu, Ning Sun, Colin P. O'Brien, et al. "SO2-Tolerant Electrocatalytic Reduction of CO2 from Simulated Industrial Flue Gas." ECS Meeting Abstracts MA2023-02, no. 47 (December 22, 2023): 2403. http://dx.doi.org/10.1149/ma2023-02472403mtgabs.
Full text