Journal articles on the topic 'CO2-based technology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CO2-based technology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gao, Shiwang, Dongfang Guo, Hongguang Jin, Sheng Li, Jinyi Wang, and Shiqing Wang. "Potassium Carbonate Slurry-Based CO2 Capture Technology." Energy & Fuels 29, no. 10 (September 29, 2015): 6656–63. http://dx.doi.org/10.1021/acs.energyfuels.5b01421.
Full textZhumagaliyeva, А., V. Gargiulo, F. Raganat, Ye Doszhanov, and M. Alfe. "Carbon based nanocomposite material for CO2 capture technology." Горение и Плазмохимия 17, no. 1 (June 5, 2019): 9–13. http://dx.doi.org/10.18321/cpc283.
Full textWang, Xiaolin, Shufan Yang, Hai Zhang, Xingguang Xu, Colin D. Wood, and Wojciech Lipiński. "Amine infused hydrogel-based CO2 gas storage technology for CO2 hydrate-based cold thermal energy storage." Journal of CO2 Utilization 53 (November 2021): 101705. http://dx.doi.org/10.1016/j.jcou.2021.101705.
Full textАрхипов, В. Н., А. А. Анкудинов, А. А. Мочалова, С. А. Ященко, and Г. В. Улыбышев. "CCUS technology from theory to practice." Нефтяная провинция 1, no. 4(36) (December 30, 2023): 166–76. http://dx.doi.org/10.25689/np.2023.4.166-176.
Full textEspatolero, Sergio, and Luis M. Romeo. "Optimization of Oxygen-based CFBC Technology with CO2 Capture." Energy Procedia 114 (July 2017): 581–88. http://dx.doi.org/10.1016/j.egypro.2017.03.1200.
Full textLiu, Xiaolei, Caifang Wu, and Kai Zhao. "Feasibility and Applicability Analysis of CO2-ECBM Technology Based on CO2–H2O–Coal Interactions." Energy & Fuels 31, no. 9 (August 30, 2017): 9268–74. http://dx.doi.org/10.1021/acs.energyfuels.7b01663.
Full textLiu, Yudong, Guizhou Ren, Honghong Shen, Gang Liu, and Fangqin Li. "Technology of CO2 capture and storage." E3S Web of Conferences 118 (2019): 01046. http://dx.doi.org/10.1051/e3sconf/201911801046.
Full textYang, Zhibin, Ze Lei, Ben Ge, Xingyu Xiong, Yiqian Jin, Kui Jiao, Fanglin Chen, and Suping Peng. "Development of catalytic combustion and CO2 capture and conversion technology." International Journal of Coal Science & Technology 8, no. 3 (June 2021): 377–82. http://dx.doi.org/10.1007/s40789-021-00444-2.
Full textIgnatusha, Pavlo, Haiqing Lin, Noe Kapuscinsky, Ludmila Scoles, Weiguo Ma, Bussaraporn Patarachao, and Naiying Du. "Membrane Separation Technology in Direct Air Capture." Membranes 14, no. 2 (January 24, 2024): 30. http://dx.doi.org/10.3390/membranes14020030.
Full textBardeau, Tiphaine, Raphaelle Savoire, Maud Cansell, and Pascale Subra-Paternault. "Recovery of oils from press cakes by CO2-based technology." OCL 22, no. 4 (May 1, 2015): D403. http://dx.doi.org/10.1051/ocl/2015004.
Full textGao, Lu, Ying Zang, Guangwu Zhao, Hengnian Qi, Qizhe Tang, Qingshan Liu, and Liangquan Jia. "Research on the Seed Respiration CO2 Detection System Based on TDLAS Technology." International Journal of Optics 2023 (March 22, 2023): 1–13. http://dx.doi.org/10.1155/2023/8017726.
Full textXing, Yi, Zhiliang Ma, Wei Su, Qunhui Wang, Xiaona Wang, and Hui Zhang. "Analysis of Research Status of CO2 Conversion Technology Based on Bibliometrics." Catalysts 10, no. 4 (March 30, 2020): 370. http://dx.doi.org/10.3390/catal10040370.
Full textPratiwi, Vibianti Dwi, Renanto Renanto, Juwari Juwari, Ali Altway, and Rendra Panca Anugraha. "COST ANALYSIS OF THE PERFORMANCE OF CO2 SEPARATION WITH VARIOUS CO2 CONCENTRATIONS FROM GAS WELLS." Journal of Chemical Technology and Metallurgy 59, no. 4 (July 5, 2024): 935–44. http://dx.doi.org/10.59957/jctm.v59.i4.2024.24.
Full textLiu, Tianqi. "Hydrate-Based Carbon Dioxide Capture Technology in the Ocean: Research Advances and Challenges." Advances in Engineering Technology Research 8, no. 1 (November 15, 2023): 601. http://dx.doi.org/10.56028/aetr.8.1.601.2023.
Full textLou, Di Ming, Si Li Qian, Zhi Yuan Hu, and Pi Qiang Tan. "On-Road Gaseous Emission Characteristics of the Bus Based on DOC + CDPF Technology." Advanced Materials Research 726-731 (August 2013): 2234–40. http://dx.doi.org/10.4028/www.scientific.net/amr.726-731.2234.
Full textManovic, Vasilije, and Edward Anthony. "Improvement of CaO-based sorbent performance for CO2 looping cycles." Thermal Science 13, no. 1 (2009): 89–104. http://dx.doi.org/10.2298/tsci0901089m.
Full textRoth, Elliot A., Sushant Agarwal, and Rakesh K. Gupta. "Nanoclay-Based Solid Sorbents for CO2 Capture." Energy & Fuels 27, no. 8 (March 29, 2013): 4129–36. http://dx.doi.org/10.1021/ef302017m.
Full textJiang, Kaiqi, Hai Yu, Jianglong Yu, and Kangkang Li. "Advancement of ammonia-based post-combustion CO2 capture technology: Process modifications." Fuel Processing Technology 210 (December 2020): 106544. http://dx.doi.org/10.1016/j.fuproc.2020.106544.
Full textYang, Mingjun, Yongchen Song, Lanlan Jiang, Yuechao Zhao, Xuke Ruan, Yi Zhang, and Shanrong Wang. "Hydrate-based technology for CO2 capture from fossil fuel power plants." Applied Energy 116 (March 2014): 26–40. http://dx.doi.org/10.1016/j.apenergy.2013.11.031.
Full textMcLarnon, Christopher R., and Joanna L. Duncan. "Testing of Ammonia Based CO2 Capture with Multi-Pollutant Control Technology." Energy Procedia 1, no. 1 (February 2009): 1027–34. http://dx.doi.org/10.1016/j.egypro.2009.01.136.
Full textJiang, Guodong, Qinglin Huang, Saeed Danaei Kenarsari, Xin Hu, Armistead G. Russell, Maohong Fan, and Xiaodong Shen. "A new mesoporous amine-TiO2 based pre-combustion CO2 capture technology." Applied Energy 147 (June 2015): 214–23. http://dx.doi.org/10.1016/j.apenergy.2015.01.081.
Full textZhang, Siyuan, Chen Liang, Zhiping Zhu, and Ruifang Cui. "Experimental Study on the Thermal Reduction of CO2 by Activated Solid Carbon-Based Fuels." Energies 17, no. 9 (May 1, 2024): 2164. http://dx.doi.org/10.3390/en17092164.
Full textLu, Yanjun, Jinxuan Han, Manping Yang, Xingyu Chen, Hongjian Zhu, and Zhaozhong Yang. "Molecular simulation of supercritical CO2 extracting organic matter from coal based on the technology of CO2-ECBM." Energy 266 (March 2023): 126393. http://dx.doi.org/10.1016/j.energy.2022.126393.
Full textHo, Quyen Bao Thuy, and Akira Suzuki. "TECHNOLOGY OF MUSHROOM CULTIVATION." Vietnam Journal of Science and Technology 57, no. 3 (June 4, 2019): 265. http://dx.doi.org/10.15625/2525-2518/57/3/12954.
Full textFeng, Da-Ming, Ying Sun, Zhao-Qing Liu, Yun-Pei Zhu, and Tian-Yi Ma. "Designing Nanostructured Metal-Based CO2 Reduction Electrocatalysts." Journal of Nanoscience and Nanotechnology 19, no. 6 (June 1, 2019): 3079–96. http://dx.doi.org/10.1166/jnn.2019.16648.
Full textYang, Haoran, Mian Wei, Baodong Wang, Leqi Wang, Qiuyan Chen, Chang Su, Yongcheng Feng, Xing Wang, and Ke Li. "Research on the Influence of a Magnesium-Based Carbon Dioxide Battery System on CO2 Storage Performance." Processes 12, no. 9 (September 4, 2024): 1896. http://dx.doi.org/10.3390/pr12091896.
Full textHamid, Hira, Khurram Jawad, Rizwana Hayat, Shoaib Ghulam, and Shahzad Hussain. "Financial Inclusion, Technology Innovation and CO2 Emissions: International Evidence." Qlantic Journal of Social Sciences and Humanities 5, no. 3 (September 30, 2024): 222–33. http://dx.doi.org/10.55737/qjssh.587103550.
Full textChassé, Melissa, Raktim Sen, Alain Goeppert, G. K. Surya Prakash, and Neil Vasdev. "Polyamine based solid CO2 adsorbents for [11C]CO2 purification and radiosynthesis." Journal of CO2 Utilization 64 (October 2022): 102137. http://dx.doi.org/10.1016/j.jcou.2022.102137.
Full textIshaq, Haris, and Curran Crawford. "CO2‑based alternative fuel production to support development of CO2 capture, utilization and storage." Fuel 331 (January 2023): 125684. http://dx.doi.org/10.1016/j.fuel.2022.125684.
Full textMonni, Noemi, Eduardo Andres-Garcia, Katia Caamaño, Víctor García-López, Juan Modesto Clemente-Juan, Mónica Giménez-Marqués, Mariangela Oggianu, et al. "A thermally/chemically robust and easily regenerable anilato-based ultramicroporous 3D MOF for CO2 uptake and separation." Journal of Materials Chemistry A 9, no. 44 (2021): 25189–95. http://dx.doi.org/10.1039/d1ta07436a.
Full textMurthy, Pradeep S., Weibin Liang, Yijiao Jiang, and Jun Huang. "Cu-Based Nanocatalysts for CO2 Hydrogenation to Methanol." Energy & Fuels 35, no. 10 (May 5, 2021): 8558–84. http://dx.doi.org/10.1021/acs.energyfuels.1c00625.
Full textMetrikaitytė Gudelė, Gustė, and Jūratė Sužiedelytė Visockienė. "APPLICATION OF REMOTE SENSING FOR MONITORING CARBON FARMING: A REVIEW." Mokslas - Lietuvos ateitis 15 (August 21, 2023): 1–6. http://dx.doi.org/10.3846/mla.2023.19396.
Full textHuang, Yuan Sheng, and Jie Xu. "Research on Carbon Emission Measurement of Electricity Sector Based on Scenario Analysis Method." Applied Mechanics and Materials 367 (August 2013): 327–32. http://dx.doi.org/10.4028/www.scientific.net/amm.367.327.
Full textZhang Zhiyan, 张志研, 牛奔 Niu Ben, 高文焱 Gao Wenyan, 侯玮 Hou Wei, and 林学春 Lin Xuechun. "Splicing Technology of Fiber Large Diameter End-Cap Based on CO2 Laser." Chinese Journal of Lasers 41, no. 7 (2014): 0703001. http://dx.doi.org/10.3788/cjl201441.0703001.
Full textRuiz, Claudia, Luis Rincón, Ricardo R. Contreras, Claudio Sidney, and Jorge Almarza. "Sustainable and Negative Carbon Footprint Solid-Based NaOH Technology for CO2 Capture." ACS Sustainable Chemistry & Engineering 8, no. 51 (December 16, 2020): 19003–12. http://dx.doi.org/10.1021/acssuschemeng.0c07093.
Full textYang, Mingjun, Yongchen Song, Lanlan Jiang, Yu Liu, and Xiaojing Wang. "Behaviour of hydrate-based technology for H2/CO2 separation in glass beads." Separation and Purification Technology 141 (February 2015): 170–78. http://dx.doi.org/10.1016/j.seppur.2014.11.019.
Full textNakamura, Shiko, Yasuro Yamanaka, Toshiya Matsuyama, Shinya Okuno, and Hiroshi Sato. "IHI s Amine-Based CO2 Capture Technology for Coal Fired Power Plant." Energy Procedia 37 (2013): 1897–903. http://dx.doi.org/10.1016/j.egypro.2013.06.070.
Full textCarpenter, Chris. "Technology Focus: Drilling and Completion Fluids (November 2024)." Journal of Petroleum Technology 76, no. 11 (November 1, 2024): 72–73. http://dx.doi.org/10.2118/1124-0072-jpt.
Full textIrani, Milad, Mahsa Mehrara, Parisa Mojaver, and Ata Chitsaz. "Post-combustion emission control of a gas turbine cooperated solar assisted CO2 based-reforming utilizing CO2 capture technology." Journal of CO2 Utilization 56 (February 2022): 101847. http://dx.doi.org/10.1016/j.jcou.2021.101847.
Full textLi, Qiaoyun, Zhengfu Ning, Shuhong Wu, Baohua Wang, Qiang Li, and Hua Li. "A Multiphase and Multicomponent Model and Numerical Simulation Technology for CO2 Flooding and Storage." Energies 17, no. 13 (June 30, 2024): 3222. http://dx.doi.org/10.3390/en17133222.
Full textTamilarasan, Saravana Kumar, Jobel Jose, Vignesh Boopalan, Fei Chen, Senthil Kumar Arumugam, Jishnu Chandran Ramachandran, Rajesh Kanna Parthasarathy, Dawid Taler, Tomasz Sobota, and Jan Taler. "Recent Developments in Supercritical CO2-Based Sustainable Power Generation Technologies." Energies 17, no. 16 (August 13, 2024): 4019. http://dx.doi.org/10.3390/en17164019.
Full textWang, Fangtian, and Jinghong Yan. "CO2 Storage and Geothermal Extraction Technology for Deep Coal Mine." Sustainability 14, no. 19 (September 28, 2022): 12322. http://dx.doi.org/10.3390/su141912322.
Full textYatagai, Kohei, Yuto Shishido, Ryota Gemma, Torben Boll, Haru-Hisa Uchida, and Kazuya Oguri. "Mechanochemical CO2 methanation over LaNi-based alloys." International Journal of Hydrogen Energy 45, no. 8 (February 2020): 5264–75. http://dx.doi.org/10.1016/j.ijhydene.2019.07.055.
Full textOribayo, O., A. K. Bashorun, and O. A. George. "A TECHNICAL AND ECONOMIC COMPARISON OF CO2 REMOVAL TECHNOLOGIES IN AMMONIA PRODUCTION PLANTS." Open Journal of Engineering Science (ISSN: 2734-2115) 4, no. 2 (December 31, 2023): 74–88. http://dx.doi.org/10.52417/ojes.v4i2.530.
Full textOuyang, Chao, and Hsiao Wei Chen. "Value Chain Analysis for Microalgae-Based CO2 Capture: A Case Study." Advanced Materials Research 1079-1080 (December 2014): 558–61. http://dx.doi.org/10.4028/www.scientific.net/amr.1079-1080.558.
Full textVadillo, José Manuel, Guillermo Díaz-Sainz, Lucía Gómez-Coma, Aurora Garea, and Angel Irabien. "Chemical and Physical Ionic Liquids in CO2 Capture System Using Membrane Vacuum Regeneration." Membranes 12, no. 8 (August 15, 2022): 785. http://dx.doi.org/10.3390/membranes12080785.
Full textKojčinović, Aleksa, Blaž Likozar, and Miha Grilc. "Sustainable CO2 Fixation onto Bio-Based Aromatics." Sustainability 15, no. 23 (November 26, 2023): 16321. http://dx.doi.org/10.3390/su152316321.
Full textŚwierczek, Konrad, Hailei Zhao, Zijia Zhang, and Zhihong Du. "MIEC-type ceramic membranes for the oxygen separation technology." E3S Web of Conferences 108 (2019): 01021. http://dx.doi.org/10.1051/e3sconf/201910801021.
Full textMałek, Ewelina, Tadeusz Niezgoda, and Danuta Miedzińska. "Development of Porosity Measurement Method Based on Modern Microscopic Techniques." Solid State Phenomena 240 (August 2015): 87–93. http://dx.doi.org/10.4028/www.scientific.net/ssp.240.87.
Full textBrunetti, Adele, and Enrica Fontananova. "CO2 Conversion by Membrane Reactors." Journal of Nanoscience and Nanotechnology 19, no. 6 (June 1, 2019): 3124–34. http://dx.doi.org/10.1166/jnn.2019.16649.
Full text