Dissertations / Theses on the topic 'CNN MODEL'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'CNN MODEL.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Meng, Zhaoxin. "A deep learning model for scene recognition." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-36491.
Full textHubková, Helena. "Named-entity recognition in Czech historical texts : Using a CNN-BiLSTM neural network model." Thesis, Uppsala universitet, Institutionen för lingvistik och filologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-385682.
Full textAl-Kadhimi, Staffan, and Paul Löwenström. "Identification of machine-generated reviews : 1D CNN applied on the GPT-2 neural language model." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280335.
Full textI och med de senaste framstegen inom maskininlärning kan datorer skapa mer och mer övertygande text, vilket skapar en oro för ökad falsk information på internet. Samtidigt vägs detta upp genom att forskare skapar verktyg för att identifiera datorgenererad text. Forskare har kunnat utnyttja svagheter i neurala språkmodeller och använda dessa mot dem. Till exempel tillhandahåller GLTR användare en visuell representation av texter, som hjälp för att klassificera dessa som människo- skrivna eller maskingenererade. Genom att träna ett faltningsnätverk (convolutional neural network, eller CNN) på utdata från GLTR-analys av maskingenererade och människoskrivna filmrecensioner, tar vi GLTR ett steg längre och använder det för att genomföra klassifikationen automatiskt. Emellertid tycks det ej vara tillräckligt att använda en CNN med GLTR som huvuddatakälla för att klassificera på en nivå som är jämförbar med de bästa existerande metoderna.
Huss, Anders. "Hybrid Model Approach to Appliance Load Disaggregation : Expressive appliance modelling by combining convolutional neural networks and hidden semi Markov models." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-179200.
Full textDen ökande energikonsumtionen är en stor utmaning för en hållbar utveckling. Bostäder står för en stor del av vår totala elförbrukning och är en sektor där det påvisats stor potential för besparingar. Non Intrusive Load Monitoring (NILM), dvs. härledning av hushållsapparaters individuella elförbrukning utifrån ett hushålls totala elförbrukning, är en tilltalande metod för att fortlöpande ge detaljerad information om elförbrukningen till hushåll. Detta utgör ett underlag för medvetna beslut och kan bidraga med incitament för hushåll att minska sin miljöpåverakan och sina elkostnader. För att åstadkomma detta måste precisa och tillförlitliga algoritmer för el-disaggregering utvecklas. Denna masteruppsats föreslår ett nytt angreppssätt till el-disaggregeringsproblemet, inspirerat av ledande metoder inom taligenkänning. Tidigare angreppsätt inom NILM (i frekvensområdet 1 Hz) har huvudsakligen fokuserat på olika typer av Markovmodeller (HMM) och enstaka förekomster av artificiella neurala nätverk. En HMM är en naturlig representation av en elapparat, men med uteslutande generativ modellering måste alla apparater modelleras samtidigt. Det stora antalet möjliga apparater och den stora variationen i sammansättningen av dessa mellan olika hushåll utgör en stor utmaning för sådana metoder. Det medför en stark begränsning av komplexiteten och detaljnivån i modellen av respektive apparat, för att de algoritmer som används vid prediktion ska vara beräkningsmässigt möjliga. I denna uppsats behandlas el-disaggregering som ett faktoriseringsproblem, där respektive apparat ska separeras från bakgrunden av andra apparater. För att göra detta föreslås en hybridmodell där ett neuralt nätverk extraherar information som korrelerar med sannolikheten för att den avsedda apparaten är i olika tillstånd. Denna information används som obervationssekvens för en semi-Markovmodell (HSMM). Då detta utförs för en enskild apparat blir det beräkningsmässigt möjligt att använda en mer detaljerad modell av apparaten. Den föreslagna Hybridmodellen utvärderas för uppgiften att avgöra när tvättmaskinen används för totalt 238 dagar av elförbrukningsmätningar från sex olika hushåll. Hybridmodellen presterar betydligt bättre än enbart ett neuralt nätverk, vidare påvisas att prestandan förbättras ytterligare genom att introducera tillstånds-övergång-observationer i HSMM:en.
Laine, Emmi. "Desirability, Values and Ideology in CNN Travel -- Discourse Analysis on Travel Stories." Thesis, Stockholms universitet, Institutionen för mediestudier, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-102742.
Full textAppelstål, Michael. "Multimodal Model for Construction Site Aversion Classification." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-421011.
Full textAnam, Md Tahseen. "Evaluate Machine Learning Model to Better Understand Cutting in Wood." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-448713.
Full textGhibellini, Alessandro. "Trend prediction in financial time series: a model and a software framework." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24708/.
Full textRydén, Anna, and Amanda Martinsson. "Evaluation of 3D motion capture data from a deep neural network combined with a biomechanical model." Thesis, Linköpings universitet, Institutionen för medicinsk teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176543.
Full textGerima, Kassaye. "Night Setback Identification of District Heating Substations." Thesis, Högskolan Dalarna, Mikrodataanalys, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:du-36071.
Full textSievert, Rolf. "Instance Segmentation of Multiclass Litter and Imbalanced Dataset Handling : A Deep Learning Model Comparison." Thesis, Linköpings universitet, Datorseende, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-175173.
Full textZhong, Shifa. "Permanganate Reaction Kinetics and Mechanisms and Machine Learning Application in Oxidative Water Treatment." Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1618686803768471.
Full textKovář, Pavel. "Model CNC frézky." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219700.
Full textViebke, André. "Accelerated Deep Learning using Intel Xeon Phi." Thesis, Linnéuniversitetet, Institutionen för datavetenskap (DV), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-45491.
Full textNixdorf, Timothy Allen. "A Mathematical Model for Carbon Nanoscrolls." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1406060123.
Full textOrnstein, Charlotte, and Karin Sandahl. "Coopetition and business models : How can they be integrated, and what effect does it have on value creation, delivery and capture?" Thesis, Umeå universitet, Företagsekonomi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-105963.
Full textTruzzi, Stefano. "Event classification in MAGIC through Convolutional Neural Networks." Doctoral thesis, Università di Siena, 2022. http://hdl.handle.net/11365/1216295.
Full textLind, Johan. "Evaluating CNN-based models for unsupervised image denoising." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176092.
Full textSöderström, Douglas. "Comparing pre-trained CNN models on agricultural machines." Thesis, Umeå universitet, Institutionen för fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-185333.
Full textVenne, Simon. "Can Species Distribution Models Predict Colonizations and Extinctions?" Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38465.
Full textKurbanoglu, Ozgur. "Electric Energy Policy Models In The European Union: Can There Be A Model For Turkey?" Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12605585/index.pdf.
Full textG8 countries in the European Union). The result of the study shows that the energy pool applied in England and Wales of the United Kingdom is a successful example, and it can be used for electricity policy along with some other developments in the field. The work tries to propose a model for the reform to be done, for the benefit of the society.
Du, Chenguang. "How Well Can Two-Wave Models Recover the Three-Wave Second Order Latent Model Parameters?" Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103856.
Full textDoctor of Philosophy
To collect and analyze the longitudinal data is a very important approach to understand the phenomenon of development in the real world. Ideally, researchers who are interested in using a longitudinal framework would prefer collecting data at more than two points in time because it can provide a deeper understanding of the developmental processes. However, in real scenarios, data may only be collected at two-time points. With only two-wave data, the second-order latent growth model (SOLGM) could not be used. The current dissertation compared the performance of two-wave models (longitudinal common factor model and latent change score model) with the three-wave SOLGM in order to better understand how the estimation quality of two-wave models could be comparable to the tree-wave model. The results show that on average, the estimation from two-wave models is identical to the ones from the three-wave model. So in real data analysis with only one sample, the point estimate by two-wave models should be very closed to that of the three-wave model. But this estimation may not be as accurate as it is obtained by the three-wave model when the latent variable has large variability in the first or last time point. This latent variable is more likely to exist as a statelike construct in the real world. Therefore, the current study could provide a reference framework for substantial researchers who could only have access to two-wave data but are still interested in estimating the growth effect that supposed to obtain by three-wave SOLGM.
Norlund, Tobias. "The Use of Distributional Semantics in Text Classification Models : Comparative performance analysis of popular word embeddings." Thesis, Linköpings universitet, Datorseende, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127991.
Full textKeating, Daniel. "Model Checking Time Triggered CAN Protocols." Thesis, University of Canterbury. Electrical and Computer Engineering, 2011. http://hdl.handle.net/10092/5754.
Full textOndroušek, Jakub. "Ekonometrický model cen bytů v Brně." Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2019. http://www.nusl.cz/ntk/nusl-399645.
Full textMutarelli, Rita de Cássia. "Estudo da responsabilidade social do Instituto de Pesquisas Energéticas e Nucleares de São Paulo (IPEN/CNEN - SP)." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/85/85133/tde-16072014-141824/.
Full textOver the years, the socio-environmental concept has grown through programs, conferences and several activities that have been held in Brazil and worldwide. Sustainability and social responsibility are now an integral part of everyday life of organizations The Instituto de Pesquisas Energéticas e Nucleares (IPEN)2, which is the focus of this research, is committed to the improvement of Brazilian quality of life. Based on IPEN´s mission, and due to the lack of tools for assessing socio-environmental actions, this research aims to propose an assessment tool for social responsibility, which may also be a methodological resource committed to the improvement of the Institute. Through indicators and dimensions, a methodology to assess social responsibility and identify both strengths and weaknesses was designed. The methodology was administered to IPEN, and the results demonstrated positive aspects regarding actions towards the internal publics and negative aspects towards the external publics that require improvement. The results obtained were satisfactory. Nevertheless, as the subject of this study is a broad theme, further studies are suggested. IPEN´s board may use the results of this research as a tool to help them identify feasible socio-environmental actions to be implemented in the institute.
Tenruh, Mahmut. "Extending Controller Area Networks : CAN/CAN cut-through bridging, CAN over ATM, and CAN based ATM FieldBus." Thesis, University of Sussex, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340796.
Full textTruong, Quan, and trunongluongquan@yahoo com au. "Continuous-time Model Predictive Control." RMIT University. Electrical and Computer Engineering, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20090813.163701.
Full textSuresh, Sreerag. "An Analysis of Short-Term Load Forecasting on Residential Buildings Using Deep Learning Models." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99287.
Full textMaster of Science
Building energy load forecasting is becoming an increasingly important task with the rapid deployment of smart homes, integration of renewables into the grid and the advent of decentralized energy systems. Residential load forecasting has been a challenging task since residential load is highly stochastic. Deep learning models have showed tremendous promise in the fields of time-series and sequential data and have been successfully used in the field of short-term load forecasting. Although, other studies have looked at using deep learning models for building energy forecasting, most of those studies have looked at only a single home or an aggregate load of a collection of homes. This study aims to address this gap and serve as an analysis on short term load forecasting on 3 communities of residential buildings. Detailed analysis on the model performances across all homes have been studied. Deep learning models have been used in this study and their efficacy is measured compared to a simple ANN model.
Vichare, Parag. "A novel methodology for modelling CNC machining system resources." Thesis, University of Bath, 2009. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.518102.
Full textNuthmann, Antje, Wolfgang Einhäuser, and Immo Schütz. "How Well Can Saliency Models Predict Fixation Selection in Scenes Beyond Central Bias? A New Approach to Model Evaluation Using Generalized Linear Mixed Models." Universitätsbibliothek Chemnitz, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-232614.
Full textŠmerda, Ondřej. "Návrh koncepce leteckého motoru na CNG." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-401574.
Full textSivaraman, Gokul. "Development of PMSM and drivetrain models in MATLAB/Simulink for Model Based Design." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301027.
Full textTestning av regulatorernas inställningar med hänsyn till snabbhet och noggrannhet i momentreglering är avgörande i trefasiga drivsystem för elektriska fordon. Oftast är det bättre att simulera i stället för att utföra experimentella tester där komponenter kan skadas på grund av fysisk stress. Detta kallas för Model Based Design (MBD). MBD är an effektiv metod för utformningen av styrningen som kan leda till kostnadsbesparingar på 25%-30% och tidsbesparingar på 35%-40% enligt en studie från Altran Technologies i samarbete med Tekniska universitet i München, TUM. Detta examensarbete behandlar en modell för en synkronmaskin med permanentmagneter (PMSM) samt en modell för drivlinan utvecklad i Matlab/Simulink för MBD. PMSMs modellen inkluderar magnetisk mättnad och tvärkoppling, MMF övervågor och temperatur. Två PMSM modeller har utvecklats. Den första baseras på magnetiskt flöde som erhålls från finita element beräkningar i COMSOL Multiphysics medan den andra bygger på induktanser givna från datablad. En jämförelse av dessa PMSM-modeller med konventionella low fidelity-modeller har också gjorts för att illustrera påverkan temperaturberoende och MMF övervågor. Modellerna kan kombineras med en växelriktarmodell för att utveckla en hel styrenhet. Lågfrekventa oscillationer i drivlinan leder till vibrationer som kan orsaka vridspänningar och försämra komforten i elfordonet. En aktiv dämpningsregulator kan implementeras för att kontrollera spänningarna men en mekanisk drivlinemodell med tre massor och en ABS (anti-lock braking system) hastighetssensor behövs. Den mekaniska modellen har implementerats och analyserats även beaktande en modell för en CAN kommunikationskanal. Oscillationer med låg frekvens kunde observeras i modellen.
TAORMINA, Vincenzo. "DEVELOPMENT AND IMPLEMENTATION OF MACHINE LEARNING METHODS FOR THE IIF IMAGES ANALYSIS." Doctoral thesis, Università degli Studi di Palermo, 2021. http://hdl.handle.net/10447/479046.
Full textThomas, Kerry J. "Teaching Mathematical Modelling to Tomorrow's Mathematicians or, You too can make a million dollars predicting football results." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-83131.
Full textBrien, Jeffrey. "Mixed Emotions: Can People Feel Happy and Sad at the Same Time?" Thesis, Boston College, 2003. http://hdl.handle.net/2345/426.
Full textI studied whether or not people can feel happy and sad at the same moment in time. Participants used a computerized procedure to continuously rate their feelings as they viewed backwardly masked faces designed to elicit pleasant, unpleasant, or mixed feelings. The backward masking procedure and grid were poorly calibrated as participants found all conditions to be unpleasant. Evidence is presented that participants did not perceive the mask faces as neutral. Directions for future studies are discussed
Thesis (BA) — Boston College, 2003
Submitted to: Boston College. College of Arts and Sciences
Discipline: Psychology
Discipline: College Honors Program
Abalos, Choque Melisa. "Modelo Arima con intervenciones." Universidad Mayor de San Andrés. Programa Cybertesis BOLIVIA, 2009. http://www.cybertesis.umsa.bo:8080/umsa/2009/abalos_cme/html/index-frames.html.
Full textThomas, Kerry J. "Teaching Mathematical Modelling to Tomorrow''s Mathematicians or, You too can make a million dollars predicting football results." Turning dreams into reality: transformations and paradigm shifts in mathematics education. - Grahamstown: Rhodes University, 2011. - S. 334 - 339, 2012. https://slub.qucosa.de/id/qucosa%3A1949.
Full textTůmová, Petra. "Konstrukce předpovědních modelů cen zlata a stříbra." Master's thesis, Česká zemědělská univerzita v Praze, 2016. http://www.nusl.cz/ntk/nusl-260507.
Full textKim, Taejung 1969. "Time-optimal CNC tool paths : a mathematical model of machining." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8861.
Full textIncludes bibliographical references (p. 181-188).
Free-form surface machining is a fundamental but time-consuming process in modern manufacturing. The central question we ask in this thesis is how to reduce the time that it takes for a 5-axis CNC (Computer Numerical Control) milling machine to sweep an entire free-form surface in its finishing stage. We formulate a non-classical variational time-optimization problem defined on a 2-dimensional manifold subject to both equality and inequality constraints. The machining time is the cost functional in this optimization problem. We seek for a preferable vector field on a surface to obtain skeletal information on the toolpaths. This framework is more amenable to the techniques of continuum mechanics and differential geometry rather than to path generation and conventional CAD/CAM (Computer Aided Design and Manufacturing) theory. After the formulation, this thesis derives the necessary conditions for optimality. We decompose the problem into a series of optimization problems defined on 1-dimensional streamlines of the vector field and, as a result, simplify the problem significantly. The anisotropy in kinematic performance has a practical importance in high-speed machining. The greedy scheme, which this thesis implements for a parallel hexapod machine tool, uses the anisotropy for finding a preferable vector field.
(cont.) Numerical integration places tool paths along its integral curves. The gaps between two neighboring toolpaths are controlled so that the surface can be machined within a specified tolerance. A conservation law together with the characteristic theory for partial differential equations comes into play in finding appropriately-spaced toolpaths, avoiding unnecessarily-overlapping areas. Since the greedy scheme is based on a local approximation and does not search for the global optimum, it is necessary to judge how well the greedy paths perform. We develop an approximation theory and use it to economically evaluate the performance advantage of the greedy paths over other standard schemes. In this thesis, we achieved the following two objectives: laying down the theoretical basis for surface machining and finding a practical solution for the machining problem. Future work will address solving the optimization problem in a stricter sense.
by Taejung Kim.
Ph.D.
Sztendel, Sebastian. "Model referenced condition monitoring of high performance CNC machine tools." Thesis, University of Huddersfield, 2016. http://eprints.hud.ac.uk/id/eprint/34112/.
Full textHamouzová, Michaela. "Analýza vývoje cen nemovitostí v České republice." Master's thesis, Vysoká škola ekonomická v Praze, 2016. http://www.nusl.cz/ntk/nusl-264620.
Full textStatham, Craig G. "An open CNC interface for intelligent control of grinding." Thesis, Liverpool John Moores University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313100.
Full textSrinivasan, Srikant. "A Compact Model for the Coaxially Gated Schottky Barrier Carbon Nanotube Field Effect Transistor." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1161897189.
Full textVopatřilová, Lenka. "Podnik v regulovaném vodohospodářském odvětví." Master's thesis, Vysoká škola ekonomická v Praze, 2011. http://www.nusl.cz/ntk/nusl-113498.
Full textGUPTA, RASHI. "IMAGE FORGERY DETECTION USING CNN MODEL." Thesis, 2022. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19175.
Full textLIAO, PEN-MIN, and 廖本閔. "Streamflow Forecasting by CNN-GRU Model." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/8rs76r.
Full text逢甲大學
水利工程與資源保育學系
107
During the last two decades, the application of artificial intelligence in the field of flood forecasting has increased noticeably. Since the information of flood forecasting is the most important part of disaster management, also the emergency response and the mechanism of Recurrent Neural Network (RNN) include the behavior of the time series, this study attempt to adopt the Gated Recurrent Unit (GRU) which is a type of RNN used to develop a rainfall-runoff model for the mentioned purpose above. In this research RNN is using Gated Recurrent Unit (GRU). In each field, applicability of GRU is still in researching. Thereby, this paper will discuss the application GRU in the flood forecast. In order to improve the prediction accuracy of the GRU, the data is processed by using the Convolutional Neural Network (CNN) and then input into the GRU for prediction, called CNN-GRU. In the past, most studies used to extract every rainfall from the data before learning artificial neural networks for flood flow prediction. However this study will use a different approach, because GRU cell can remember the status from past. In addition, optimal hyperparameters setting for artificial neural networks will be found by genetic algorithm (GA) to modeling Dali River hourly rainfall-runoff model. Evaluation indicators show that CNN-GRU is better than GRU, the evaluation indicators show that CNN-GRU is better than GRU, because CNN-GRU uses CNN to extract eigenvalues from input data before using GRU for prediction.
Lin, Chun-Man, and 林君蔓. "Apparent Age Estimation Based on CNN Model." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/g9wspb.
Full text國立東華大學
資訊工程學系
107
Age estimation has been one of hot topics in computer vision. Identifying personal characteristics such as age, personal identity, gender, and ethnicity through images is an interesting but challenging problem. In recent years, age estimation has become an attractive research topic because it can be widely applied to human life. For example: (1) devices with age recognition can automatically filter age-restricted products, such as cigarettes and alcohol. (2) Since shopping habit and preferences of different age groups are very different, the automatic collection of age data can provide relevant information for market analysis, such as Electronic customer relationship management (ECRM). (3) Age is a biological feature that can be used to assist major biometrics to improve the accuracy of human recognition, verification or authentication applications. As deep learning is widely used in the computer vision, the accuracy of age estimation is also increasing. Early CNN-based works used four to five layers for depth; however, current works adopts a deeper structure and it results in more accurate results. This thesis proposes an age estimation system based on CNN deep learning architecture. The proposed system is modified from DEX system of which VGG16 is adopted as the learning core. We incorporate a multi-loss function which takes into accout the losses of softmax, mean and variance. In the experiments, we show the performance on the apparent database ChaLearn LAP (2015). Moreover, the proposed system is also tested on the real age databases, i.e. AFAD and MORPH II. Experimental results show that the system has a better performance in both the apparent and real age databases.
SONI, ANKIT. "DETECTING DEEPFAKES USING HYBRID CNN-RNN MODEL." Thesis, 2022. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19168.
Full textHuang, Ya-Bo, and 黃雅博. "Perceptual-Based CNN Model for Watercolor Mixing Prediction." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/nf4394.
Full text國立臺灣大學
資訊工程學研究所
107
In the paper, we propose a model to predict the mixture of watercolor pigments using convolutional neural networks (CNN). With a watercolor dataset, we train our model to minimize the loss function of sRGB differences. In metric of color difference ∆ELab, our model achieves 88.7% of data that ∆ELab < 5 on the test set, which means the difference cannot easily be detected by the human eye. In addition, an interesting phenomenon is found; Even if the reflectance curve of the predicted color is not as smooth as the ground truth curve, the RGB color is still close to the ground truth.