Academic literature on the topic 'CNN MODEL'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CNN MODEL.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "CNN MODEL"
Prasad, G. Shyam Chandra, and K. Adi Narayana Reddy. "Sentiment Analysis Using Multi-Channel CNN-LSTM Model." Journal of Advanced Research in Dynamical and Control Systems 11, no. 12-SPECIAL ISSUE (December 31, 2019): 489–94. http://dx.doi.org/10.5373/jardcs/v11sp12/20193243.
Full textHasan, Moh Arie, Yan Riyanto, and Dwiza Riana. "Grape leaf image disease classification using CNN-VGG16 model." Jurnal Teknologi dan Sistem Komputer 9, no. 4 (July 5, 2021): 218–23. http://dx.doi.org/10.14710/jtsiskom.2021.14013.
Full textChoi, Jiwoo, Sangil Choi, and Taewon Kang. "Personal Identification CNN Model using Gait Cycle." Journal of Korean Institute of Information Technology 20, no. 11 (November 30, 2022): 127–36. http://dx.doi.org/10.14801/jkiit.2022.20.11.127.
Full textSen, Amit Prakash, Nirmal Kumar Rout, Tuhinansu Pradhan, and Amrit Mukherjee. "Hybrid Deep CNN Model for the Detection of COVID-19." Indian Journal Of Science And Technology 15, no. 41 (November 5, 2022): 2121–28. http://dx.doi.org/10.17485/ijst/v15i41.1421.
Full textVyshnavi, Ramineni, and Goo-Rak Kwon. "A Comparative Study of the CNN Model for AD Diagnosis." Korean Institute of Smart Media 12, no. 7 (August 31, 2023): 52–58. http://dx.doi.org/10.30693/smj.2023.12.7.52.
Full textTajalsir, Mohammed, Susana Mu˜noz Hern´andez, and Fatima Abdalbagi Mohammed. "ASERS-CNN: Arabic Speech Emotion Recognition System based on CNN Model." Signal & Image Processing : An International Journal 13, no. 1 (February 28, 2022): 45–53. http://dx.doi.org/10.5121/sipij.2022.13104.
Full textEt. al., Ms K. N. Rode,. "Unsupervised CNN model for Sclerosis Detection." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 2 (April 10, 2021): 2577–83. http://dx.doi.org/10.17762/turcomat.v12i2.2223.
Full textKamundala, Espoir K., and Chang Hoon Kim. "CNN Model to Classify Malware Using Image Feature." KIISE Transactions on Computing Practices 24, no. 5 (May 31, 2018): 256–61. http://dx.doi.org/10.5626/ktcp.2018.24.5.256.
Full textLee, Seonggu, and Jitae Shin. "Hybrid Model of Convolutional LSTM and CNN to Predict Particulate Matter." International Journal of Information and Electronics Engineering 9, no. 1 (March 2019): 34–38. http://dx.doi.org/10.18178/ijiee.2019.9.1.701.
Full textSrinivas, Dr Kalyanapu, and Reddy Dr.B.R.S. "Deep Learning based CNN Optimization Model for MR Braing Image Segmentation." Journal of Advanced Research in Dynamical and Control Systems 11, no. 11 (November 20, 2019): 213–20. http://dx.doi.org/10.5373/jardcs/v11i11/20193190.
Full textDissertations / Theses on the topic "CNN MODEL"
Meng, Zhaoxin. "A deep learning model for scene recognition." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-36491.
Full textHubková, Helena. "Named-entity recognition in Czech historical texts : Using a CNN-BiLSTM neural network model." Thesis, Uppsala universitet, Institutionen för lingvistik och filologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-385682.
Full textAl-Kadhimi, Staffan, and Paul Löwenström. "Identification of machine-generated reviews : 1D CNN applied on the GPT-2 neural language model." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280335.
Full textI och med de senaste framstegen inom maskininlärning kan datorer skapa mer och mer övertygande text, vilket skapar en oro för ökad falsk information på internet. Samtidigt vägs detta upp genom att forskare skapar verktyg för att identifiera datorgenererad text. Forskare har kunnat utnyttja svagheter i neurala språkmodeller och använda dessa mot dem. Till exempel tillhandahåller GLTR användare en visuell representation av texter, som hjälp för att klassificera dessa som människo- skrivna eller maskingenererade. Genom att träna ett faltningsnätverk (convolutional neural network, eller CNN) på utdata från GLTR-analys av maskingenererade och människoskrivna filmrecensioner, tar vi GLTR ett steg längre och använder det för att genomföra klassifikationen automatiskt. Emellertid tycks det ej vara tillräckligt att använda en CNN med GLTR som huvuddatakälla för att klassificera på en nivå som är jämförbar med de bästa existerande metoderna.
Huss, Anders. "Hybrid Model Approach to Appliance Load Disaggregation : Expressive appliance modelling by combining convolutional neural networks and hidden semi Markov models." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-179200.
Full textDen ökande energikonsumtionen är en stor utmaning för en hållbar utveckling. Bostäder står för en stor del av vår totala elförbrukning och är en sektor där det påvisats stor potential för besparingar. Non Intrusive Load Monitoring (NILM), dvs. härledning av hushållsapparaters individuella elförbrukning utifrån ett hushålls totala elförbrukning, är en tilltalande metod för att fortlöpande ge detaljerad information om elförbrukningen till hushåll. Detta utgör ett underlag för medvetna beslut och kan bidraga med incitament för hushåll att minska sin miljöpåverakan och sina elkostnader. För att åstadkomma detta måste precisa och tillförlitliga algoritmer för el-disaggregering utvecklas. Denna masteruppsats föreslår ett nytt angreppssätt till el-disaggregeringsproblemet, inspirerat av ledande metoder inom taligenkänning. Tidigare angreppsätt inom NILM (i frekvensområdet 1 Hz) har huvudsakligen fokuserat på olika typer av Markovmodeller (HMM) och enstaka förekomster av artificiella neurala nätverk. En HMM är en naturlig representation av en elapparat, men med uteslutande generativ modellering måste alla apparater modelleras samtidigt. Det stora antalet möjliga apparater och den stora variationen i sammansättningen av dessa mellan olika hushåll utgör en stor utmaning för sådana metoder. Det medför en stark begränsning av komplexiteten och detaljnivån i modellen av respektive apparat, för att de algoritmer som används vid prediktion ska vara beräkningsmässigt möjliga. I denna uppsats behandlas el-disaggregering som ett faktoriseringsproblem, där respektive apparat ska separeras från bakgrunden av andra apparater. För att göra detta föreslås en hybridmodell där ett neuralt nätverk extraherar information som korrelerar med sannolikheten för att den avsedda apparaten är i olika tillstånd. Denna information används som obervationssekvens för en semi-Markovmodell (HSMM). Då detta utförs för en enskild apparat blir det beräkningsmässigt möjligt att använda en mer detaljerad modell av apparaten. Den föreslagna Hybridmodellen utvärderas för uppgiften att avgöra när tvättmaskinen används för totalt 238 dagar av elförbrukningsmätningar från sex olika hushåll. Hybridmodellen presterar betydligt bättre än enbart ett neuralt nätverk, vidare påvisas att prestandan förbättras ytterligare genom att introducera tillstånds-övergång-observationer i HSMM:en.
Laine, Emmi. "Desirability, Values and Ideology in CNN Travel -- Discourse Analysis on Travel Stories." Thesis, Stockholms universitet, Institutionen för mediestudier, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-102742.
Full textAppelstål, Michael. "Multimodal Model for Construction Site Aversion Classification." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-421011.
Full textAnam, Md Tahseen. "Evaluate Machine Learning Model to Better Understand Cutting in Wood." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-448713.
Full textGhibellini, Alessandro. "Trend prediction in financial time series: a model and a software framework." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24708/.
Full textRydén, Anna, and Amanda Martinsson. "Evaluation of 3D motion capture data from a deep neural network combined with a biomechanical model." Thesis, Linköpings universitet, Institutionen för medicinsk teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176543.
Full textGerima, Kassaye. "Night Setback Identification of District Heating Substations." Thesis, Högskolan Dalarna, Mikrodataanalys, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:du-36071.
Full textBooks on the topic "CNN MODEL"
Greene, Carol. I can be a model. Chicago: Childrens Press, 1985.
Find full textGreene, Carol. I can be a model. Chicago: Childrens Press, 1985.
Find full textTrackside scenes you can model. Waukesha, WI: Kalmbach Books, 2003.
Find full textGreene, Carol. I can be a model. Chicago: Childrens Press, 1985.
Find full textEngel, Charles. Can the Markov switching model forecast exchange rates? Cambridge, MA: National Bureau of Economic Research, 1992.
Find full textDanna, Theresa M. Rollover, Mona Lisa!: How anyone can model for artists. Beverly Hills, CA: Big Guy Pub., 1992.
Find full textGestures Can Create Models that Help Thinking. [New York, N.Y.?]: [publisher not identified], 2019.
Find full textThe can do workplace: A strength-based model for nonprofits. Melbourne, Florida: Motivational Press, 2015.
Find full textSutherland, H. Constructing a tax-benefit model: What advice can one give? London: Taxation, Incentives and the Distribution of Income Programme, Suntory-Toyota International Centre for Economics and Related Disciplines, London School of Economics, 1989.
Find full textPenalver, Adrian. How can the IMF catalyse private capital flows? A model. London: Bank of England, 2004.
Find full textBook chapters on the topic "CNN MODEL"
Beniwal, Rohit, Divyakshi Bhardwaj, Bhanu Pratap Raghav, and Dhananjay Negi. "Text Similarity Identification Based on CNN and CNN-LSTM Model." In Second International Conference on Sustainable Technologies for Computational Intelligence, 47–58. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4641-6_5.
Full textZhang, Shizhou, Yihong Gong, Jinjun Wang, and Nanning Zheng. "A Biologically Inspired Deep CNN Model." In Lecture Notes in Computer Science, 540–49. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48890-5_53.
Full textSaadat, Sumaya, and V. Joseph Raymond. "Malware Classification Using CNN-XGBoost Model." In Artificial Intelligence Techniques for Advanced Computing Applications, 191–202. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5329-5_19.
Full textMoin, Kashif, Mayank Shrivastava, Amlan Mishra, Lambodar Jena, and Soumen Nayak. "Diabetic Retinopathy Detection Using CNN Model." In Smart Innovation, Systems and Technologies, 133–43. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6068-0_13.
Full textChen, Xutong. "CNN Model Optimization Cheme and Applications." In Lecture Notes in Electrical Engineering, 1771–77. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5959-4_216.
Full textGoswami, Tilottama, and Shashidhar Reddy Javaji. "CNN Model for American Sign Language Recognition." In Lecture Notes in Electrical Engineering, 55–61. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7961-5_6.
Full textZhang, Ru, Hao Dong, Zhen Yang, Wenbo Ying, and Jianyi Liu. "A CNN Based Visual Audio Steganography Model." In Lecture Notes in Computer Science, 431–42. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06794-5_35.
Full textSakshi, Chetan Sharma, and Vinay Kukreja. "CNN-Based Handwritten Mathematical Symbol Recognition Model." In Cyber Intelligence and Information Retrieval, 407–16. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4284-5_35.
Full textDas, Parimita, Dipak Kumar Sahoo, and Biswa Mohan Acharya. "Environmental Pollution Detection Mechanism Using CNN Model." In Lecture Notes in Networks and Systems, 476–82. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4807-6_45.
Full textKolla, Morarjee, and T. Venugopal. "Diabetic Retinopathy Classification Using Lightweight CNN Model." In Lecture Notes in Electrical Engineering, 1263–69. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7985-8_131.
Full textConference papers on the topic "CNN MODEL"
Ben Alaya, Karim, and Laszlo Czuni. "CNN-based Tree Model Extraction." In 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). IEEE, 2021. http://dx.doi.org/10.1109/idaacs53288.2021.9660841.
Full textTambi, Ritiz, Paul Li, and Jun Yang. "An efficient CNN model for transportation mode sensing." In SenSys '18: The 16th ACM Conference on Embedded Networked Sensor Systems. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3274783.3275160.
Full textNagy, Zoltan, Laszlo Kek, Zoltan Kincses, and Peter Szolgay. "CNN model on cell multiprocessor array." In 2007 European Conference on Circuit Theory and Design (ECCTD 2007). IEEE, 2007. http://dx.doi.org/10.1109/ecctd.2007.4529590.
Full textFuredi, Laszlo, and Peter Szolgay. "CNN model on stream processing platform." In 2009 European Conference on Circuit Theory and Design (ECCTD 2009). IEEE, 2009. http://dx.doi.org/10.1109/ecctd.2009.5275115.
Full textSun, Yuxuan, Jining Xie, Pujie Li, and Bowei Sun. "BLSTM-CNN Relationship Classification Network Model." In 2021 IEEE 11th International Conference on Electronics Information and Emergency Communication (ICEIEC). IEEE, 2021. http://dx.doi.org/10.1109/iceiec51955.2021.9463812.
Full textDiana, Mery, Juntaro Chikama, Motoki Amagasaki, Masahiro Iida, and Morihiro Kuga. "Characteristic Similarity Using Classical CNN Model." In 2019 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). IEEE, 2019. http://dx.doi.org/10.1109/itc-cscc.2019.8793442.
Full textSzolgay, Peter, and Zoltan Nagy. "A CNN motivated array computing model." In 2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010). IEEE, 2010. http://dx.doi.org/10.1109/cnna.2010.5430341.
Full textSlavova, Angela. "Memristor CNN Model for Image Denoising." In 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE, 2019. http://dx.doi.org/10.1109/icecs46596.2019.8964780.
Full textTan, Jiaxing, Yongfeng Gao, Weiguo Cao, Marc Pomeroy, Shu Zhang, Yumei Huo, Lihong Li, and Zhengrong Liang. "GLCM-CNN: Gray Level Co-occurrence Matrix based CNN Model for Polyp Diagnosis." In 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). IEEE, 2019. http://dx.doi.org/10.1109/bhi.2019.8834585.
Full textZhang, Chenkai, Yuki Okafuji, and Takahiro Wada. "Evaluation of visualization performance of CNN models using driver model." In 2021 IEEE/SICE International Symposium on System Integration (SII). IEEE, 2021. http://dx.doi.org/10.1109/ieeeconf49454.2021.9382776.
Full textReports on the topic "CNN MODEL"
Slavova, Angela, and Nikolay Kyurkchiev. On CNN Model of Black–Scholes Equation with Leland Correction. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, January 2018. http://dx.doi.org/10.7546/crabs.2018.02.03.
Full textSlavova, Angela, and Nikolay Kyurkchiev. On CNN Model of Black–Scholes Equation with Leland Correction. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2018. http://dx.doi.org/10.7546/grabs2018.2.03.
Full textMbani, Benson, Valentin Buck, and Jens Greinert. Megabenthic Fauna Detection with Faster R-CNN (FaunD-Fast) Short description of the research software. GEOMAR, 2023. http://dx.doi.org/10.3289/sw_1_2023.
Full textZhang, Yongping, Wen Cheng, and Xudong Jia. Enhancement of Multimodal Traffic Safety in High-Quality Transit Areas. Mineta Transportation Institute, February 2021. http://dx.doi.org/10.31979/mti.2021.1920.
Full textBarhak, Jacob. Supplemental Information: The Reference Model is a Multi-Scale Ensemble Model of COVID-19. Outbreak, May 2021. http://dx.doi.org/10.34235/b7eaa32b-1a6b-444f-9848-76f83f5a733c.
Full textNovy-Marx, Robert. How Can a Q-Theoretic Model Price Momentum? Cambridge, MA: National Bureau of Economic Research, February 2015. http://dx.doi.org/10.3386/w20985.
Full textEngel, Charles. Can the Markov Switching Model Forecast Exchange Rates? Cambridge, MA: National Bureau of Economic Research, November 1992. http://dx.doi.org/10.3386/w4210.
Full textCochrane, John. Can Learnability Save New-Keynesian Models? Cambridge, MA: National Bureau of Economic Research, October 2009. http://dx.doi.org/10.3386/w15459.
Full textde Miguel Beriain, Iñigo, Aliuska Duardo Sánchez, and José Antonio Castillo Parrilla. What Can We Do with the Data of Deceased People? A Normative Proposal. Universitätsbibliothek J. C. Senckenberg, Frankfurt am Main, 2021. http://dx.doi.org/10.21248/gups.64580.
Full textBlundell, S. Micro-terrain and canopy feature extraction by breakline and differencing analysis of gridded elevation models : identifying terrain model discontinuities with application to off-road mobility modeling. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40185.
Full text