Academic literature on the topic 'CNN AND LSTM NETWORKS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CNN AND LSTM NETWORKS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "CNN AND LSTM NETWORKS"
Garcia, Carlos Iturrino, Francesco Grasso, Antonio Luchetta, Maria Cristina Piccirilli, Libero Paolucci, and Giacomo Talluri. "A Comparison of Power Quality Disturbance Detection and Classification Methods Using CNN, LSTM and CNN-LSTM." Applied Sciences 10, no. 19 (September 27, 2020): 6755. http://dx.doi.org/10.3390/app10196755.
Full textXu-Nan Tan, Xu-Nan Tan. "Human Activity Recognition Based on CNN and LSTM." 電腦學刊 34, no. 3 (June 2023): 221–35. http://dx.doi.org/10.53106/199115992023063403016.
Full textLiu, Tianyuan, Jinsong Bao, Junliang Wang, and Yiming Zhang. "A Hybrid CNN–LSTM Algorithm for Online Defect Recognition of CO2 Welding." Sensors 18, no. 12 (December 10, 2018): 4369. http://dx.doi.org/10.3390/s18124369.
Full textGeng, Yue, Lingling Su, Yunhong Jia, and Ce Han. "Seismic Events Prediction Using Deep Temporal Convolution Networks." Journal of Electrical and Computer Engineering 2019 (April 2, 2019): 1–14. http://dx.doi.org/10.1155/2019/7343784.
Full textBanda, Anish. "Image Captioning using CNN and LSTM." International Journal for Research in Applied Science and Engineering Technology 9, no. 8 (August 31, 2021): 2666–69. http://dx.doi.org/10.22214/ijraset.2021.37846.
Full textReddy, V. Varshith, Y. Shiva Krishna, U. Varun Kumar Reddy, and Shubhangi Mahule. "Gray Scale Image Captioning Using CNN and LSTM." International Journal for Research in Applied Science and Engineering Technology 10, no. 4 (April 30, 2022): 1566–71. http://dx.doi.org/10.22214/ijraset.2022.41589.
Full textZhang, Jilin, Lishi Ye, and Yongzeng Lai. "Stock Price Prediction Using CNN-BiLSTM-Attention Model." Mathematics 11, no. 9 (April 23, 2023): 1985. http://dx.doi.org/10.3390/math11091985.
Full textYang, Xingyu, and Zhongrong Zhang. "A CNN-LSTM Model Based on a Meta-Learning Algorithm to Predict Groundwater Level in the Middle and Lower Reaches of the Heihe River, China." Water 14, no. 15 (July 31, 2022): 2377. http://dx.doi.org/10.3390/w14152377.
Full textSridhar, C., and Aniruddha Kanhe. "Performance Comparison of Various Neural Networks for Speech Recognition." Journal of Physics: Conference Series 2466, no. 1 (March 1, 2023): 012008. http://dx.doi.org/10.1088/1742-6596/2466/1/012008.
Full textXu, Lingfeng, Xiang Chen, Shuai Cao, Xu Zhang, and Xun Chen. "Feasibility Study of Advanced Neural Networks Applied to sEMG-Based Force Estimation." Sensors 18, no. 10 (September 25, 2018): 3226. http://dx.doi.org/10.3390/s18103226.
Full textDissertations / Theses on the topic "CNN AND LSTM NETWORKS"
Graffi, Giacomo. "A novel approach for Credit Scoring using Deep Neural Networks with bank transaction data." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textHolm, Noah, and Emil Plynning. "Spatio-temporal prediction of residential burglaries using convolutional LSTM neural networks." Thesis, KTH, Geoinformatik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229952.
Full textLin, Alvin. "Video Based Automatic Speech Recognition Using Neural Networks." DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2343.
Full textBHATT, HARSHIT. "SPEAKER IDENTIFICATION FROM VOICE SIGNALS USING HYBRID NEURAL NETWORK." Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18865.
Full textLagerhjelm, Linus. "Extracting Information from Encrypted Data using Deep Neural Networks." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-155904.
Full textNäslund, Per. "Artificial Neural Networks in Swedish Speech Synthesis." Thesis, KTH, Tal-kommunikation, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239350.
Full textTalsynteser, också kallat TTS (text-to-speech) används i stor utsträckning inom smarta assistenter och många andra applikationer. Samtida forskning applicerar maskininlärning och artificiella neurala nätverk (ANN) för att utföra talsyntes. Det har visats i studier att dessa system presterar bättre än de äldre konkatenativa och parametriska metoderna. I den här rapporten utforskas ANN-baserade TTS-metoder och en av metoderna implementeras för det svenska språket. Den använda metoden kallas “Tacotron” och är ett första steg mot end-to-end TTS baserat på neurala nätverk. Metoden binder samman flertalet olika ANN-tekniker. Det resulterande systemet jämförs med en parametriskt TTS genom ett graderat preferens-test som innefattar 20 svensktalande försökspersoner. En statistiskt säkerställd preferens för det ANN- baserade TTS-systemet fastställs. Försökspersonerna indikerar att det ANN-baserade TTS-systemet presterar bättre än det parametriska när det kommer till ljudkvalitet och naturlighet men visar brister inom tydlighet.
Evholt, David, and Oscar Larsson. "Generative Adversarial Networks and Natural Language Processing for Macroeconomic Forecasting." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273422.
Full textMakroekonomiska prognoser är sedan länge en svår utmaning. Idag löses de oftast med tidsserieanalys och få försök har gjorts med maskininlärning. I denna uppsats används ett generativt motstridande nätverk (GAN) för att förutspå amerikansk arbetslöshet, med resultat som slår samtliga riktmärken satta av en ARIMA. Ett försök görs också till att använda data från Twitter och den datorlingvistiska (NLP) modellen DistilBERT. Dessa modeller slår inte riktmärkena men visar lovande resultat. Modellerna testas vidare på det amerikanska börsindexet S&P 500. För dessa modeller förbättrade Twitterdata resultaten vilket visar på den potential data från sociala medier har när de appliceras på mer oregelbunda index, utan tydligt säsongsberoende och som är mer känsliga för trender i det offentliga samtalet. Resultaten visar på att Twitterdata kan användas för att hitta trender i både amerikansk arbetslöshet och S&P 500 indexet. Detta lägger grunden för fortsatt forskning inom NLP-GAN modeller för makroekonomiska prognoser baserade på data från sociala medier.
Volný, Miloš. "Využití umělé inteligence jako podpory pro rozhodování v podniku." Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2019. http://www.nusl.cz/ntk/nusl-399447.
Full textBroomé, Sofia. "Objectively recognizing human activity in body-worn sensor data with (more or less) deep neural networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210243.
Full textInom ramen för uppsatsen testas hur väl rörelsemönster kan urskiljas ur accelerometerdatamed hjälp av den gren av maskininlärning som kallas djupinlärning; där djupa artificiellaneurala nätverk av noder funktionsapproximerar mappandes från domänen av sensordatatill olika fördefinerade kategorier av aktiviteter så som gång, stående, sittande eller liggande.Det finns ett intresse från den medicinska sidan att kunna mäta fysisk aktivitet objektivt,bland annat eftersom det visats att det finns en korrelation mellan ökade hälsorisker hosbarn och deras mängd daglig skärmtid. Denna typ av mätningar ska helst kunna göras medicke-invasiv utrustning till låg kostnad för att kunna göra större studier.Enklare nätverksarkitekturer samt återimplementeringar av bästa möjliga teknik inomområdet Mänsklig aktivitetsigenkänning (HAR) testas både på ett benchmarkingdataset ochpå egeninhämtad data i samarbete med Institutet för Folkhälsovetenskap på Karolinska Institutetoch resultat redovisas för olika val av möjliga klassificeringar och olika antal dimensionerper mätpunkt. De uppnådda resultaten (95% F1-score) på ett 4- och 5-klass-problem ärjämförbara med de bästa tidigare publicerade resultaten för aktivitetsigenkänning, vilket äranmärkningsvärt då då betydligt färre accelerometrar har använts här än i de åsyftade studierna.Förutom klassificeringsresultaten som redovisas bidrar det här arbetet med ett nyttinhämtat och kategorimärkt dataset; KTH-KI-AA. Det är jämförbart i antal datapunkter medspridda benchmarkingdataset inom HAR-området.
Chowdhury, Muhammad Iqbal Hasan. "Question-answering on image/video content." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/205096/1/Muhammad%20Iqbal%20Hasan_Chowdhury_Thesis.pdf.
Full textBooks on the topic "CNN AND LSTM NETWORKS"
Chen, G., Andrew Adamatzky, and Leon O. Chua. Chaos, CNN, Memristors and Beyond: A Festschrift for Leon Chua. World Scientific Publishing Co Pte Ltd, 2013.
Find full textNeural Networks with R: Smart models using CNN, RNN, deep learning, and artificial intelligence principles. Packt Publishing - ebooks Account, 2017.
Find full textGilbert, Sara. Built for Success: The Story of CNN. Creative Company, The, 2013.
Find full textYang, Tao. Handbook of CNN Image Processing: All You Need to Know about Cellular Neural Networks (YangSky.com Monographs in Information Sciences). Yang's Scientific Research Institute LLC, 2002.
Find full textBook chapters on the topic "CNN AND LSTM NETWORKS"
Lamba, Puneet Singh, and Deepali Virmani. "CNN-LSTM-Based Facial Expression Recognition." In Lecture Notes in Networks and Systems, 379–89. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9712-1_32.
Full textBhogal, Rosepreet Kaur, and V. Devendran. "Human Activity Recognition Using LSTM with Feature Extraction Through CNN." In Lecture Notes in Networks and Systems, 245–55. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9967-2_24.
Full textPravanya, P., K. Lakshmi Priya, S. K. Khamarjaha, K. Buela Likhitha, P. M. Ashok Kumar, and R. Shankar. "Human Activity Recognition Using CNN-Attention-Based LSTM Neural Network." In Intelligent Communication Technologies and Virtual Mobile Networks, 593–605. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1767-9_43.
Full textMahalakshmi, G. S., Gokul Sunilkumar, Steven Fredrick Gilbert, and S. Sendhilkumar. "Classification of Family Domain of Amino Acid Sequences Using CNN-LSTM." In Lecture Notes in Networks and Systems, 645–53. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9228-5_55.
Full textKim, Tae-Young, and Sung-Bae Cho. "Predicting the Household Power Consumption Using CNN-LSTM Hybrid Networks." In Intelligent Data Engineering and Automated Learning – IDEAL 2018, 481–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03493-1_50.
Full textVakitbilir, Nuray, Adnan Hilal, and Cem Direkoğlu. "Prediction of Daily Solar Irradiation Using CNN and LSTM Networks." In Advances in Intelligent Systems and Computing, 230–38. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64058-3_28.
Full textAlam, Jahangir, Abderrahim Fathan, and Woo Hyun Kang. "Text-Independent Speaker Verification Employing CNN-LSTM-TDNN Hybrid Networks." In Speech and Computer, 1–13. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87802-3_1.
Full textShaila, S. G., V. R. Gurudas, K. Hithyshi, M. Mahima, and H. R. PoojaShree. "CNN-LSTM-Based Deep Learning Model for Early Detection of Breast Cancer." In Lecture Notes in Networks and Systems, 83–91. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1559-8_9.
Full textBhogal, Rosepreet Kaur, and V. Devendran. "Correction to: Human Activity Recognition Using LSTM with Feature Extraction Through CNN." In Lecture Notes in Networks and Systems, C1. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9967-2_76.
Full textGusmanov, Kamill. "CNN LSTM Network Architecture for Modeling Software Reliability." In Software Technology: Methods and Tools, 210–17. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29852-4_17.
Full textConference papers on the topic "CNN AND LSTM NETWORKS"
Prakash, Satya, Anand Singh Jalal, and Pooja Pathak. "Forecasting COVID-19 Pandemic using Prophet, LSTM, hybrid GRU-LSTM, CNN-LSTM, Bi-LSTM and Stacked-LSTM for India." In 2023 6th International Conference on Information Systems and Computer Networks (ISCON). IEEE, 2023. http://dx.doi.org/10.1109/iscon57294.2023.10112065.
Full textSejwal, Sahil, Neetu Faujdar, and Shipra Saraswat. "Sentiment Analysis Using Hybrid CNN-LSTM Approach." In 2021 5th International Conference on Information Systems and Computer Networks (ISCON). IEEE, 2021. http://dx.doi.org/10.1109/iscon52037.2021.9702449.
Full textLiu, Han, Donghang Cheng, Xiaojun Sun, and Feng Wang. "Radar emitter recognition based on CNN and LSTM." In 2021 International Conference on Neural Networks, Information and Communication Engineering, edited by Zhiyong Zhang. SPIE, 2021. http://dx.doi.org/10.1117/12.2615142.
Full textGupta, Smridhi, Arushi Garg, Vidhi Bishnoi, and Nidhi Goel. "Pulmonary Nodules Binary Classification using CNN and LSTM." In 2023 10th International Conference on Signal Processing and Integrated Networks (SPIN). IEEE, 2023. http://dx.doi.org/10.1109/spin57001.2023.10116430.
Full textSaroha, Nakul, Mihir Aryan, Mayank Singh, and Anurag Goel. "CNN-LSTM Based Approach for Sleep Apnea Detection." In 2023 6th International Conference on Information Systems and Computer Networks (ISCON). IEEE, 2023. http://dx.doi.org/10.1109/iscon57294.2023.10112203.
Full textLente, Caio, Roberto Hirata Jr., and Daniel Macêdo Batista. "An Improved Tool for Detection of XSS Attacks by Combining CNN with LSTM." In Anais Estendidos do Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais. Sociedade Brasileira de Computação - SBC, 2021. http://dx.doi.org/10.5753/sbseg_estendido.2021.17333.
Full textLente, Caio, Roberto Hirata Jr., and Daniel Macêdo Batista. "An Improved Tool for Detection of XSS Attacks by Combining CNN with LSTM." In Anais Estendidos do Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais. Sociedade Brasileira de Computação - SBC, 2021. http://dx.doi.org/10.5753/sbseg_estendido.2021.17333.
Full textGuo, Qiutong, Shun Lei, Qing Ye, and Zhiyang Fang. "MRC-LSTM: A Hybrid Approach of Multi-scale Residual CNN and LSTM to Predict Bitcoin Price." In 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021. http://dx.doi.org/10.1109/ijcnn52387.2021.9534453.
Full textSingla, Bhavik, Anuj Kumar Jain, Raj Gaurang Tiwari, Vinay Kukreja, and Vikrant Sharma. "Classification Model Using CNN and LSTM for Cow Pregnancy." In 2023 10th International Conference on Signal Processing and Integrated Networks (SPIN). IEEE, 2023. http://dx.doi.org/10.1109/spin57001.2023.10117172.
Full textLiu, Fan, Xingshe Zhou, Tianben Wang, Jinli Cao, Zhu Wang, Hua Wang, and Yanchun Zhang. "An Attention-based Hybrid LSTM-CNN Model for Arrhythmias Classification." In 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019. http://dx.doi.org/10.1109/ijcnn.2019.8852037.
Full textReports on the topic "CNN AND LSTM NETWORKS"
Kumar, Kaushal, and Yupeng Wei. Attention-Based Data Analytic Models for Traffic Flow Predictions. Mineta Transportation Institute, March 2023. http://dx.doi.org/10.31979/mti.2023.2211.
Full textAnkel, Victoria, Stella Pantopoulou, Matthew Weathered, Darius Lisowski, Anthonie Cilliers, and Alexander Heifetz. One-Step Ahead Prediction of Thermal Mixing Tee Sensors with Long Short Term Memory (LSTM) Neural Networks. Office of Scientific and Technical Information (OSTI), December 2020. http://dx.doi.org/10.2172/1760289.
Full textChua, Leon O. Nonlinear Circuits and Neural Networks: Chip Implementation and Applications of the TeraOPS CNN Dynamic Array Supercomputer. Fort Belvoir, VA: Defense Technical Information Center, March 2001. http://dx.doi.org/10.21236/ada389212.
Full textCárdenas-Cárdenas, Julián Alonso, Deicy J. Cristiano-Botia, and Nicolás Martínez-Cortés. Colombian inflation forecast using Long Short-Term Memory approach. Banco de la República, June 2023. http://dx.doi.org/10.32468/be.1241.
Full textSAINI, RAVINDER, AbdulKhaliq Alshadid, and Lujain Aldosari. Investigation on the application of artificial intelligence in prosthodontics. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, December 2022. http://dx.doi.org/10.37766/inplasy2022.12.0096.
Full text