Academic literature on the topic 'CMOS weak inversion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CMOS weak inversion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "CMOS weak inversion"
Dokic, Branko, Tatjana Pesic-Brdjanin, and Rados Dabic. "Analytic models of CMOS logic in various regimes." Serbian Journal of Electrical Engineering 11, no. 2 (2014): 269–90. http://dx.doi.org/10.2298/sjee140106022d.
Full textDe Jesus-Peregrina, Rogelio, Alejandro Diaz-Sanchez, Esteban Tlelo-Cuautle, and Jose Miguel Rocha-Pérez. "A novel CMOS exponential transconductor operating in weak inversion." International Journal of Electronics 95, no. 12 (December 2008): 1221–28. http://dx.doi.org/10.1080/00207210802354965.
Full textBOZOMITU, R. G., and V. CEHAN. "New ELIN Systems Using CMOS Transistors in Weak Inversion Operation." Advances in Electrical and Computer Engineering 13, no. 4 (2013): 99–102. http://dx.doi.org/10.4316/aece.2013.04017.
Full textAkbari, Meysam, Omid Hashemipour, and Farshad Moradi. "Input Offset Estimation of CMOS Integrated Circuits in Weak Inversion." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26, no. 9 (September 2018): 1812–16. http://dx.doi.org/10.1109/tvlsi.2018.2830749.
Full textWANG, KEPING, XUEMEI LEI, KAIXUE MA, KIAT SENG YEO, XIANG CAO, and ZHIGONG WANG. "A CMOS LOW-POWER TEMPERATURE-ROBUST RSSI USING WEAK-INVERSION LIMITING AMPLIFIERS." Journal of Circuits, Systems and Computers 22, no. 10 (December 2013): 1340034. http://dx.doi.org/10.1142/s0218126613400343.
Full textGeorgiou, Pantelis, and Christofer Toumazou. "ISFET characteristics in CMOS and their application to weak inversion operation." Sensors and Actuators B: Chemical 143, no. 1 (December 4, 2009): 211–17. http://dx.doi.org/10.1016/j.snb.2009.09.018.
Full textPapadimitriou, Konstantinos I., and Emmanuel M. Drakakis. "CMOS weak-inversion log-domain glycolytic oscillator: a cytomimetic circuit example." International Journal of Circuit Theory and Applications 42, no. 2 (September 17, 2012): 173–94. http://dx.doi.org/10.1002/cta.1847.
Full textMalits, Maria, Dan Corcos, Alexander Svetlitza, Danny Elad, and Yael Nemirovsky. "Thermal performance of CMOS-SOI transistors from weak to strong inversion." IEEE Instrumentation & Measurement Magazine 15, no. 5 (October 2012): 28–34. http://dx.doi.org/10.1109/mim.2012.6314512.
Full textProdanov, V. I., and M. M. Green. "Bipolar/CMOS (weak inversion) rail-to-rail constant-gm input stage." Electronics Letters 33, no. 5 (1997): 386. http://dx.doi.org/10.1049/el:19970263.
Full textMa, Bill, and Feng Qi Yu. "A 1.2-V 1.76-Ppm/°C Low Voltage CMOS Band-Gap Reference." Applied Mechanics and Materials 303-306 (February 2013): 1798–802. http://dx.doi.org/10.4028/www.scientific.net/amm.303-306.1798.
Full textDissertations / Theses on the topic "CMOS weak inversion"
SALAZAR, FABIO DE ALMEIDA. "DESIGN OF LOW POWER ANALOG CMOS CELLS FROM TRANSISTORS BIAS IN WEAK INVERSION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1996. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8599@1.
Full textA indústria eletrônica tem apresentado uma demanda crescente pela fabricação de aparelhos onde o baixo consumo de energia é uma das características mais importantes. Como exemplo, temos os telefones celulares, os computadores pessoais portáteis e os implantes biomédicos. Este trabalho investiga o projeto e o layout de células analógicas de consumo mil vezes menos (micropower) que os circuitos convencionais. As células desenvolvidas tanto podem ser usadas em aplicações analógicas quanto em circuitos híbridos formados por blocos digitais e blocos analógicos em um mesmo circuito integrado (mixed-mode). O trabalho desenvolvido envolveu 7 etapas principais: o estudo da operação do transistor MOS polarizado na região de inversão fraca comparado com a região de inversão forte; o estudo de estruturas básicas com dois transitores operando na inversão fraca; a conversão dos parâmetros de fabricante para a simulação das células; estudo de células analógicas a e seu projeto para baixo consumo; simulação das células e comparação com células comerciais; estudo da variação dos parâmetros de fabricação; estudo de técnicas de layout para células analógicas. Inicialmente o trabalho apresenta um resumo do estado da arte em projetos de circuitos integrados analógicos CMOS e, introduz o conceito da operação do transistor MOS em inversão fraca (weak inversion). O estudo de estruturas básicas, tais como espelhos de corrente, é o passo seguinte para a compreensão das limitações da operação dos transistores na fraca inversão e a análise de suas vantagens e desvantagens. A conversão dos parâmetros de processos fornecido pelo fabricante, do SPICE nível 2 para o SMASH nível 5, é um passo importante para uma simulação mais fiel do transistor real operando na região de inversão fraca, usando o novo modelo EKV (desenvolvido pela Escola Politécnica Federal de Lausanne - EPFL). O desenvolvimento dos blocos funcionais analógicas, tais como amplificadores operacionais, tece como estratégia de trabalho partir de especificações de células existentes em bibliotecas de fabricantes comerciais com tecnologia reconhecida sobre o assunto, e tentar reproduzir as suas características através do projeto de células dedicadas. Foram avaliadas algumas topologias de uma mesma célula com o objetivo de realizar a comparação entre elas. As medidas de desempenho das células para a comparação com as comerciais, foram realizadas com o uso de arquivos hierárquicos de simulação, visando a redução da quantidade de arquivos. Foi realizado um estudo de como a variação do processo de fabricação pode afetar o desempenho das células projetadas por análise de Montecarlo. São mostradas técnicas de layout de células analógicas que visam reduzir o descasamento entre transistores, faro este que poderia levar o circuito a apresentar comportamento diferente daquele especificado inicialmente. Os resultados alcançados demonstraram ser possível o desenvolvimento de células analógicas de baixo consumo. Através do uso da técnica de operação do transistor na região de inversão fraca, obteve-se desempenho comparável aos circuitos comerciais, tornando possível a criação de uma biblioteca de células analógicas mais ampla sem a necessidade da dependência do know-how dos fabricantes comerciais.
Low power supply consumption hás become one of the main issue in eletronic industry for many product áreas such as cellular telephones, portable personal computers and biomedical implants. The aim of this work is to investigate the main drawbacks involved in the design of CMOS analog cells biased in weak inversion. Biasing a cell in weak inversion makes it possible to archieve a power consumption that is one thousandth lower than common analog cells designed to operate in strong inversion. This work has involved the following subject: a study of models for MOS transistors operating in weak inversion and strong inversion regions; a methodology to convert LEVEL 2 Spice model to EKV model; study of basic analog cell blocks suitable to low power mixed mode IC design; design methodology for low power analog cells; comparison between these cells and some commercial ones; study of analog layout techniques. Firstly, this work reviews the state-of-art of analog cell design including MOS transistor operation and modeling in the weak inversion region. Secondly we discuss the operation of some basic structures, such as current mirors and differential amplifiers, biased in weak inversion. This study helped us to understand the benefits and drawbacks involved in working with MOS transistors biased in this region. Next we describe a methodology to convert process parameters suppied by the foundries, usually LEVEL 2 Spice model, to the EKV model that was developed by EPFL (Swiss Federal Institute of Technology - Lausanne). Since EKV model is continuous in all regions, we expect to archieve better agreement between simulation results and manufacturing results. In order to test and validate the design methodology we chose to develop first a set of cells for this foundry comforming to a foundry with expertise in low voltage analog cell design. These tests were carried ou through standardized hierarchical simulation files in order to decrease the total number of simulatiom files required. Finally, we present some techniques for the layout of analog cells that improve circuit sensibility to transistor mismatching and process variation. The work shows us that it is feasible to design low power analog circuit using MOS transistors operating in weak inversion region. The methodology was even able to synthesize cells that are similar in performance to commercial ones. Therefore, it is possible to develop a çow power analog cell library which is suitable to designing application specific integrated circuits.
Remund, Craig Timothy. "Design of CMOS Four-Quadrant Gilbert Cell Multiplier Circuits in Weak and Moderate Inversion." Diss., CLICK HERE for online access, 2004. http://contentdm.lib.byu.edu/ETD/image/etd611.pdf.
Full textTumati, Sanjay. "Design of large time constant switched-capacitor filters for biomedical applications." Thesis, Texas A&M University, 2004. http://hdl.handle.net/1969.1/1479.
Full textSingh, Rishi Pratap. "A High-Gain, Low-Power CMOS Operational Amplifier Using Composite Cascode Stage in the Subthreshold Region." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2510.
Full textShiraishi, Hisako. "Design of an Analog VLSI Cochlea." University of Sydney. Electrical and Information Engineering, 2003. http://hdl.handle.net/2123/556.
Full textQureshi, Muhammad Shakeel. "Integrated front-end analog circuits for mems sensors in ultrasound imaging and optical grating based microphone." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29613.
Full textCommittee Chair: Hasler, Paul; Committee Co-Chair: Degertekin, Levent; Committee Member: Anderson, David; Committee Member: Ayazi, Farrokh; Committee Member: Brand, Oliver; Committee Member: Hesketh, Peter. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Lin, Shin-Ta, and 林信太. "The Design and Implementation of an Ultra Low Power and Small Area CMOS Voltage Reference Based on MOSFET Operated in Weak Inversion Region." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/8492jn.
Full text國立交通大學
電信工程系所
96
This thesis uses standard CMOS 0.18μm process technique to design and realize a stable voltage reference which does not change with temperature. In the recent years, battery-operated systems are used extensively. Along with this tendency, we demand low-power, small-area, and high performance when designing circuits. Many analog circuits need a stable voltage reference, so the thesis shows a low-power and small-area voltage reference to apply in battery-operated systems. Proposed circuits work in weak inverse region to replace the bipolar devices in conventional circuit and using proposed circuits realize CMOS voltage reference which does not change with temperature. Its power consumption only has several hundred nano-Watt and its area is only several hundred squre nanometer. In addition, the voltage derivation only has several dozens milli-Volt when temperature range is from -80℃ to 165℃. Therefore, proposed architectures can supply a stable voltage reference in battery-operated systems.
Book chapters on the topic "CMOS weak inversion"
Vittoz, Eric. "Weak Inversion for Ultimate Low-Power Logic." In Low-Power CMOS Circuits, 1–18. CRC Press, 2005. http://dx.doi.org/10.1201/9781420036503.ch16.
Full textVittoz, Eric A. "Weak Inversion for Ultimate Low-Power Logic." In Low-Power CMOS Circuits, 16–1. CRC Press, 2018. http://dx.doi.org/10.1201/9781315220710-16.
Full textFiorelli, Rafaella, Eduardo Peralías, and Fernando Silveira. "An All-Inversion-Region gm/ID Based Design Methodology for Radiofrequency Blocks in CMOS Nanometer Technologies." In Advances in Wireless Technologies and Telecommunication, 15–39. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-4666-0083-6.ch002.
Full textConference papers on the topic "CMOS weak inversion"
Katsiamis, A. G., and E. M. Drakakis. "Sinh filters in weak inversion CMOS technology." In 48th Midwest Symposium on Circuits and Systems, 2005. IEEE, 2005. http://dx.doi.org/10.1109/mwscas.2005.1594431.
Full textCracan, Arcadie, Gabriel Bonteanu, and Radu-Gabriel Bozomitu. "A Weak-Inversion Cmos Analog Multiplier/Divider Circuit." In 2018 IEEE 24th International Symposium for Design and Technology in Electronic Packaging (SIITME). IEEE, 2018. http://dx.doi.org/10.1109/siitme.2018.8599269.
Full textGlaros, K. N., A. G. Katsiamis, and E. M. Drakakis. "Harmonic vs. geometric mean Sinh integrators in weak inversion CMOS." In 2008 IEEE International Symposium on Circuits and Systems - ISCAS 2008. IEEE, 2008. http://dx.doi.org/10.1109/iscas.2008.4542065.
Full textAnders, Jens, and Maurits Ortmanns. "Frequency noise of CMOS LC tank oscillators operating in weak inversion." In 2013 European Conference on Circuit Theory and Design (ECCTD). IEEE, 2013. http://dx.doi.org/10.1109/ecctd.2013.6662207.
Full textSeunghwan Baek, Hyungtae Kim, Changhwee Choi, Seungkwon Lee, and Kye eon Chang. "Large temperature coefficient PTAT current reference using weak inversion CMOS FET resistor." In 2007 Joint 50th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) and the IEEE Northeast Workshop on Circuits and Systems (NEWCAS 2007). IEEE, 2007. http://dx.doi.org/10.1109/mwscas.2007.4488789.
Full textJaeger, Richard C., and Jeffrey C. Suhling. "First and Second Order Piezoresistive Characteristics of CMOS FETs: Weak through Strong Inversion." In 48th European Solid-State Device Research Conference (ESSDERC 2018). IEEE, 2018. http://dx.doi.org/10.1109/essderc.2018.8486881.
Full textWang, Keping, Jiangmin Gu, Kok Meng Lim, Jinna Yan, Wei Meng Lim, Xiang Cao, Zhigong Wang, Kaixue Ma, and Kiat Seng Yeo. "A CMOS low-power receiving signal strength indicator using weak-inversion limiting amplifiers." In 2011 International Conference of Electron Devices and Solid-State Circuits (EDSSC). IEEE, 2011. http://dx.doi.org/10.1109/edssc.2011.6117642.
Full textKompitaya, Pantre, and Khanittha Kaewdang. "A low-voltage low-power CMOS weak inversion true rms-to-dc converter." In 2011 8th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON 2011). IEEE, 2011. http://dx.doi.org/10.1109/ecticon.2011.5947779.
Full textVelarde-Ramirez, J., G. Vicente-Sanchez, T. Serrano-Gotarredona, and B. Linares-Barranco. "A mismatch characterization and simulation environment for weak-to-strong inversion CMOS transistors." In Microtechnologies for the New Millennium 2005, edited by Jose F. Lopez, Francisco V. Fernandez, Jose Maria Lopez-Villegas, and Jose M. de la Rosa. SPIE, 2005. http://dx.doi.org/10.1117/12.607710.
Full textHan, Dong, and Yuanjin Zheng. "A Low-Voltage Low-Power CMOS Weak Inversion Log Domain Auto Gain Control Module." In 2007 International Symposium on Integrated Circuits - ISIC 2007. IEEE, 2007. http://dx.doi.org/10.1109/isicir.2007.4441904.
Full text