Academic literature on the topic 'CMOS readout'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CMOS readout.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "CMOS readout"

1

Yoon, Eun-Jung, Jong-Tae Park, and Chong-Gun Yu. "CMOS ROIC for MEMS Acceleration Sensor." Journal of IKEEE 18, no. 1 (March 31, 2014): 119–27. http://dx.doi.org/10.7471/ikeee.2014.18.1.119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Morgenshtein, Arkadiy, Liby Sudakov-Boreysha, Uri Dinnar, Claudio G. Jakobson, and Yael Nemirovsky. "CMOS readout circuitry for ISFET microsystems." Sensors and Actuators B: Chemical 97, no. 1 (January 2004): 122–31. http://dx.doi.org/10.1016/j.snb.2003.08.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

GAO, ZHIYUAN, SUYING YAO, JIANGTAO XU, and CHAO XU. "DYNAMIC RANGE EXTENSION OF CMOS IMAGE SENSORS USING MULTI-INTEGRATION TECHNIQUE WITH COMPACT READOUT." Journal of Circuits, Systems and Computers 22, no. 06 (July 2013): 1350042. http://dx.doi.org/10.1142/s0218126613500424.

Full text
Abstract:
A multi-integration technology with compact readout method to extend CMOS image sensor's dynamic range is presented. Compared with the timing of rolling readout, compact readout extends the available pixel readout time by adjusting the time-domain offset between two adjacent rows and each integration time in one frame. Thus the column readout bus is working continuously rather than intermittently, which makes good use of the whole integration time and the available readout time can be extended. This dynamic range extension technology was implemented on a prototype chip with a 128 × 128 pixel array. The pixel readout time with compact readout method is almost as 3 times long as the one with rolling readout method while 39 dB dynamic range extension is achieved at 120 fps.
APA, Harvard, Vancouver, ISO, and other styles
4

Biswas, Subrata, Poly Kundu, Md Hasnat Kabir, Sagir Ahmed, and Md Moidul Islam. "Design and Analysis of High Frame Rate Capable Active Pixel Sensor by Using CNTFET Devices for Nanoelectronics." International Journal of Recent Contributions from Engineering, Science & IT (iJES) 3, no. 4 (December 14, 2015): 20. http://dx.doi.org/10.3991/ijes.v3i4.5185.

Full text
Abstract:
This paper presents a high frame rate capable Active Pixel Sensor (APS) using Carbon Nanotube Field Effect Transistor (CNTFET) instead of Complementary Metal Oxide Semiconductor (CMOS). Conventionally, the design of a single APS circuit is based on three transistors (3T) model. In order to achieve higher frame rate, one extra transistor with a column sensor circuit has been introduced in the proposed design to reduce the readout time. This study also concerns about the effect of transistor sizing, bias current, and moreover, the chiral vector of CNTFET. The power consumption and power delay product (PDP) are also investigated for specific sets of reset and row selector signal. Data for these studies were collected with the help of HSPICE software which were further plotted in OriginPro to analyze the optimal operation point of APS circuit. The bias current was also recorded for the readout transistor which is uniquely introduced in the proposed model for achieving better readout time. Hence, the main focus of this paper is to improve the frame rate by reducing the readout time. Results of the proposed CNTFET APS circuit are compared with the conventional CMOS APS circuit. The performance benchmarking shows that CNTFET APS cell significantly reduces readout time, PDP, and thus can achieve much higher frame rate than that of conventional CMOS APS cell.
APA, Harvard, Vancouver, ISO, and other styles
5

Roy, Avisek, Mehdi Azadmehr, Bao Q. Ta, Philipp Häfliger, and Knut E. Aasmundtveit. "Design and Fabrication of CMOS Microstructures to Locally Synthesize Carbon Nanotubes for Gas Sensing." Sensors 19, no. 19 (October 8, 2019): 4340. http://dx.doi.org/10.3390/s19194340.

Full text
Abstract:
Carbon nanotubes (CNTs) can be grown locally on custom-designed CMOS microstructures to use them as a sensing material for manufacturing low-cost gas sensors, where CMOS readout circuits are directly integrated. Such a local CNT synthesis process using thermal chemical vapor deposition (CVD) requires temperatures near 900 °C, which is destructive for CMOS circuits. Therefore, it is necessary to ensure a high thermal gradient around the CNT growth structures to maintain CMOS-compatible temperature (below 300 °C) on the bulk part of the chip, where readout circuits are placed. This paper presents several promising designs of CNT growth microstructures and their thermomechanical analyses (by ANSYS Multiphysics software) to check the feasibility of local CNT synthesis in CMOS. Standard CMOS processes have several conductive interconnecting metal and polysilicon layers, both being suitable to serve as microheaters for local resistive heating to achieve the CNT growth temperature. Most of these microheaters need to be partially or fully suspended to produce the required thermal isolation for CMOS compatibility. Necessary CMOS post-processing steps to realize CNT growth structures are discussed. Layout designs of the microstructures, along with some of the microstructures fabricated in a standard AMS 350 nm CMOS process, are also presented in this paper.
APA, Harvard, Vancouver, ISO, and other styles
6

ZHAO, HONGLIANG, YIQIANG ZHAO, YIWEI SONG, JUN LIAO, and JUNFENG GENG. "A LOW POWER CRYOGENIC CMOS ROIC DESIGN FOR 512 × 512 IRFPA." Journal of Circuits, Systems and Computers 22, no. 10 (December 2013): 1340033. http://dx.doi.org/10.1142/s0218126613400331.

Full text
Abstract:
A low power readout integrated circuit (ROIC) for 512 × 512 cooled infrared focal plane array (IRFPA) is presented. A capacitive trans-impedance amplifier (CTIA) with high gain cascode amplifier and inherent correlated double sampling (CDS) configuration is employed to achieve a high performance readout interface for the IRFPA with a pixel size of 30 × 30 μm2. By optimizing column readout timing and using two operating modes in column amplifiers, the power consumption is significantly reduced. The readout chip is implemented in a standard 0.35 μm 2P4M CMOS technology. The measurement results show the proposed ROIC achieves a readout rate of 10 MHz with 70 mW power consumption under 3.3 V supply voltage from 77 K to 150 K operating temperature. And it occupies a chip area of 18.4 × 17.5 mm2.
APA, Harvard, Vancouver, ISO, and other styles
7

Habibi, Mehdi, Yunus Dawji, Ebrahim Ghafar-Zadeh, and Sebastian Magierowski. "Nanopore-based DNA sequencing sensors and CMOS readout approaches." Sensor Review 41, no. 3 (July 15, 2021): 292–310. http://dx.doi.org/10.1108/sr-05-2020-0121.

Full text
Abstract:
Purpose Nanopore-based molecular sensing and measurement, specifically DNA sequencing, is advancing at a fast pace. Some embodiments have matured from coarse particle counters to enabling full human genome assembly. This evolution has been powered not only by improvements in the sensors themselves, but also in the assisting microelectronic CMOS readout circuitry closely interfaced to them. In this light, this paper aims to review established and emerging nanopore-based sensing modalities considered for DNA sequencing and CMOS microelectronic methods currently being used. Design/methodology/approach Readout and amplifier circuits, which are potentially appropriate for conditioning and conversion of nanopore signals for downstream processing, are studied. Furthermore, arrayed CMOS readout implementations are focused on and the relevant status of the nanopore sensor technology is reviewed as well. Findings Ion channel nanopore devices have unique properties compared with other electrochemical cells. Currently biological nanopores are the only variants reported which can be used for actual DNA sequencing. The translocation rate of DNA through such pores, the current range at which these cells operate on and the cell capacitance effect, all impose the necessity of using low-noise circuits in the process of signal detection. The requirement of using in-pixel low-noise circuits in turn tends to impose challenges in the implementation of large size arrays. Originality/value The study presents an overview on the readout circuits used for signal acquisition in electrochemical cell arrays and investigates the specific requirements necessary for implementation of nanopore-type electrochemical cell amplifiers and their associated readout electronics.
APA, Harvard, Vancouver, ISO, and other styles
8

Szymański, Andrzej, Dariusz Obrębski, Jacek Marczewski, Daniel Tomaszewski, Mirosław Grodner, and Janusz Pieczyński. "CMOS Readout Circuit Integrated with Ionizing Radiation Detectors." International Journal of Electronics and Telecommunications 60, no. 1 (March 1, 2014): 105–12. http://dx.doi.org/10.2478/eletel-2014-0014.

Full text
Abstract:
Abstract This paper describes the work performed in ITE on integration in one CMOS chip the ionizing radiation detectors with dedicated readout electronics. At the beginning, some realizations of silicon detectors of ionizing radiation are presented together with most important issues related to these devices. Next, two developed test structures for readout electronics are discussed in detail together with main features of non-typical silicon process deployed.
APA, Harvard, Vancouver, ISO, and other styles
9

Kavadias, S., P. De Moor, and C. Van Hoof. "CMOS circuit for readout of microbolometer arrays." Electronics Letters 37, no. 8 (2001): 481. http://dx.doi.org/10.1049/el:20010330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nasri, B., and C. Fiorini. "A CMOS readout circuit for microstrip detectors." Journal of Instrumentation 10, no. 03 (March 24, 2015): C03038. http://dx.doi.org/10.1088/1748-0221/10/03/c03038.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "CMOS readout"

1

Guo, Xiaochuan. "A time-base asynchronous readout cmos image sensor." [Gainesville, Fla.] : University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE0000540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kepenek, Reha. "Capacitive Cmos Readout Circuits For High Performance Mems Accelerometers." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609310/index.pdf.

Full text
Abstract:
This thesis presents the development of high resolution, wide dynamic range sigma-delta type readout circuits for capacitive MEMS accelerometers. Designed readout circuit employs fully differential closed loop structure with digital output, achieving high oversampling ratio and high resolution. The simulations of the readout circuit together with the accelerometer sensor are performed using the models constructed in Cadence and Matlab Simulink environments. The simulations verified the stability and proper operation of the accelerometer system. The sigma-delta readout circuit is implemented using XFab 0.6 µ
m CMOS process. Readout circuit is combined with Silicon-On-Glass (SOG) and Dissolved Wafer Process (DWP) accelerometers. Both open loop and closed loop tests of the accelerometer system are performed. Open loop test results showed high sensitivity up to 8.1 V/g and low noise level of 4.8 µ
g/&
#61654
Hz. Closed loop circuit is implemented on a PCB together with the external filtering and decimation electronics, providing 16-bit digital output at 800 Hz sampling rate. High acceleration tests showed ±
18.5 g of linear acceleration range with high linearity, using DWP accelerometers. The noise tests in closed loop mode are performed using Allan variance technique, by acquiring the digital data. Allan variance tests provided 86 µ
g/&
#61654
Hz of noise level and 74 µ
g of bias drift. Temperature sensitivity tests of the readout circuit in closed loop mode is also performed, which resulted in 44 mg/º
C of temperature dependency. Two different types of new adaptive sigma-delta readout circuits are designed in order to improve the resolution of the systems by higher frequency operation. The two circuits both change the acceleration range of operation of the system, according to the level of acceleration. One of the adaptive circuits uses variation of feedback time, while the other circuit uses multi-bit feedback method. The simulation results showed micro-g level noise in closed loop mode without the addition of the mechanical noise of the sensor.
APA, Harvard, Vancouver, ISO, and other styles
3

Toprak, Alperen. "Cmos Readout Electronics For Microbolometer Type Infrared Detector Arrays." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610390/index.pdf.

Full text
Abstract:
This thesis presents the development of CMOS readout electronics for microbolometer type infrared detector arrays. A low power output buffering architecture and a new bias correction digital-to-analog converter (DAC) structure for resistive microbolometer readouts is developed
and a 384x288 resistive microbolometer FPA readout for 35 µ
m pixel pitch is designed and fabricated in a standard 0.6 µ
m CMOS process. A 4-layer PCB is also prepared in order to form an imaging system together with the FPA after detector fabrication. The low power output buffering architecture employs a new buffering scheme that reduces the capacitive load and hence, the power dissipation of the readout channels. Furthermore, a special type operational amplifier with digitally controllable output current capability is designed in order to use the power more efficiently. With the combination of these two methods, the power dissipation of the output buffering structure of a 384x288 microbolometer FPA with 35 µ
m pixel pitch operating at 50 fps with two output channels can be decreased to 8.96% of its initial value. The new bias correction DAC structure is designed to overcome the power dissipation and noise problems of the previous designs at METU. The structure is composed of two resistive ladder DAC stages, which are capable of providing multiple outputs. This feature of the resistive ladders reduces the overall area and power dissipation of the structure and enables the implementation of a dedicated DAC for each readout channel. As a result, the need for the sampling operation required in the previous designs is eliminated. Elimination of sampling prevents the concentration of the noise into the baseband, and therefore, allows most of the noise to be filtered out by integration. A 384x288 resistive microbolometer FPA readout with 35 &
#956
m pixel pitch is designed and fabricated in a standard 0.6 &
#956
m CMOS process. The fabricated chip occupies an area of 17.84 mm x 16.23 mm, and needs 32 pads for normal operation. The readout employs the low power output buffering architecture and the new bias correction DAC structure
therefore, it has significantly low power dissipation when compared to the previous designs at METU. A 4-layer imaging PCB is also designed for the FPA, and initial tests are performed with the same PCB. Results of the performed tests verify the proper operation of the readout. The rms output noise of the imaging system and the power dissipation of the readout when operating at a speed of 50 fps is measured as 1.76 mV and 236.9 mW, respectively.
APA, Harvard, Vancouver, ISO, and other styles
4

Musayev, Javid. "Cmos Integrated Sensor Readout Circuitry For Dna Detection Applications." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613645/index.pdf.

Full text
Abstract:
This study presents a CMOS integrated sensor chip suitable for sensing biological samples like DNA. The sensing part of the chip consists of a 32 X 32 pixel array with a 15 µ
m pixel pitch. Pixels have 5 µ
m X 5 µ
m detector electrodes implemented with the top metal of the CMOS process, and they are capable of detecting charge transferred or induced on those electrodes with a very high sensitivity. This study also includes development of an external electronics containing ADC for analog to digital data conversion. This external circuitry is implemented on a PCB compatible with the Opal Kelly XM3010 FPGA that provides data storage and transfer to PC. The measured noise of the overall system is 6.7 e- (electrons), which can be shrunk down to even 5.1 e- with an over sampling rate. This kind of sensitivity performance is very suitable for DNA detection, as a single nucleotide of a DNA contains 1 or 2 e- and as 10 to 20 base pair long DNA&rsquo
s are usually used in microarray applications. The measured dynamic range of the system is 71 dB, in other words, at most 24603 e- per frame (20 ms) can be detected. The measured leakage is 31 e-/frame, but this does not have a dramatic effect on the sensitivity of the system, noting that the leakage is a predictable quantity. DNA detection tests are performed with the chip in addition to electronic performance measurements. The surface of the chip is covered with a nitride passivation layer to prevent the pixel crosstalk and is modified with an APTES polymer for suitable DNA immobilization. DNA immobilization and hybridization tests are performed with 5&rsquo
-TCTCACCTTC-3&rsquo
probe and its complementary 3&rsquo
-AGAGTGGAAG-5&rsquo
target sequences. Hybridization performed in 1 pM solution is shown to have a larger steady state leakage than the immobilization in a 13 µ
M solution, implying the ability to differentiate between the full match and full mismatch sequences. To best of our knowledge, the measured pM sensitivity has not yet been reported with any label free CMOS DNA microarrays in literature, and it is comparable with the sensitivity of techniques like QCM or the fluorescence imaging. The 1 pM sensitivity is not a theoretical limit of the sensor, since theoretically the sensitivity level of 6.7 e- can offer much better results, down to the aM level, as far as the noise of electronics is considered, nevertheless the sensitivity is expected to be limited by DNA immobilization and hybridization probabilities which are determined by the surface modification technique and applied protocol. Improving those can lead to much smaller detection limits, such as aM level as stated above.
APA, Harvard, Vancouver, ISO, and other styles
5

CICIOTTI, FULVIO. "Oscillator-Based CMOS Readout Interfaces for Gas Sensing Applications." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241089.

Full text
Abstract:
Il rilevamento di gas tossici e pericolosi è sempre stato necessario per motivi di sicurezza. Negli ultimi anni, in particolare, l’attenzione per lo sviluppo di sistemi portatili e a basso costo per il rilevamento dei gas è aumentata notevolmente. Questa tesi presenta circuiti CMOS versatili, veloci, ad alta precisione e basso consumo per applicazioni portatili di rilevamento di gas. I sensori target sono i Metal Oxide Semiconductor (MOX). Questi sensori sono ampiamente utilizzati per la loro intrinseca compatibilità con le tecnologie MEMS integrate. Le tipologie di lettura scelte sono basate su un oscillatore controllato dalla resistenza del sensore stessa, in modo da ottenere una conversione resistenza-tempo. Ciò garantisce un ampio range dinamico, una buona precisione e la capacità di far fronte alle grandi variazioni di resistenza del sensore MOX. Quattro diversi prototipi sono stati sviluppati e testati con successo. Sono state anche eseguite misurazioni chimiche con un vero sensore SnO2 MOX, validando i risultati ottenuti. Le misure hanno mostrato come il sensore e l’interfaccia sia in grado di rilevare fino a 5ppm di CO in aria. Gli ASIC sono in grado di coprire 128 dB di DR a 4Hz di output data rate digitale, o 148 dB a 0.4Hz, garantendo un errore relativo percentuale sempre migliore dello 0,4% (SNDR> 48 dB). Le prestazioni target sono state raggiunte con aggressive strategie di progettazione e ottimizzazione a livello di sistema. È stata utilizzata una tecnologia CMOS a 130nm fornita da Infineon Technologies AG. La scelta di un nodo tecnologico così scalato (rispetto alle tipiche implementazioni in questo settore) ha consentito di ridurre ulteriormente i consumi fino a circa 450 μA. Inoltre, questo lavoro introduce la possibilità di utilizzare la stessa architettura basata su oscillatore per eseguire la lettura di sensori capacitivi. I risultati delle misurazioni con sensori capacitivi MEMS hanno mostrato 116 dB di DR, con un SNR di 74 dB a 10Hz di velocità di trasmissione dati digitale. Le architetture sviluppate in questa tesi sono compatibili con gli standard moderni nel settore del rilevamento del gas per dispositivi portatili.
Detection of toxic and dangerous gases has always been a need for safety purpose and, in recent years, portable and low-cost gas sensing systems are becoming of main interest. This thesis presents fast, high precision, low-power, versatile CMOS interface circuits for portable gas sensing applications. The target sensors are Metal Oxide Semiconductor (MOX) sensors which are widely used due to their inherent compatibility with integrated MEMS technologies. The chosen readout typologies are based on the time-domain Resistor-Controlled Oscillator. This guarantees wide dynamic range, good precision and the ability to cope with the large MOX sensor resistance variations. Four different prototypes have been successfully developed and tested. Chemical measurements with a real SnO2 MOX sensor have also been performed to validate the results, showing a minimum CO detection capability in ambient air of 5 ppm. The ASICs are able to cover 128 dB of DR at 4 Hz of digital output data rate, or 148 dB at 0.4 Hz, while providing a relative error always better than 0.4% (SNDR >48 dB). Target performances have been achieved with aggressive design strategies and system-level optimization, and using a scaled (compared to typical implementations in this field) 130nm CMOS technology provided by Infineon Technologies AG. Power consumption is about 450 μA. Moreover, this work introduces the possibility to use the same oscillator-based architecture to perform capacitive sensors readout. Measurement results with capacitive MEMS sensors have shown 116 dB of DR in CSENS mode, with an SNR of 74 dB at 10 Hz of digital output data rate. The architectures developed in this thesis are compatible with the modern standards in the portable gas sensing industry.
APA, Harvard, Vancouver, ISO, and other styles
6

RESTA, FEDERICA. "Integrated Read-out Front-end for High-Energy Physics Experiments." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2017. http://hdl.handle.net/10281/158121.

Full text
Abstract:
Le ricerche e le scoperte fatte nell'ambito della fisica sono fortemente dipendenti dall'efficienza e dall'affidabilità degli esperimenti ad alta energia. L'obiettivo principale è lo studio delle particelle che costituiscono la materia in termini di cariche elementari, loro interazioni e prodotti secondari che ne possono derivare. L'LHC (Large Hadron Collider) lavora al CERN ogni giorno con l’obiettivo di scoprire nuovi dettagli su particelle cariche come neutroni e Bosoni di Higgs. Queste sono generate e accelerate all’interno dell’LHC e vengono rilevate da opportuni detector organizzati in una struttura a shell. In questo modo, è possibile avere una caratterizzazione in termini di momento, carica elettrica, energia, tempo di volo e distanza associati alla particella rilevata. La progettazione dei rilevatori è importante come anche quella dell’elettronica vicina. Un grande esperimento richiede un duro lavoro di scienziati e ingegneri. Negli ultimi anni, l’elettronica è sempre più efficiente e compatta grazie alla sostituzione dei componenti discreti con circuiti integrati CMOS. La progettazione deve essere però fatta considerando sia le reti di interfacciamento con i sensori sia l’ambiente radiattivo circostante. Le radiazioni, infatti, possono modificare parzialmente o totalmente le performance e la scelta della tecnologia scalata può però essere di grande aiuto. In questo scenario, sono stati progettati, integrati e misurati 3 circuiti di lettura per esperimenti di fisica delle alte energie. 2 prototipi sono stati realizzati in tecnologia 130nm per l'esperimento ATLAS in collaborazione dell’Istituto Max-Plank di Monaco. Questi prototipi sono pensati per rilevare cariche fino a 100fC e convertirle in un segnale di tensione di ampiezza variabile che sarà processato in digitale per avere informazioni sull’istante di arrivo della carica e sulla sua intensità. A tal fine, gli integrati hanno uno stadio di discriminazione ed un Wilkinson ADC in grado di convertire in un tempo il segnale in tensione ricevuto. Il secondo prototipo è molto simile al primo. Esso è stato migliorato principalmente per poter essere più immune ai disturbi provenienti da masse e alimentazioni. Il terzo circuito presentato in questa tesi è un sistema di lettura progettato per Pixel detectors in tecnologia CMOS 28nm. Il canale integrato include un preamplificatore di carica con un comparatore in cascata. L'utilizzo della tecnologia 28nm con la sua ridotta alimentazione comporta una serie di difficoltà nella progettazione ma anche una maggiore resistenza alle radiazioni, consumi ridotti e una minor area occupata. I circuiti sono stati progettati per due differenti scenari in termini di capacità parassita del rilevatore, cariche di ingresso rilevabili, alimentazioni, soglie, consumi di potenza e rumore. In tutti i casi, però, i sistemi sono in grado di fornire le informazioni sulla carica rilevata in tempi relativamente rapidi (entro 25ns). Questo aspetto è molto importante e permette di evitare errori. Collisioni successive potrebbe causare segnali spuri e si potrebbe rilevare come unico evento due eventi distinti e consecutivi. Questo lavoro è organizzato come segue. La Parte I include una breve introduzione sull'intera attività svolta nei tre anni di attività di ricerca. La Parte II è dedicata alla descrizione semplificata del campo di applicazione ed ai target previsti per i prossimi esperimenti di fisica. In particolare, sono forniti alcuni dettagli su come l'elettronica può essere influenzata dalla presenza delle radiazioni. Le parti III e IV rappresentano il core della tesi perché mirano all'analisi dettagliata dei circuiti progettati e descritti precedentemente in maniera generica. L'analisi prevede una caratterizzazione completa degli integrati con simulazioni e misure. Infine, prima di concludere, la Parte V è dedicata alla pubblicazioni correlate all'attività di ricerca.
Physic researches and discoveries depend heavily from efficient and reliability of the High-Energy Physics (HEP) experiments. The main goal is to study the fundamental constituents of the matter in terms of elementary charge particles, their interactions and their secondary products. The Large Hadron Collider (LHC) at the CERN works every day to discover details on new charged particles as neutrinos and Higgs Bosons. Charges are generated and accelerated from beam collisions inside the LHC. Different detectors are organized in shell structures and are designed to detect few particles topology. Typically, the parameters useful to identify a charged particle are momentum, electrical charge, energy, time of flight and distance. Detectors design is important but it is enhanced from proper electronic readout systems. In the last years, electronics parts are more and more efficient and compact. CMOS integrated solution are preferred to discrete one allowing major reliability, cost reduction and performance improvement. The design is not trivial but not impossible. Some characteristics depend on the electronic designer and his capability to manage the external parasitic effects, as the parasitic capacitance of the connected detector. Unfortunately, phenomena as radiation effects on electronics must be taken in account but they are not completely eliminated. CMOS technology influences strongly the integrated circuit performance and radiation hardness. In this scenario, 3 readout frontend circuits for HEP experiments have been designed, integrated and measured. 2 of them represent 2 different prototypes realized in IBM 130nm technology for ATLAS experiment at CERN laboratory with Max-Plank Institute for Physics collaboration. They include an analog chain in cascade with a digital one. Input charges (up to 100fC) are detected and converted into voltage signals. Their amplitude are proportional to the input and are sent to the following digital part. The digital part provides information about arrival time and amount of the input charge. When the discriminator switches, an event is detected and the Wilkinson ADC starts the voltage-to-time conversion. The full chips have a JTAG section to manage all programmable parameters (i.e. thresholds, hysteresis, deadtime, etc.) The second prototype is designed improving the previous version in terms of supply rejection noise, deadtime range and hysteresis management. The third circuit presented in this thesis is the first readout frontend for Pixel detectors in 28nm technology. The channel includes a charge sensitive preamplifier with an inverter switched based comparator. Reduced supply voltage and 28nm technology imply some difficult in the design with a major tolerance to the radiations, a lower area occupancy and a lower power consumption. The circuits are been designed for 2 different scenarios in terms of detector parasitic capacitance, detectable input charges, supply voltage, threshold voltage, power consumption and noise. In overall cases, the integrated systems provide information about amount of detected input charge and arrival time within 25ns. This aspect is very important and allows avoiding mistakes. Successive collisions lead to spurious signals presence and a single detection could have information about two different events. Maintaining the processing time within 25ns, consecutive collisions are detected as different events. This work is organized as follows. Part I includes a brief summary of the entire work in order to fix the goals of my activities. Then, the Part II is dedicated on a simplified description of the application field and the next target of the future experiments. In particular, some details on the effects induced by the radiation to integrated electronic component are provided. Part III and Part IV represent the core, including 3 readout frontend circuits design and measurements. Finally, there are correlated publications and conclusions.
APA, Harvard, Vancouver, ISO, and other styles
7

Kramnik, Danielius. "Scaling trapped-ion quantum computers with CMOS-integrated state readout." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/129912.

Full text
Abstract:
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, February, 2020
Cataloged from student-submitted PDF of thesis.
Includes bibliographical references (pages 155-164).
Quantum information processing (QIP) has emerged as a powerful new computing paradigm as traditional Moore's law scaling slows due to skyrocketing costs of shrinking feature sizes, interconnects becoming the dominant source of energy consumption and delay as transistor critical dimensions fall below 10 nm, and power density limiting the activity factor in digital systems on a chip. Quantum computers use quantum states ("qubits") to store and manipulate information, giving them fundamental performance advantages over classical digital computers in certain applications. Although the feasibility of QIP has been proven for decades using smallscale (. 50 physical qubit) demonstration systems, the main problem is achieving scalability using existing designs.
Individual atomic ions trapped by electromagnetic fields in a vacuum and manipulated using lasers have been a leading candidate for a physical substrate for QIP since the beginning, but scaling has been limited by the bulky free-space optics that are traditionally used for state manipulation and readout. CMOS chips with integrated photonics, on the other hand, can solve the scalability issue by tightly packing photodetectors for state readout, classical computing resources for timing and control, and optical waveguides and modulators for state manipulation onto the same chip. In recent years researchers have fabricated a planar ion trap in a CMOS foundry and addressed individual ions using photonic components built on a custom-fabricated ion trap, but the problem of CMOS-integrated state readout remains unaddressed. Current approaches to state readout use a large external lens and photomultiplier tube to detect state-dependent ion fluorescence.
Instead, fabricating silicon photodetectors directly below the trap location would eliminate large light collection optics and enable scaling of readout to greater numbers of ions by closing the sensing-to-manipulation loop on-chip. This thesis addresses this issue by developing hardware and methodology to perform detailed characterization of single-photon avalanche diodes (SPADs) integrated on a CMOS ion trap at cryogenic temperatures, showing that state readout with speed and fidelity comparable to the bulk optics approach is possible. Based on our results, state readout experiments using a CMOS ion trap with integrated SPADs are presently underway at the MIT Lincoln Laboratory.
by Danielius Kramnik.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
APA, Harvard, Vancouver, ISO, and other styles
8

Shiah, Jack Chih-Chieh. "Design techniques for low-power low-noise CMOS capacitive-sensor readout circuits." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/54529.

Full text
Abstract:
In recent years, the demand for low-cost, high performance, and miniature sized MEMS capacitive inertial sensors (accelerometer/gyroscope) has been steadily increasing. Use MEMS capacitive accelerometer as an example, for high precision applications, the resolution needs to be in the μg range at the frequency of interest. These high performance sensors are now been used in numerous applications that require more demanding specifications. For instance, they found their use in active suspension, adaptive brakes, alarm systems, tilt control, vibration, shock measurements, platform stabilization, inertial measurement units, inertial navigation/guidance, machine control, microgravity measurements, seismology, geophysical sensing, oil-field applications, earthquake detection, tactical missiles, robotics and minimally invasive surgery. The precision in a micro-sensory system is limited by the CMOS electronic interfaces, due to the often higher electrical noise associated with the circuits. Additionally, with the growing popularity for portable devices such as cellular phones and tablets, power consumption also becomes an important factor. Therefore, the dissertation discusses and presents several circuit design techniques that improve important system parameters such as noise and power. Moreover, a design flow is provided at the end of the thesis to demonstrate a systematic approach to design the sensor interface circuits. Three major readout circuit blocks have been designed, built, and tested. The first interface uses a circuit technique such that the overall system is insensitive to parasitic capacitances from the sensing nodes. Moreover, a calibration scheme is used to remove DC offset caused by sensor capacitance mismatch. The second interface uses two circuit design techniques called correlated level shifting (CLS) and chopper stabilization (CS) to reduce the noise and the finite gain error from the operational amplifier (op amp), thereby improving both the noise and power performance of the system. The final interface utilizes a modified CLS technique such that it also serves as a noise and power improving mechanism. The first two readout circuits have been tested and measured experimentally, while the third readout circuit is verified via post-layout simulation.
Applied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
9

Herrera, Hugo Daniel Hernández. "Noise and PSRR improvement technique for TPC readout front-end in CMOS. technology." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/3/3140/tde-05072016-151016/.

Full text
Abstract:
ALICE is one of four major experiments of particle accelerator LHC installed in the European laboratory CERN. The management committee of the LHC accelerator has just approved a program update for this experiment. Among the upgrades planned for the coming years of the ALICE experiment is to improve the resolution and tracking efficiency maintaining the excellent particles identification ability, and to increase the read-out event rate to 100 KHz. In order to achieve this, it is necessary to update the Time Projection Chamber detector (TPC) and Muon tracking (MCH) detector modifying the read-out electronics, which is not suitable for this migration. To overcome this limitation the design, fabrication and experimental test of new ASIC named SAMPA has been proposed . This ASIC will support both positive and negative polarities, with 32 channels per chip and continuous data readout with smaller power consumption than the previous versions. This work aims to design, fabrication and experimental test of a readout front-end in 130nm CMOS technology with configurable polarity (positive/negative), peaking time and sensitivity. The new SAMPA ASIC can be used in both chambers (TPC and MCH). The proposed front-end is composed of a Charge Sensitive Amplifier (CSA) and a Semi-Gaussian shaper. In order to obtain an ASIC integrating 32 channels per chip, the design of the proposed front-end requires small area and low power consumption, but at the same time requires low noise. In this sense, a new Noise and PSRR (Power Supply Rejection Ratio) improvement technique for the CSA design without power and area impact is proposed in this work. The analysis and equations of the proposed circuit are presented which were verified by electrical simulations and experimental test of a produced chip with 5 channels of the designed front-end. The measured equivalent noise charge was <550e for 30mV/fC of sensitivity at a input capacitance of 18.5pF. The total core area of the front-end was 2300?m × 150?m, and the measured total power consumption was 9.1mW per channel.
ALICE é um dos quatro grandes experimentos do acelerador de partículas LHC (Large Hadron Collider) instalado no laboratório europeu CERN. Um programa de atualizações desse experimento acaba de ser aprovado pelo comitê gestor do acelerador LHC. Dentro das atualizações planejadas para os próximos anos do experimento ALICE, está melhorar a resolução e eficiência de rastreamento de partículas produzidas em colisões entre íons pesados, mantendo a excelente capacidade de identificação de partículas para uma taxa de leitura de eventos significativamente maior da atual. Para se alcançar esse objetivo, entre outras ações, é preciso atualizar os detectores Time Projection Chamber (TPC), modificando a eletrônica de leitura de eventos, a qual não é adequada para esta migração. Para superar esta limitação tem sido proposto o projeto, simulação, fabricação, teste experimental e validação de um ASIC protótipo de aquisição de sinais e de processamento digital chamado SAMPA, que possa ser usado na eletrônica de detecção dos sinais no cátodo do TPC, que suporte polaridades negativas de tensão de entrada e leitura continua de dados, com 32 canais por chip, com menor consumo de potência comparado com a versão anterior do chip. Este trabalho tem como objetivo o projeto, fabricação, e teste experimental de um readout front-end em tecnologia CMOS 130nm, com polaridade configurable (positiva/ negativa), peaking time e sensibilidade, de forma que o novo SAMPA ASIC possa ser usada em ambos detectores. Para obter um ASIC integrando 32 canais por chip, o projeto do front-end proposto precisa ter baixa área e baixo consumo de potência, mas ao mesmo tempo requer baixo ruido. Neste sentido, uma nova técnica para melhorar a especificação de ruido e o PSRR (Power Supply Rejection Ratio) sem impacto no consumo de área e potência é proposta neste trabalho. A análise e as equações do circuito proposto são apresentadas as quais foram validadas por simulação e teste experimental de um circuito integrado com 5 canais do front-end projetado. O Equivalent Noise Charge medido foi <550e para uma capacitance do detector de 18.5pF. A área total do front-end foi de 2300?m × 150?m, e o consumo total de potencia medido foi de 9.1mW por canal.
APA, Harvard, Vancouver, ISO, and other styles
10

Trunk, Ulrich. "Development and characterisation of the radiation tolerant HELIX 128-2 readout chip for the HERA-B microstrip detectors." [S.l. : s.n.], 2001. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB9142825.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "CMOS readout"

1

Nawito, Moustafa. CMOS Readout Chips for Implantable Multimodal Smart Biosensors. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-20347-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

CMOS Readout Chips for Implantable Multimodal Smart Biosensors. Springer Vieweg, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "CMOS readout"

1

Yazicioglu, R. Firat. "Readout Circuits." In Bio-Medical CMOS ICs, 125–55. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6597-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Boukhayma, Assim. "Noise Reduction in CIS Readout Chains." In Ultra Low Noise CMOS Image Sensors, 85–99. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68774-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Buckhorst, Rolf, Bedrich J. Hosticka, and Helmut Seidel. "CMOS Readout Electronics for Capacitive Acceleration Sensors." In Micro System Technologies 90, 636–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-45678-7_91.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chang, Zhong Yuan, and Willy M. C. Sansen. "Low-Noise High-Speed CMOS Detector Readout Electronics." In Low-Noise Wide-Band Amplifiers in Bipolar and CMOS Technologies, 153–200. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-2126-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nawito, Moustafa. "Introduction." In CMOS Readout Chips for Implantable Multimodal Smart Biosensors, 1–6. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-20347-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nawito, Moustafa. "The SMARTImplant Project." In CMOS Readout Chips for Implantable Multimodal Smart Biosensors, 7–18. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-20347-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nawito, Moustafa. "ASIC Version 1." In CMOS Readout Chips for Implantable Multimodal Smart Biosensors, 19–40. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-20347-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nawito, Moustafa. "ASIC Version 2." In CMOS Readout Chips for Implantable Multimodal Smart Biosensors, 41–84. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-20347-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nawito, Moustafa. "ASIC Version 3." In CMOS Readout Chips for Implantable Multimodal Smart Biosensors, 85–96. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-20347-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nawito, Moustafa. "Measurement Results." In CMOS Readout Chips for Implantable Multimodal Smart Biosensors, 97–118. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-20347-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "CMOS readout"

1

Charlier, Olivier, Thys Cronje, and Chris A. Van Hoof. "Cryogenic standard CMOS sensor readout electronics." In International Symposium on Optical Science and Technology, edited by Marija Strojnik and Bjorn F. Andresen. SPIE, 2000. http://dx.doi.org/10.1117/12.406540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ay, Suat U. "Boosted readout for CMOS APS pixels." In 2011 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2011. http://dx.doi.org/10.1109/iscas.2011.5938038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Miyatake, Shigehiro, Kouichi Ishida, Takashi Morimoto, Yasuo Masaki, and Hideki Tanabe. "Transversal-readout CMOS active pixel image sensor." In Photonics West 2001 - Electronic Imaging, edited by Morley M. Blouke, John Canosa, and Nitin Sampat. SPIE, 2001. http://dx.doi.org/10.1117/12.426949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sami, Denis, Deyan Levski, Guy Meynants, Martin Waeny, Nikolai Dimitrov, Georgi Bochev, and Rostislav Kandilarov. "A Flexible CMOS Test-Pixel Readout System." In 2022 29th International Conference on Mixed Design of Integrated Circuits and System (MIXDES). IEEE, 2022. http://dx.doi.org/10.23919/mixdes55591.2022.9838323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xu, Sheng, Yao-Zu Guo, Xiang-Shun Kong, Hao-Yu Zhu, Hao-Lan Ma, and Xiao-Li Ji. "Self-Calibration Readout Circuits for CMOS Microbolometers." In 2022 IEEE 16th International Conference on Solid-State & Integrated Circuit Technology (ICSICT). IEEE, 2022. http://dx.doi.org/10.1109/icsict55466.2022.9963359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pellerano, Stefano, Sushil Subramanian, Jong-Seok Park, Bishnu Patra, Todor Mladenov, Xiao Xue, Lieven M. K. Vandersypen, Masoud Babaie, Edoardo Charbon, and Fabio Sebastiano. "Cryogenic CMOS for Qubit Control and Readout." In 2022 IEEE Custom Integrated Circuits Conference (CICC). IEEE, 2022. http://dx.doi.org/10.1109/cicc53496.2022.9772841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yao, Libin. "CMOS readout circuit design for infrared image sensors." In International Symposium on Photoelectronic Detection and Imaging 2009, edited by Kun Zhang, Xiang-jun Wang, Guang-jun Zhang, and Ke-cong Ai. SPIE, 2009. http://dx.doi.org/10.1117/12.835520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ma, Cheng, Jing Li, and Xinyang Wang. "Readout architectures for high speed CMOS image sensor." In ISPDI 2013 - Fifth International Symposium on Photoelectronic Detection and Imaging, edited by Jun Ohta, Nanjian Wu, and Binqiao Li. SPIE, 2013. http://dx.doi.org/10.1117/12.2033402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, Dong-Kyu, and Hyun-Sik Kim. "Low-noise high-speed CMOS CID readout IC." In 2017 International SoC Design Conference (ISOCC). IEEE, 2017. http://dx.doi.org/10.1109/isocc.2017.8368858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Ming, Wenbin Yang, Nicolas Llaser, and Herve Mathias. "CMOS reconfigurable readout circuit for a multifunction sensor." In 2009 Joint IEEE North-East Workshop on Circuits and Systems and TAISA Conference (NEWCAS-TAISA). IEEE, 2009. http://dx.doi.org/10.1109/newcas.2009.5290470.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "CMOS readout"

1

Ivanov, Andrew. Quest for a Top Quark Partner and Upgrade of the Pixel Detector Readout Chain at the CMS. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1478074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography