Journal articles on the topic 'CMOS device'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CMOS device.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yedukondalu, Udara, Vinod Arunachalam, Vasudha Vijayasri Bolisetty, and Ravikumar Guru Samy. "Fully synthesizable multi-gate dynamic voltage comparator for leakage reduction and low power application." Indonesian Journal of Electrical Engineering and Computer Science 28, no. 2 (November 1, 2022): 716. http://dx.doi.org/10.11591/ijeecs.v28.i2.pp716-723.
Full textXiong, Qi, Shao Hua Zhou, and Jiang Ping Zeng. "The Analysis of Device Model in CMOS Integrated Temperature Sensor." Advanced Materials Research 986-987 (July 2014): 1600–1605. http://dx.doi.org/10.4028/www.scientific.net/amr.986-987.1600.
Full textChiovetti, Bob. ""Chip Wars" Heat Up On The Digital Imaging Front." Microscopy Today 7, no. 2 (March 1999): 3–4. http://dx.doi.org/10.1017/s1551929500063847.
Full textShawkat, Mst Shamim Ara, Mohammad Habib Ullah Habib, Md Sakib Hasan, Mohammad Aminul Haque, and Nicole McFarlane. "Perimeter Gated Single Photon Avalanche Diodes in Sub-Micron and Deep-Submicron CMOS Processes." International Journal of High Speed Electronics and Systems 27, no. 03n04 (September 2018): 1840018. http://dx.doi.org/10.1142/s0129156418400189.
Full textWong, Hei. "Abridging CMOS Technology." Nanomaterials 12, no. 23 (November 29, 2022): 4245. http://dx.doi.org/10.3390/nano12234245.
Full textFOSSUM, JERRY G. "A SIMULATION-BASED PREVIEW OF EXTREMELY SCALED DOUBLE-GATE CMOS DEVICES AND CIRCUITS." International Journal of High Speed Electronics and Systems 12, no. 02 (June 2002): 563–72. http://dx.doi.org/10.1142/s0129156402001460.
Full textMOONEY, P. M. "MATERIALS FOR STRAINED SILICON DEVICES." International Journal of High Speed Electronics and Systems 12, no. 02 (June 2002): 305–14. http://dx.doi.org/10.1142/s0129156402001265.
Full textBirla, Shilpi, Sudip Mahanti, and Neha Singh. "Leakage reduction technique for nano-scaled devices." Circuit World 47, no. 1 (May 29, 2020): 97–104. http://dx.doi.org/10.1108/cw-12-2019-0195.
Full textWon, Jongun, Youngchae Roh, Minseung Kang, Yeaji Park, Jaehyeon Kang, Hyeongjun Seo, Changhoon Joe, and SangBum Kim. "A Capacitor-Based Synaptic Device with IGZO Access Transistors for Neuromorphic Computing." ECS Transactions 111, no. 2 (May 19, 2023): 133–36. http://dx.doi.org/10.1149/11102.0133ecst.
Full textTang, L., S. Latif, and D. A. B. Miller. "Plasmonic device in silicon CMOS." Electronics Letters 45, no. 13 (2009): 706. http://dx.doi.org/10.1049/el.2009.0839.
Full textDavid Theodore, N., Sophie Verdonckt-Vandebroek, C. Barry Carter, and S. Simon Wong. "Characterization of lateral bipolar transistor structures." Proceedings, annual meeting, Electron Microscopy Society of America 48, no. 4 (August 1990): 628–29. http://dx.doi.org/10.1017/s0424820100176277.
Full textKogut, Igor T., Victor I. Holota, Anatoly Druzhinin, and V. V. Dovhij. "The Device-Technological Simulation of Local 3D SOI-Structures." Journal of Nano Research 39 (February 2016): 228–34. http://dx.doi.org/10.4028/www.scientific.net/jnanor.39.228.
Full textDhar, Subhra, Manisha Pattanaik, and Poolla Rajaram. "Advancement in Nanoscale CMOS Device Design En Route to Ultra-Low-Power Applications." VLSI Design 2011 (May 26, 2011): 1–19. http://dx.doi.org/10.1155/2011/178516.
Full textGABARA, THAD. "PULSED LOW POWER CMOS." International Journal of High Speed Electronics and Systems 05, no. 02 (June 1994): 159–77. http://dx.doi.org/10.1142/s0129156494000097.
Full textPoehls, L. M. Bolzani, M. C. R. Fieback, S. Hoffmann-Eifert, T. Copetti, E. Brum, S. Menzel, S. Hamdioui, and T. Gemmeke. "Review of Manufacturing Process Defects and Their Effects on Memristive Devices." Journal of Electronic Testing 37, no. 4 (August 2021): 427–37. http://dx.doi.org/10.1007/s10836-021-05968-8.
Full textWimmer-Teubenbacher, Robert, Florentyna Sosada-Ludwikowska, Anton Köck, Stephan Steinhauer, Mukhles Sowwan, and Vidyadhar Singh. "Optimization of SnO2-Based CMOS-Integrated Gas Sensors by Mono-, Bi- and Trimetallic Nanoparticles." Proceedings 56, no. 1 (January 20, 2021): 43. http://dx.doi.org/10.3390/proceedings2020056043.
Full textPrasad, Vikash, and Debaprasad Das. "A Review on MOSFET-Like CNTFETs." Science & Technology Journal 4, no. 2 (July 1, 2016): 124–29. http://dx.doi.org/10.22232/stj.2016.04.02.06.
Full textPunjiya, Meera, Chung Hee Moon, Zimple Matharu, Hojatollah Rezaei Nejad, and Sameer Sonkusale. "A three-dimensional electrochemical paper-based analytical device for low-cost diagnostics." Analyst 143, no. 5 (2018): 1059–64. http://dx.doi.org/10.1039/c7an01837a.
Full textKrupar, Joerg, Heiko Hauswald, and Ronny Naumann. "A Substrate Current Less Control Method for CMOS Integration of Power Bridges." Advances in Power Electronics 2010 (September 23, 2010): 1–11. http://dx.doi.org/10.1155/2010/909612.
Full textSanchez Esqueda, Ivan, Hugh J. Barnaby, Keith E. Holbert, and Younes Boulghassoul. "Modeling Inter-Device Leakage in 90 nm Bulk CMOS Devices." IEEE Transactions on Nuclear Science 58, no. 3 (June 2011): 793–99. http://dx.doi.org/10.1109/tns.2010.2101616.
Full textChen, An. "(Invited, Digital Presentation) Emerging Materials and Devices for Energy-Efficient Computing." ECS Meeting Abstracts MA2022-01, no. 19 (July 7, 2022): 1073. http://dx.doi.org/10.1149/ma2022-01191073mtgabs.
Full textStepanov, Valery R., and Dmitry M. Nikulin. "COMPARISON OF THE CALCULATED WORKING RANGE OF THE THIRD GENERATION EOS AND MATRIX FOR NEAR IR RANGE." Interexpo GEO-Siberia 6, no. 2 (July 8, 2020): 88–92. http://dx.doi.org/10.33764/2618-981x-2020-6-2-88-92.
Full textGodfrey, M. D. "CMOS device modeling for subthreshold circuits." IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 39, no. 8 (1992): 532–39. http://dx.doi.org/10.1109/82.168945.
Full textManku, T. "Microwave CMOS-device physics and design." IEEE Journal of Solid-State Circuits 34, no. 3 (March 1999): 277–85. http://dx.doi.org/10.1109/4.748178.
Full textKempf, P., R. Hadaway, and J. Kolk. "Complementary metal oxide semiconductor compatible high-voltage transistors." Canadian Journal of Physics 65, no. 8 (August 1, 1987): 1003–8. http://dx.doi.org/10.1139/p87-161.
Full textPan, James N. "Chromatic and Panchromatic Nonlinear Optoelectronic CMOSFETs for CMOS Image Sensors, Laser Multiplexing, Computing, and Communication." MRS Advances 5, no. 37-38 (2020): 1965–74. http://dx.doi.org/10.1557/adv.2020.273.
Full textNASEH, SASAN, and M. JAMAL DEEN. "RF CMOS RELIABILITY." International Journal of High Speed Electronics and Systems 11, no. 04 (December 2001): 1249–95. http://dx.doi.org/10.1142/s0129156401001088.
Full textWang, Wei, Hong-An Zeng, Fang Wang, Guanyu Wang, Yingtao Xie, and Shijuan Feng. "A speed-optimized, low-noise APD with 0.18 μm CMOS technology for the VLC applications." Modern Physics Letters B 34, no. 29 (July 18, 2020): 2050321. http://dx.doi.org/10.1142/s0217984920503212.
Full textWagaj, S. C., and S. C. Patil. "Performance Analysis of CMOS Circuits using Shielded Channel Dual Gate Stack Silicon on Nothing Junctionless Transistor." International Journal of Engineering and Advanced Technology 10, no. 6 (August 30, 2021): 1–10. http://dx.doi.org/10.35940/ijeat.e2576.0810621.
Full textHeyns, M., and W. Tsai. "Ultimate Scaling of CMOS Logic Devices with Ge and III–V Materials." MRS Bulletin 34, no. 7 (July 2009): 485–92. http://dx.doi.org/10.1557/mrs2009.136.
Full textDieck-Assad, Graciano, José Manuel Rodríguez-Delgado, and Omar Israel González Peña. "Excel Methods to Design and Validate in Microelectronics (Complementary Metal–Oxide–Semiconductor, CMOS) for Biomedical Instrumentation Application." Sensors 21, no. 22 (November 11, 2021): 7486. http://dx.doi.org/10.3390/s21227486.
Full textKurita, Kazunari, Takeshi Kadono, Satoshi Shigematsu, Ryo Hirose, Ryosuke Okuyama, Ayumi Onaka-Masada, Hidehiko Okuda, and Yoshihiro Koga. "Proximity Gettering Design of Hydrocarbon–Molecular–Ion–Implanted Silicon Wafers Using Dark Current Spectroscopy for CMOS Image Sensors." Sensors 19, no. 9 (May 4, 2019): 2073. http://dx.doi.org/10.3390/s19092073.
Full textBISDOUNIS, LABROS. "ANALYTICAL MODELING OF OVERSHOOTING EFFECT IN SUB-100 nm CMOS INVERTERS." Journal of Circuits, Systems and Computers 20, no. 07 (November 2011): 1303–21. http://dx.doi.org/10.1142/s0218126611007967.
Full textTabata, Toshiyuki, Fabien Rozé, Louis Thuries, Sébastien Halty, Pierre-Edouard Raynal, Imen Karmous, and Karim Huet. "Recent Progresses and Perspectives of UV Laser Annealing Technologies for Advanced CMOS Devices." Electronics 11, no. 17 (August 23, 2022): 2636. http://dx.doi.org/10.3390/electronics11172636.
Full textLiu, An-Chen, Po-Tsung Tu, Catherine Langpoklakpam, Yu-Wen Huang, Ya-Ting Chang, An-Jye Tzou, Lung-Hsing Hsu, Chun-Hsiung Lin, Hao-Chung Kuo, and Edward Yi Chang. "The Evolution of Manufacturing Technology for GaN Electronic Devices." Micromachines 12, no. 7 (June 23, 2021): 737. http://dx.doi.org/10.3390/mi12070737.
Full textKweon, Jun Young, and Yun-Heup Song. "CMOS Based Ovonic Threshold Switching Emulation Circuitry." Journal of Nanoscience and Nanotechnology 20, no. 8 (August 1, 2020): 4977–79. http://dx.doi.org/10.1166/jnn.2020.17807.
Full textLi, Shuo, Nan Pan, Sen Gao, and Lei Li. "Three State Output Module and Digital Switch Circuit Based on Threshold Memristor." Journal of Physics: Conference Series 2395, no. 1 (December 1, 2022): 012021. http://dx.doi.org/10.1088/1742-6596/2395/1/012021.
Full textMulberry, Geoffrey, Kevin A. White, Matthew A. Crocker, and Brian N. Kim. "A 512-Ch Dual-Mode Microchip for Simultaneous Measurements of Electrophysiological and Neurochemical Activities." Biosensors 13, no. 5 (April 26, 2023): 502. http://dx.doi.org/10.3390/bios13050502.
Full textCheng, Ying, Rui Kang, and Gan Ghua Zhang. "Failure Mechanisms and Lifetime Simulation Method for Nano Scale CMOS Device." Key Engineering Materials 483 (June 2011): 740–44. http://dx.doi.org/10.4028/www.scientific.net/kem.483.740.
Full textLi, Bo, and Guoyong Shi. "A Native SPICE Implementation of Memristor Models for Simulation of Neuromorphic Analog Signal Processing Circuits." ACM Transactions on Design Automation of Electronic Systems 27, no. 1 (January 31, 2022): 1–24. http://dx.doi.org/10.1145/3474364.
Full textGignac, L. M., and K. P. Rodbell. "Metal Microstructures in Advanced CMOS Devices." Proceedings, annual meeting, Electron Microscopy Society of America 54 (August 11, 1996): 358–59. http://dx.doi.org/10.1017/s0424820100164258.
Full textLi, Yucheng, Shiqi Zhang, and Jianjun Song. "A Germanium Based Quantum Well Complementary Metal-Oxide-Semiconductor Transistor." Journal of Nanoelectronics and Optoelectronics 17, no. 9 (September 1, 2022): 1245–55. http://dx.doi.org/10.1166/jno.2022.3308.
Full textMilo, Valerio, Gerardo Malavena, Christian Monzio Compagnoni, and Daniele Ielmini. "Memristive and CMOS Devices for Neuromorphic Computing." Materials 13, no. 1 (January 1, 2020): 166. http://dx.doi.org/10.3390/ma13010166.
Full textMata-Hernandez, Diana, Daniel Fernández, Saoni Banerji, and Jordi Madrenas. "Resonant MEMS Pressure Sensor in 180 nm CMOS Technology Obtained by BEOL Isotropic Etching." Sensors 20, no. 21 (October 23, 2020): 6037. http://dx.doi.org/10.3390/s20216037.
Full textMaclean, W., M. du Plessis, and J. Schoeman. "Optimisation of CMOS Compatible Microbolometer Device Performance." SAIEE Africa Research Journal 103, no. 1 (March 2012): 3–8. http://dx.doi.org/10.23919/saiee.2012.8531971.
Full textTakagi, Shinichi, Sanjeewa Dissanayake, and Mitsuru Takenaka. "High Mobility Ge-Based CMOS Device Technologies." Key Engineering Materials 470 (February 2011): 1–7. http://dx.doi.org/10.4028/www.scientific.net/kem.470.1.
Full textTzou, J. J., C. C. Yao, R. Cheung, and H. Chan. "Some CMOS device constraints at low temperatures." IEEE Electron Device Letters 6, no. 1 (January 1985): 33–35. http://dx.doi.org/10.1109/edl.1985.26033.
Full textChen, J. Y., and D. E. Snyder. "Modeling device isolation in high-density CMOS." IEEE Electron Device Letters 7, no. 2 (February 1986): 64–65. http://dx.doi.org/10.1109/edl.1986.26295.
Full textDellmann, L., U. Drechsler, T. Morf, H. Rothuizen, R. Stutz, J. Weiss, and M. Despont. "3D opto-electrical device stacking on CMOS." Microelectronic Engineering 87, no. 5-8 (May 2010): 1210–12. http://dx.doi.org/10.1016/j.mee.2009.11.170.
Full textŠkereň, Tomáš, Nikola Pascher, Arnaud Garnier, Patrick Reynaud, Emmanuel Rolland, Aurélie Thuaire, Daniel Widmer, Xavier Jehl, and Andreas Fuhrer. "CMOS platform for atomic-scale device fabrication." Nanotechnology 29, no. 43 (August 24, 2018): 435302. http://dx.doi.org/10.1088/1361-6528/aad7ab.
Full text